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Abstract
Background: Localized network patterns are assumed to represent an optimal design principle in
different biological networks. A widely used method for identifying functional components in
biological networks is looking for network motifs – over-represented network patterns. A number
of recent studies have undermined the claim that these over-represented patterns are indicative of
optimal design principles and question whether localized network patterns are indeed of functional
significance. This paper examines the functional significance of regulatory network patterns via their
biological annotation and evolutionary conservation.

Results: We enumerate all 3-node network patterns in the regulatory network of the yeast S.
cerevisiae and examine the biological GO annotation and evolutionary conservation of their
constituent genes. Specific 3-node patterns are found to be functionally enriched in different
exogenous cellular conditions and thus may represent significant functional components. These
functionally enriched patterns are composed mainly of recently evolved genes suggesting that there
is no evolutionary pressure acting to preserve such functionally enriched patterns. No correlation
is found between over-representation of network patterns and functional enrichment.

Conclusion: The findings of functional enrichment support the view that network patterns
constitute an important design principle in regulatory networks. However, the wildly used method
of over-representation for detecting motifs is not suitable for identifying functionally enriched
patterns.

Background
Complex biological functions are performed by the inte-
grated activity of functional modules consisting of highly
interacting cellular components [1,2]. Network motifs are
localized patterns of interconnections that occur at signif-
icantly higher numbers than in randomized networks and
thus may represent components of functional modules
[3]. Motifs identified in the transcriptional regulatory net-
work of the bacteria E. coli were found to have important
roles in information processing performed by the network
and were used to obtain a compact representation of the
network [4]. Specifically, a motif called "feed-forward
loop" found in transcriptional regulatory networks was

shown to have an important role in the regulation of
genes in response to persistent stimuli in contrast to tran-
sient signals [4,5]. Superfamilies of various biological and
other networks were identified to have similar local struc-
ture based on the significance profiles of network patterns
[6]. Overall, network motifs have become a widely used
method for identifying functionally significant network
components.

A number of recent studies suggest that over-represented
network patterns, i.e. network motifs, may not necessarily
have functional significance: (i) Network motifs are
found by testing a "random null hypothesis", comparing
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the abundance of patterns in an observed network with
those found in an ensemble of randomized networks [3].
It was recently claimed that an ill-posed null hypothesis
may lead to the false identification of significant network
patterns, as such a randomization process may not cor-
rectly represent naturally evolved networks [7,8]. For
example, it was claimed that the network motifs found in
the neural-connectivity network of the nematode C. ele-
gans may be the result of using a null hypothesis which
does not account for localized aggregation of neural con-
nections. (ii) Another recent work [9] has claimed that
localized network patterns may not necessarily reflect evo-
lutionary selection of functional components as the den-
sity of the patterns may be determined by the global
structure of the network, which is characterized by its
degree distribution and clustering coefficient. (iii) Further
work [10] claims that network motifs do not seem to be of
evolutionary or functional prominence. They compare the
evolutionary conservation of motifs to that of randomly
chosen network patterns and conclude that motifs are not
subject to any particular evolutionary pressure acting for
their preservation. A close examination of motif occur-
rences in well-studied pathways serving specific biological
functions is then employed to show that motifs do not
play a central regulatory role.

These results call for a reexamination of two fundamental
questions concerning network patterns' analysis: (i) Do
localized network patterns constitute an essential design
principle of the underlying network? (ii) Is over-represen-
tation of network patterns a suitable measurement of evo-
lutionary pressure and thus of functional significance?

Aiming to answer these questions, we conduct a large-
scale analysis of functional enrichment and evolutionary
conservation of all 3-node patterns in different dynamic
regulatory networks in the yeast S. cerevisiae. Dynamic reg-
ulatory networks are subsets of the static regulatory net-
work which are active under specific cellular conditions. A
recent study [11] has uncovered large changes in the
underlying network architecture between the static regula-
tory network of S. cerevisiae and "dynamic" subsets of this
network. Structural properties of several dynamic net-
works were studied for 5 different cellular conditions: (i)
cell cycle, (ii) sporulation, (iii) diauxic shift, (iv) DNA
damage, and (v) stress response [11].

Functionally enriched occurrences of network patterns in
these dynamic networks may represent important func-
tional modules reflecting essential design principles. To
measure functional enrichment we define a mean func-
tional enrichment score which is based on the genes' GO
annotation. Extending the work of [10] who studied the
function of over-represented network patterns within the
context of a small number of well known biological mod-

ules, our analysis examines the function of an ensemble of
network patterns using large-scale annotation data. A pre-
vious study by [12] claimed that over-represented network
patterns are functionally enriched without considering
the enrichment of the non over-represented patterns as a
background model. To determine that a specific pattern is
functionally enriched we take a different approach and
compare the enrichment of a pattern to that of the
remaining patterns.

To measure evolutionary conservation of network pat-
terns we generalize the standard scores of conservation of
single genes to 3-node patterns via two conceptually dis-
tinct ways:

1. "bag of nodes" – inspecting the conservation scores
within each occurrence induced by each 3-node pattern.
We define the mean conservation score for each 3-node pat-
tern as the mean conservation scores of all genes that form
the pattern's occurrences (Methods).

2. "coherency" – inspecting the coherency of conservation
scores within each occurrence induced by the 3-node pat-
tern. Genes that together form a functional component
are expected to be coherently conserved through evolu-
tion. We define the conservation coherency score as the per-
centage of the pattern's occurrences with coherent
conservation, (i.e. occurrences with all genes in an occur-
rence having the same conservation level; Methods).

A similar definition for conservation coherency has been
used in [13], where they study evolutionary conservation
of network patterns in the protein-protein interaction net-
work of the yeast S. cerevisiae. Another recent study by [10]
has also measured the coherency of evolutionary conser-
vation of interaction patterns in an integrated network of
S. cerevisiae comprising transcriptional and protein-pro-
tein interaction data. They define a "fragility" score for a
pattern's occurrence that reflects the tendency of its consti-
tuting genes to be uniformly present or absent in an
ensemble of 4 related organisms. Our conservation coher-
ency score is different as it is based on a large-scale predic-
tion of the presence of genes in ancestral species of S.
cerevisiae (Methods).

Applying these measures to various dynamic networks, we
examine whether there are functionally enriched patterns
that may represent specific regulatory mechanisms, and
examine their evolutionary conservation. Finally, we turn
to answer the second question, i.e. whether over-represen-
tation of network patterns is a good indicator of their
functional significance.
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Results and Discussion
Occurrences and Over-Representation of 3-Node Patterns
We searched for all occurrences of all 13 possible 3-node
patterns in all dynamic networks and found that only 6
patterns occurred in at least one network (Methods, Figure
1). Pattern 6 (representing a feed-forward loop with an
additional bidirectional interaction) was found only in
the stress-response network with six occurrences, which is
too few to detect significant functional enrichment or con-
servation measures and was thus excluded from further
analysis. Pattern 3 was also found only in the stress-
response network with 36 occurrences, suggesting that
both patterns 3 and 6 may represent functions that are
specific only to stress-response. Pattern 1, representing a
transcription factor regulating two target genes, is signifi-
cantly more common than the remaining patterns, in all
dynamic networks.

We computed the over-representation scores for all pat-
terns in each dynamic network and found that pattern 5
(feed-forward loop) is over-represented (Z-score > 2) in
the cell-cycle, sporulation and DNA-damage networks
(Methods, Figure 2). The over-representation of the feed-
forward loop is in agreement with previous results in the
static regulatory networks of the bacteria E. coli and the
yeast S. cerevisiae [4,14].

Functional Enrichment and Conservation Scores of 3-Node 
Patterns
We searched the dynamic networks for functionally
enriched patterns that may represent design principles
underlying specific regulatory mechanisms. For each pat-
tern in each dynamic network we computed the mean

functional enrichment score that measures the tendency of
genes composing an instance of the pattern to have the
same GO annotation (Methods, Figure 3). We found that
pattern 2 is functionally enriched in DNA damage and
stress response conditions while pattern 4 is enriched in
diauxic shift and stress response conditions, which are all
exogenous conditions. In addition, patterns 1 is enriched
in the endogenous cell cycle condition, while pattern 5 in

Over-representation of 3-node patterns in each of the differ-ent dynamic regulatory networksFigure 2
Over-representation of 3-node patterns in each of the differ-
ent dynamic regulatory networks. Pattern 5 (feed-forward 
loop) is over represented in 3 out of 5 dynamic networks (Z-
score > 2). No other pattern is over represented in these 
networks.

Number of occurrences of 3-node patterns in 5 dynamic regulatory networksFigure 1
Number of occurrences of 3-node patterns in 5 dynamic regulatory networks. Pattern 1 has the highest number of occur-
rences in all dynamic networks, while pattern 6 has very few or no occurrences at all.

Pattern 1 2 3 4 5 6

Diagram

Cell cycle 5370 845 0 429 103 0
Sporulation 2865 556 0 351 67 0
Diauxic shift 24417 1089 0 749 64 0

DNA damage 18805 832 0 635 70 0

Stress
response

5443 481 36 343 25 6
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enriched in the endogenous sporulation condition. Exam-
ining the functional enrichment of the over-represented
network patterns in the various dynamic networks
revealed no significant correlation between the two meas-
ures. That is, pattern number 5 which is significantly over-
represented in 3 dynamic networks is functionally
enriched only in a single dynamic network, which is not
statistically significant (hyper-geometric p-value = 0.28)

We computed the mean conservation score and conservation
coherency score for all patterns in each dynamic network
(Methods, Figure 4). Pattern 4 has a significantly low
mean conservation score in both diauxic shift and stress
response dynamic networks, and patterns 2 has a signifi-
cantly low score in the stress response dynamic network.
The significantly low mean conservation score for these pat-
terns suggest that the genes composing these patterns are
recently evolved. The same patterns, 2 and 4, have signifi-
cantly high conservation coherency scores in the diauxic shift
and stress response dynamic networks. A high conservation
coherency score indicates that the genes composing the pat-
tern's occurrences tend to have similar conservation score.
Specifically, 96% of the occurrences of patterns 2 and 4 in
these conditions have a coherent conservation score of
zero, representing 3 genes that do not have orthologs in
the direct ancestors of S. cerevisiae. The fact that no pattern
is coherently conserved for longer timescales is surprising

considering the fact that 15% of the regulatory genes have
conservation scores higher than 1. This may suggest that
although some of the regulatory genes of S. cerevisiae are
highly conserved through evolution there is no evolution-
ary pressure to maintain their pattern of interactions prior
to the direct ancestors of S. cerevisiae. This observation is
in agreement with previous work by [15] where it was
shown that occurrences of motifs in the regulatory net-
works of E. coli and S. cerevisiae are not likely to have
evolved from the same ancestral pattern by successive
duplications. Instead, interaction patterns have converged
independently by the interaction of unrelated genes in a
process dubbed "convergent evolution". Examining the
conservation of functionally enriched network patterns
we find that functionally enriched patterns have signifi-
cantly low mean conservation score and significantly high
conservation coherency score (Z-score > 2). These results sug-
gest that specific patterns (such as patterns 2 and 4 in the
exogenous diauxic shift and stress response conditions)
may represent functional components. However, the
structure of such functional components may not be con-
served through evolution for long timescales as we do not
find highly conserved, functionally enriched patterns. The
distinction between regulatory mechanisms operating in
endogenous (cell cycle and sporulation) and exogenous
(diauxic shift, DNA damage, and stress response) condi-
tions conforms with previous results showing different
topological properties in these conditions [11].

Conclusion
To find whether localized network patterns constitute
essential design principles of the underlying network we
studied functional enrichment and evolutionary conser-
vation of patterns occurrences using large-scale gene
annotation and conservation data. We find some func-
tionally enriched network patterns in different dynamic
regulatory networks, supporting the view that network
patterns may play a functional role. The same functionally
enriched patterns have significantly high conservation
coherency scores and significantly low mean conservation
scores in exogenous conditions, representing recently
evolved functional components. In a similar analysis of
the static regulatory network consisting of all regulatory
interactions we found no statistically significant correla-
tion between functionally enriched and recently evolved
patterns (data not shown).

Over-representation of network patterns as a method for
finding functionally significant network components has
attracted significant attention in the system biology com-
munity and their examination is of prime interest. Previ-
ously, [10] have claimed that over-represented network
patterns (motifs) do not play a central regulatory role by
examining a small number of specific well-known biolog-
ical modules. Our results extend their findings showing

Functional enrichment of all 3-node patterns in each dynamic regulatory networkFigure 3
Functional enrichment of all 3-node patterns in each dynamic 
regulatory network. For each 3-node pattern in each condi-
tion we show the p-value obtained in a t-test comparing the 
mean functional enrichment score of the patterns with the cor-
responding score obtained for the remaining patterns (Meth-
ods). Patterns in specific conditions with p-value below 0.05 
(marked with a horizontal line) are considered functionally 
enriched.
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that over-represented network patterns do not tend to be
functionally enriched or evolutionary conserved and thus
may not represent significant functional components.

Specifically, we find that the over-represented pattern 5
(feed-forward motif) is not functionally enriched (in all
but one dynamic condition) or conserved. However, over-
representation of network patterns may become valuable
if the correct background model is used to generate ran-
dom naturally evolved networks. Having found signifi-
cant network patterns using functional enrichment and
conservation criteria, it may be possible to use reverse-
engineering techniques to find a correct background
model under which over-represented patterns would rep-
resent significant modules.

Methods
Network data acquisition and processing
We have used the regulatory network of the yeast S. cerevi-
siae, which encompasses all known regulatory interac-
tions constructed from genetic, biochemical and ChIP
experiments [11,14]. The static network consists of 3420
nodes representing target genes and 142 nodes represent-
ing transcription factors. It contains 7074 directed edges
representing regulatory interactions between transcription

factors and target genes, or between two transcription fac-
tors. All dynamic networks were obtained from [11],
which pruned the static regulatory network based on gene
expression measurement using the "trace-back" algo-
rithm. The number of genes in the various dynamic net-
works is significantly lower than that of the static network
and is between 286 and 783. Accordingly, the number of
regulatory interactions ranges between 481 and 1217.

Patterns occurrences and over-representation
Patterns occurrences were found using the subgraph iso-
morphism algorithm of [16]. Over-representation of net-
work patterns is determined by comparing their
abundance to the distribution of corresponding values
found in an ensemble of randomized networks [3]. The
randomized networks preserve each node's incoming and
outgoing degree distribution as well as the number of
bidirectional edges. For each pattern we computed a Z-
score representing the difference between the observed
abundance of the pattern in the network and the expected
abundance in the randomized networks, divided by the
standard deviation of the abundances in the randomized
networks.

Mean conservation Z-score of all 3-node patterns in each dynamic regulatory networksFigure 4
Mean conservation Z-score of all 3-node patterns in each dynamic regulatory networks. Pattern 4 has significantly low mean 
conservation score in diauxic shift and stress response conditions. Pattern 2 has significantly low score in stress response condi-
tion. (b) Conservation coherency Z-score of all 3-node patterns in each dynamic regulatory networks. Patterns 2 and 4 have 
significantly high conservation coherency score in diauxic shift and stress response conditions.
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Genes conservation scores
Evolutionary retention rates of yeast proteins were previ-
ously calculated in [17] by counting for each protein the
number of substitutions per amino acid site in ortholo-
gous sequences from 21 fully annotated genomes. An
alternative approach was used by [18] estimating the pro-
pensity of genes to be lost in evolution (PGL) based on a
phylogenetic tree consisting of 7 eukaryotes, taking into
account the available time estimates for each divergence
point. To measure the evolutionary conservation of S. cer-
evisiae genes we defined the evolutionary conservation
score based on a phylogenetic tree consisting of 215 spe-
cies (with no divergence point estimates). Concentrating
on S. cerevisiae evolution we defined the conservation
score as the number of S. cerevisiae ancestors that are most
likely to contain identifiable orthologs. For that we used
the KEGG Sequence Similarity Database (SSDB) [19,20]
to list probable orthologs of S. cerevisiae genes in all 215
fully sequenced genomes in the database. KEGG's SSDB
uses a Smith-Waterman dynamic programming algorithm
with a cut-off threshold set to 200. For each gene we
assigned binary values indicating the existence of an
ortholog at these different species, found at the leaves of
the phylogenic tree in KEGG. To predict the presence of
orthologs in S. cerevisiae ancestors we applied the maxi-
mum parsimony algorithm PARS from PHYLIP package
[21]. We then used the number of ancestors that contain
orthologs on the path from S. cerevisiae to the root (scor-
ing 0-4) as the evolutionary conservation score. A related
method to determine evolutionary conservation pressure
was employed in [13], which measured the presence of
orthologs in a set of five higher eukaryotes (not consider-
ing their phylogeny). We note that there is a statistically
significant correlation between our conservation scores
and that of [18].

Network pattern scores

To formulate patterns' scores, we first define C : N →
{0...4} as the conservation score of single genes, where N
= {1...n} denotes the network's nodes. The jth occurrence

of pattern i is a node triplet denoted by  ∈ N3, where 1

≤ i ≤ 13, 1 ≤ j ≤ mi, and mi is the total number of occur-

rences of pattern i. (l), 1 ≤ l ≤ 3, represents the occur-

rence's lth node.

Mean functional enrichment score

Functional enrichment of network patterns is computed
based on the enrichment of GO Process annotations in
genes composing the different pattern occurrences. Specif-

ically, let E( , t) denote the probability that a random

choice of 3 genes from the network has a higher number

of genes annotated with term t than the jth occurrence of
pattern i, assuming a hyper-geometric distribution. The
mean functional enrichment score of pattern i is the average

E( , t), where for each occurrence j we take the term t

with the lowest probability.

To assess the statistical significance of a pattern's mean
functional enrichment score we compare it to a mean func-
tional enrichment score obtained for the occurrences of the
remaining 3-node patterns using a t-test.

Mean conservation score
The mean conservation score of pattern i is the average con-
servation score of all nodes in the pattern's occurrences,

To assess the statistical significance of a mean conservation
score we computed a Z-score comparing it to the expected
mean conservation score under a random permutation of
conservation scores of genes in the network. Specifically,

for a given permutation σ of the network's nodes, we com-

puted the MCS using (i) = C(σ(i)), instead of C(i). This
background model, preserving the topology of the origi-
nal network, was also used by [13].

Conservation coherency score
The conservation coherency score for pattern i is defined as
the percentage of the pattern's occurrences with all nodes
having the same conservation score:

Specifically, for each 3-node pattern occurrence, we test
the conservation coherency, i.e., whether all 3 nodes have
the same conservation score. To assess the statistical sig-
nificance of this score, we used a similar random permu-
tation background model as for the mean conservation
score.
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