Skip to main content
Fig. 1 | BMC Systems Biology

Fig. 1

From: Physiological fidelity or model parsimony? The relative performance of reverse-toxicokinetic modeling approaches

Fig. 1

Diagrams of the different PBTK models. a The “7-Compartment” model, which is based off of a published PBTK model for zebrafish (Danio rerio) [6]. The gills are assumed to be constantly at steady state with the environmental chemical concentration. Chemical in the gills can then flow into the body, entering first into the arterial blood. The arterial blood flows directly into the brain, gonads, liver, poorly perfused tissue, and richly perfused tissue. Chemical exiting the gonads and richly perfused tissue flows directly into the liver. The liver is the only organ that can metabolize the chemical. Chemical exiting the brain, liver, and poorly perfused tissue enters the venous blood, which can either exit the body through the gills or gets recycled into the arterial blood. b The “6-Compartment” model, which is based off a published PBTK model for fathead minnow (Pimephales promelas) [5]. Chemical in the environment enters the arterial blood through the gills and is then distributed to the brain, gonads, liver, and “other” tissues. Both the liver and “other” tissues can metabolize and excrete the chemical, respectively. Chemical exiting these four compartments enter the venous blood and either exit the body through the gills or re-enters the arterial blood. c The “1-Compartment” model, representing a simplification of a fish to a single compartment with gills. Here, chemical in the environment enters the body through the gills. Some of the chemical can then be metabolized, and whatever is not retained in the body can exit through the gills

Back to article page