Skip to main content

Table 13 List of model equations used in calculation of mitochondrial Fo/F1-ATPase equations (obtained from [11])

From: Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer’s disease

Equation Biological significance
AF1=(1.71e9)(ATP m )/(ADP mf pim) AF1 = affinity bracketed expression
\( V^{D}_{F1} = exp(0.112 * PSI) \) ATPase potential generated
F0/F1 ATPase phosphorylation of ADP m
f1=10.5AF1 Variable f1
\( f_{2} = 166 * V^{D}_{F1} \) Variable f2
\( f_{3} = (4.85e-12) * A_{F1} * V^{D}_{F1} \) Variable f3
f4=(1e7+0.135AF1)275 Variable f4
\( f_{5} = (7.74 + (6.65e-8) * A_{F1}) * V^{D}_{F1} \) Variable f5
Jp,F1=−60ρF1((f1f2+f3)/(f4+f5)) Rate of F0/F1 ATPase phosphorylation
\( J_{H,F1} = -180 * \rho _{F1} * \left (0.213 + f_{1} - 169 * V^{D}_{F1}\right)/\left (f_{4} + f_{5}\right) \) Proton flux due to ATPase
JH,leak=ρ leak (PSI+24.6) Mitochondrial membrane proton leak
f PDH =1/(1+(1.1(1+(15/(1+(CAM/0.05))2)))) Fraction of activated pyruvate
J red =Jred,basal+6.3944f PDH Jgly,total NADH reduction rate
ATP/ADP antiport flux
ant1=([ATP4−] i /[ADP3−] i )([ADP3−] m /[ATP4−] m )exp(−PSI/26.7) Variable ant1
ant2=1+([ATP4−] i /[ADP3−] i )exp(−PSI/53.4) Variable ant2
ant3=1+([ADP3−] m /[ATP4−] m ) Variable ant3
J ANT =Jmax,ANT((1−ant1)/(ant2ant3)) Rate of Adenine Nucleotide Translocator (ANT) activity
Phosphorylation of ADP m from TCA cycle
Jp,TCA=(Jred,basal/3)+0.84f PDH Jgly,total Unbound, 3- charged mitochondrial ADP concentration
\