Skip to main content
Fig. 6 | BMC Systems Biology

Fig. 6

From: System modeling reveals the molecular mechanisms of HSC cell cycle alteration mediated by Maff and Egr3 under leukemia

Fig. 6

Dynamic simulations of Maff and Egr3-mediated alterations of cell cycle. a-c Steady states of Cyc D* (a), Cyc E* (b) and E2F (c) with respect to k s _maff under medium Egr3 expression level (low < k s _egr3 < high) are shown herein. In this circumstance, higher Maff expression is able to uplift the levels of Cyc D*, Cyc E* and E2F, resulting in bistability in their steady states (red lines). Dynamics of the three molecules under low Egr3 expression level (with respect to k s _maff) are equivalent to Fig. 2a-c, in which high expression of Egr3 is not presumed (k s _egr3 = low). d-f Steady states of Cyc D* (d), Cyc E* (e) and E2F (f) with respect to k s _maff under high Egr3 expression level (k s _egr3 = high). In this circumstance, increase in Maff expression (k s _maff) is unable to effectively uplift the steady states of Cyc D*, Cyc E* and E2F any more. g-i Steady states of Cyc D* (g), Cyc E* (h) and E2F (i) with respect to k s _egr3 when Maff expression level is high (k s _maff = high). The situation is similar to those of Fig. 3a - c (k s _maff = low), in which high Egr3 expression potently suppresses the steady-state levels of all three molecules. The results indicate that no matter Maff expression is high or low, cell cycle is suppressed when Egr3 is highly expressed

Back to article page