Skip to main content

Table 13 List of model equations used in calculation of mitochondrial Fo/F1-ATPase equations (obtained from [11])

From: Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer’s disease

Equation

Biological significance

AF1=(1.71e9)(ATP m )/(ADP mf pim)

AF1 = affinity bracketed expression

\( V^{D}_{F1} = exp(0.112 * PSI) \)

ATPase potential generated

F0/F1 ATPase phosphorylation of ADP m

f1=10.5AF1

Variable f1

\( f_{2} = 166 * V^{D}_{F1} \)

Variable f2

\( f_{3} = (4.85e-12) * A_{F1} * V^{D}_{F1} \)

Variable f3

f4=(1e7+0.135AF1)275

Variable f4

\( f_{5} = (7.74 + (6.65e-8) * A_{F1}) * V^{D}_{F1} \)

Variable f5

Jp,F1=−60ρF1((f1f2+f3)/(f4+f5))

Rate of F0/F1 ATPase phosphorylation

\( J_{H,F1} = -180 * \rho _{F1} * \left (0.213 + f_{1} - 169 * V^{D}_{F1}\right)/\left (f_{4} + f_{5}\right) \)

Proton flux due to ATPase

JH,leak=ρ leak (PSI+24.6)

Mitochondrial membrane proton leak

f PDH =1/(1+(1.1(1+(15/(1+(CAM/0.05))2))))

Fraction of activated pyruvate

J red =Jred,basal+6.3944f PDH Jgly,total

NADH reduction rate

ATP/ADP antiport flux

ant1=([ATP4−] i /[ADP3−] i )([ADP3−] m /[ATP4−] m )exp(−PSI/26.7)

Variable ant1

ant2=1+([ATP4−] i /[ADP3−] i )exp(−PSI/53.4)

Variable ant2

ant3=1+([ADP3−] m /[ATP4−] m )

Variable ant3

J ANT =Jmax,ANT((1−ant1)/(ant2ant3))

Rate of Adenine Nucleotide Translocator (ANT) activity

Phosphorylation of ADP m from TCA cycle

Jp,TCA=(Jred,basal/3)+0.84f PDH Jgly,total

Unbound, 3- charged mitochondrial ADP concentration