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Abstract
Background: Expert knowledge in journal articles is an important source of data for
reconstructing biological pathways and creating new hypotheses. An important need for medical
research is to integrate this data with high throughput sources to build useful models that span
several scales. Researchers traditionally use mental models of pathways to integrate information
and development new hypotheses. Unfortunately, the amount of information is often
overwhelming and these are inadequate for predicting the dynamic response of complex pathways.
Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful
systems biology tools for theoreticians, experimentalists and clinicians and may provide a means
for cross-communication.

Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or
soft computing technologies is presented here. Intelligent hybrid systems, which refers to several
related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical
analysis, has become ubiquitous in engineering applications for complex control system modeling
and design. Biological pathways may be considered to be complex control systems, which medicine
tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful
tool for modeling biological system dynamics and computational exploration of new drug targets.
A new modeling approach based on these methods is presented in the context of hedgehog
regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website:
www.chip.ord/~wbosl/Software/Bionet.

Conclusion: This paper presents the algorithmic methods needed for modeling complicated
biochemical dynamics using rule-based models to represent expert knowledge in the context of
cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows
biologists to build complex models from their knowledge base without the need to translate that
knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue
growth, are seamlessly integrated. A number of common network motifs are examined and used
to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed
to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.
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Background
A key issue in functional genomics is to understand how
genetic or epigenetic perturbations to cellular machinery
result in disease. Related to this is the question of how to
perturb the system so that it functions in a desirable way.
The first issue is the concern of hypothesis generation and
the second is drug target discovery. Much of the work in
these areas is now done by human experts who mentally
integrate experimental data reported in the literature and
perhaps statistical summaries of data from a variety of
sources. Unfortunately, the number of papers published
each year on any specific disease pathway continues to
grow rapidly, making it difficult for specialists to incorpo-
rate all new results into their mental model of a pathway.
Furthermore, the amount of data becoming available
through new measurement technologies is far greater than
the human brain can adequately synthesize. A principal
goal of systems biology is to devise computer algorithms
to help with the task of integrating expert knowledge,
largely gleaned through published results, with high
throughput data sources to create new hypotheses and
putative drug targets. A particularly vexing problem is that
the amount of data available about any pathway is usually
incomplete. The human mind is fortunately very good at
reasoning with incomplete knowledge, which enables
researchers to create new hypotheses even when only
incomplete information is available. Systems biology may
benefit from emulating human reasoning: less detailed
models that can incorporate many sources of incomplete
information may yield more useful output [1].

Many engineering system designs today use descriptive
models rather than mathematical models derived from
mathematical formulas, such as differential equations.
This is often achieved using a modeling approach based
on fuzzy logic. Fuzzy logic is a computational method for
formulating and transferring human expert knowledge to
computational models. It provides a flexible tool for mod-
eling the relationship between input and output informa-
tion and is distinguished by its robustness with respect to
noise and variations in system parameters [2-4]. This char-
acteristic seems to mirror the robustness of biological sys-
tems and their remarkable ability to achieve precise
functional control from imprecise components [5]. Fuzzy
logic and several related, complementary software meth-
odologies are sometimes lumped under the term 'soft
computing' or hybrid intelligent systems. These represent
a combination of emerging, complementary problem-
solving technologies that include fuzzy logic, probabilistic
reasoning, Bayesian networks, neural networks, and evo-
lutionary or genetic algorithms. Models based on fuzzy
logic are sometimes called rule-based models; these terms
will be used interchangeably here.

Fuzzy logic in medicine
Fuzzy logic has become ubiquitous in modern control sys-
tems engineering, including medical applications [6-9]. It
has been particularly useful in applications where appro-
priate mathematical models cannot be derived due to the
complexity of the problem. Examples include controlling
the pump rate in artificial hearts and monitoring the
hemodynamic state of patients during surgery [10], pre-
diction of gait events using the electromyographic (EMG)
activity of lower extremity muscles in children with cere-
bral palsy [11], pacemaker control [12], anesthesia and
ventilator control [13], control of robotic prostheses [6],
and numerous other medical [14] and engineering appli-
cations [6]. Perhaps one of the most immediately attrac-
tive features of fuzzy logic modeling for biology is that it
provides a straightforward method for formulating and
transferring human expert knowledge to quantitative
computer models. Since much of the data about biologi-
cal systems is derived from logically-designed, hypothesis-
driven experiments and contained in linguistic form in
journals, fuzzy logic provides a way for biologists to incor-
porate data that might otherwise be difficult to incorpo-
rate into computer models. Often this data is noisy and
imprecise. Fuzzy logic models are naturally robust with
respect to noise and variation in system parameters, but
allow computation of logical consequences of complex
system dynamics with imprecise variables.

At the same time, fuzzy logic models are capable of repre-
senting extremely complex systems to high degrees of
accuracy when precise data is available. The standard
additive model (SAM), a common formulation of a fuzzy
logic system, is a universal approximator. That is, a SAM
can approximate any nonlinear function as precisely as
desired, give appropriate data [4]. Statistical and non-gra-
dient based optimization methods such as genetic algo-
rithms can be used to refine fuzzy logic models that are
initially constructed by biologists manually or from path-
way databases. Estimation of distribution algorithms, a
type of evolutionary algorithm that replaces mutation and
crossover operations with probability distributions [15],
provide a potential way to use statistical high throughput
data, such protein interaction data, to optimize manually
constructed models or to provide putative hypotheses to
fill in unknown network components. Thus, the method-
ology presented here, which is primarily focused on using
expert knowledge to build computational models, can use
the aforementioned soft computing and statistical meth-
ods to incorporate other data sources to optimize param-
eters, making it an ideal data integration tool. Since many
textbooks and papers are available to describe fuzzy logic
modeling details [6,9,16,17], the discussion here will
focus on a novel implementation of a fuzzy logic system
embedded in a network structure and its usefulness for
spanning research in basic biology and clinical research.
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Fuzzy logic and qualitative methods for systems biology
Several related methods have been developed for fuzzy
modeling of gene interaction networks from microarray
data. The models are similar, but different methods are
used to incorporate data and parameterize the models.
Woolf [18] made fuzzy logic inference tables from triplets
of genes to determine co-expression relationships.
Sokhansanj, et al. [19] used an exhaustive search of gene
interaction among twelve yeast cell cycle genes to fit the
fuzzy model parameters. The model was able to predict
transcriptional correlation among the twelve yeast cell
cycle genes after tuning the model on a different data set
for the same system. Linden, et al. [20] used a fuzzy logic
model in a similar way to reverse engineer a gene interac-
tion network from microarray data using genetic program-
ming to discover and optimize the gene interaction rules.
The goal of each of these models was to qualitatively rep-
resent coexpression patterns among genes.

Our goal is a broader modeling paradigm than the previ-
ous fuzzy logic applications. More along the lines of our
goal are efforts to use qualitative differential equations
(QDEs) to model biochemical dynamics in cells. Thus far
this work has been primarily used for metabolic path-
ways. A modeling system that requires time series of
metabolite concentrations as input data is described by
King, et al. [21]. They used a QDE system to model ten
reactions involved in glycolosis. Two distinct modeling
tasks are identified: simulation of a biochemical system
when model parameters are known and system discovery
from time series data. For system discovery, machine
learning methods from the soft computing paradigm were
used to parameterize the QDEs. Time series of concentra-
tions for proteins of known structure were used as input
data to build the model, which required considerable
computational time on a Beowulf cluster. One of the hin-
drances to adoption of this modeling approach is its com-
putational representation that has evolved from the Lisp
programming language.

Heuristic reasoning for hierarchical complex systems
The methodology presented in this paper is distinguished
from previous qualitative modeling approaches in several
ways. The initial goal was to develop a model that would
allow experimental biologists to use the kind of qualita-
tive data found in typical journal articles to describe the
interaction of genes, proteins, and other cellular compo-
nents to create computer models of large numbers of
interacting parts. This arose from a practical need in our
research to keep track of myriad components in pathway
models that were built from data extracted from dozens of
journal articles. Biologists already do this kind of mental
modeling every time they make a new hypothesis; a tool
was needed to aid in this reasoning. Secondly, with new
sources of data becoming available, it was important to

design a methodology that could be expanded in the
future to integrate new data sources to refine models.

Finally, biological processes span many scales. A kind of
heuristic modeling is common in the literature, where
molecular interactions are analyzed and used to create
new hypotheses about cellular events, tissue processes or
disease progression. For example, specific gene mutations
accelerate tumor growth in specific tissues. This is a semi-
quantitative relationship between two very different
scales. Fuzzy network modeling can be used as a tool for
aiding human reasoning when many interacting variables
participate in complex interaction networks on several
scales. Though the interactions can sometimes only be
described approximately, the logic of the interactions is
rigorous.

The modeling approach presented here was developed in
an effort to create a computational tool that would emu-
late and extend the ability of human experts to create rea-
sonable models from incomplete or ambiguous data. The
goal was to allow these models to be constructed directly
from the information contained in journal articles that
typically report experimental results about molecular
pathways. This approach adopts fuzzy logic for biochem-
ical reaction modeling and all cellular processes and
embeds this in a network structure. The network structure
is similar to functional Petri nets [22-24], which are well-
suited to representing molecular pathways and gene inter-
actions, as well as physiological system interactions.

Pathway models can be constructed manually by biolo-
gists and manipulated to study the dynamics of alterna-
tive pathways. However, the power of this method is that
it provides a framework for using various soft computing
technologies to integrate diverse data sources to improve
and refine models. Rule-based or fuzzy logic models
[7,10,16,18,19] are appropriate for manipulation by
genetic or other evolutionary algorithms, which may be
useful for drug target discovery. This process will be dis-
cussed in future papers that expand the basic model pre-
sented here. Details about methods for integration of
high-throughput data with expert knowledge will also be
reserved for future publications. Because the soft comput-
ing paradigm has been widely adopted for many engineer-
ing tasks, it is hoped that the framework presented here
can be adopted and rapidly expanded by many research-
ers with expertise in these methods. Input files and code
for all examples presented are available at the Bionet web-
site [25].

Results and discussion
The most common childhood brain cancer is medullob-
lastoma (MB), a devastating disease that can result in per-
manent serious brain damage even when successfully
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treated [26-28]. The etiology of MB is believed to involve
aberrant activation of Sonic hedgehog (Shh) signalling
[27-31]. Potential therapeutic targets are therefore regula-
tors of the hedgehog pathway [32-34]. Although much
remains to be learned about the transcriptional hierarchy
involved in hedgehog activation, enough experimental
data is available to construct pathway models that are
quite complex. Hedgehog regulation of medulloblasto-
mas will be used as an example to illustrate our modeling
approach.

A model of hedgehog regulation of tumor growth will be
constructed hierarchically, starting with a few molecular
components and their role in tumor growth. Figure 1
presents the major hedgehog components that control
"tumor growth". Tumor growth is a tissue-level quantity is
regulated by a hierarchy of steps starting with Shh expres-
sion and hedgehog activation. Initially, we are interested
in identifying the common network features or motifs
that are involved in this system and building an extensible
model that captures our understanding of the processes
involved. The rules used to build this model are shown

beside the figure. There are 8 nodes in this model and 15
reactions. Reactions for most variables include produc-
tion and decay. Shh does not have production or decay
reactions; it is set either to either its lowest or highest value
in simulations. Specific motifs within this pathway will
now be isolated and discussed for their relevance to the
model. The rules for each of these cases are the same is for
the whole pathway, except that lightly shaded parts are set
to constant values.

Shh binds to the tumor repression gene Patched (Ptc1),
releasing its suppression of Smoothened (Smo), which
activates Gli transcription factors. The Gli transcription
factors are the primary effectors of Shh signalling in the
developing cerebellum [30,35]. Of particular interest is
regulation of the Gli family of transcription factors that
are believed to be involved in medulloblastoma tumori-
genesis [26,28,29,33]. Several promising cancer drugs that
reduce medulloblastoma growth in mouse models pur-
portedly interfere with Gli1 and Gli2 expression by block-
ing the signalling pathway downstream of Smo. These
include HhAntag [34] and cyclopamines [32,36,37]. A tar-

a. A schematic diagram of hedgehog regulation of tumor growth in the cerebellum is shownFigure 1
a. A schematic diagram of hedgehog regulation of tumor growth in the cerebellum is shown. These proteins are key compo-
nents of the hedgehog signaling pathway, though many intermediate enzymes may mediate some steps. The "transforming 
event" is hypothesized to be required for tumor growth, but details about its function are completely lacking [61]. Tumor 
growth is a macroscopically defined process that is connected to molecular dynamics using rules. b. The rules for this model 
are given in linguistic form, much as they might be described in journal articles that discuss this pathway.

a.  b.

Rules for Hedgehog model 
1. If Shh is medium or higher, Transforming Event is on. 

2.  NmycP expression is proportional to the level of Shh. 

3.  Ptc1 expression rate is inversely proportional to Shh 
level; Gli1 must be low or higher for Ptc1 expression.
Gli1 partially counters the repression of Shh: the effects 
of each on the reaction are averaged.

4.  Smo expression level is very high if Ptc1 level is zero, 
very low if Ptc1 is very low to medium, and is zero if 
Ptc1 is high or very high. 

5.  Gli2 expression level is proportional to Smo level. 

6.  Gli1 expression level is proportional to Gli2 level. 

7.  Tumor Growth: (1) is proportional to the level of 
NmycP, (2) requires the transforming event level to be
high, (3) is zero unless Gli1 is medium high or higher.

8.  The proteins NmycP, Ptc1, Smo, Gli1 and Gli2 decay
at a constant rate proportional to their concentrations.
Page 4 of 25
(page number not for citation purposes)



BMC Systems Biology 2007, 1:13 http://www.biomedcentral.com/1752-0509/1/13
get of Gli1 is PTC1; Ptc1 is a transmembrane protein that
blocks Smo expression when Shh binds to it. Gli1 acti-
vates Ptc1 expression and thus counters, to some extent
Shh repression of Ptc1 activity [33,35,38]. The feedback
from Gli1 to Ptc1 that is active in normal cells, as illus-
trated by figure 2, may play an important role in deter-
mining the effectiveness of drugs that regulate Gli1
expression downstream of Smo. Some reports suggest that
this feedback loop may be inactivated in medulloblasto-
mas in vivo, but not in cultured cells [33,34].

Basic fuzzy network modeling concepts
We define a dynamic, interacting system by specifying the
all of the variables that participate in the system and the
processes (reactions) in which each node participates. The
participating variables, also called nodes as in graph the-
ory or Petri nets, can represent protein concentrations,
gene expression levels, tumor size, temperature or any
other variable of interest, including discrete variables.

Reactions or processes define dynamic changes to node
values and must involve one or more nodes as reactants.
Though the language used leans toward biochemical reac-
tions, a useful feature of this rule-based model is the abil-
ity to connect dynamics on multiple scales. Nodes can
represent any quantity for which rules of change can be
defined. A reaction is defined by a reaction rate constant
and a list of participating nodes together with their role in
the reaction. The rate constant is a scaling factor that mul-
tiplies the reaction rate that is determined by changing
reactant values. Reactions can also be defined as discrete
events. Reaction rate has no meaning in this case; the
event happens when the reactants satisfy the rule for firing
and nothing happens when those conditions are not sat-
isfied. This is useful for modeling processes such as chro-
mosome separation or cytokinesis. Discrete events may
also be a useful model for representing complex processes
like metastasis as a single event that follows a long series
of cellular reactions and sets into motion other processes.

For each reaction shown, the reactants have default rules
based on their role as substrate, product, activator or
inhibitor. These default rules can be overridden by giving
new rules explicitly, as will be described in the methods
section or may be optimized using automatic methods to
integrate other data sources. The latter will not be dis-
cussed in detail here. A diagram of a system as in figure 1
is used to construct a computer model by first listing all of
the participating nodes. Each reaction is then listed, with
a reaction rate. Substrates are variables that are used up in
a reaction; products are produced. Activators and inhibi-
tors participate in a reaction, but their value doesn't
change. The default rules for each of these roles are as fol-
lows:

• When a substrate is absent, the reaction rate is zero. As
the concentration of substrate increases, the reaction rate
increases proportionately. Thus, if the substrate level is
low, its contribution to the reaction rate is low. The reac-
tion rate, multiplied by the rate scaling factor or rate con-
stant, determines how fast the substrate is used up in that
reaction. By default, substrates have a stoichiometry of -1.
This can be changed manually as needed.

• A product is produced in a reaction. It does not affect
the reaction rate, except that when the product concentra-
tion reaches its highest allowable amount the reaction rate
goes to zero. No more can be produced. The default stoi-
chiometry is +1.

• Activators have the same default rules as a substrate: as
the concentration increases, the reaction rate contribution
increases. Activator concentration is not changed by a
reaction in which it participates as an activator, it only
influences the rate. Activators and inhibitors have a stoi-
chiometry of 0, indicating that the reaction does not
change their concentration.

• An inhibitor causes a reaction rate to slow as its concen-
tration increases. When absent, an inhibitor has no effect
on a reaction rate, which is then wholly determined by the
concentrations of substrates and activators. As the amount
of inhibitor increases, the reaction rate slows. The concen-
tration at which an activator or inhibitor strongly affects a
reaction rate can be set when known. By default, the effect
is proportionate to the enzyme concentration.

In each reaction, the contributions of all participating
reactants are averaged using one of several averaging
schemes. We found that either a harmonic average or min-
imum rule works best. Both of these have the property
that if the rule for any reactant makes the rate zero, the rate
will be zero. Thus, if a reaction includes two substrates
and an activator where the concentration of one substrate
is zero, but the activator and the other substrate concen-
tration are high, the output rule is zero: the reaction rate
should be zero because one of the substrates is absent.

In rule-based simulations the meaning of "low" and
"high" are determined by the dynamic range or universe
of discourse for each variable. In the hedgehog model,
most variables have a concentration range of [0.0, 1.0] for
simplicity in illustrating the dynamics of particular
motifs. However, the dynamic range of Shh is defined to
be [0.001, 0.1] in this model. This was set to illustrate that
variables can be assigned values in any desired range.
Rules are defined based on the meaning of "low" and
"high" within the context of the appropriate range for a
given variable. Thus, a concentration of 0.1 is high for Shh
in this model, while 0.1 is low for Gli1. In addition, the
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The important role of feedback loops is illustrated by isolating the Shh-to-Gli1 pathway in the hedgehog modelFigure 2
The important role of feedback loops is illustrated by isolating the Shh-to-Gli1 pathway in the hedgehog model. NmycP and the 
transforming event required for tumor growth are constitutively on in this simulation. a. The feedback from the transcription 
factor Gli1 to Ptc1 transcriptional activation is operative. As shown in b, Ptc1 transcription is maintained at an equilibrium level 
that is high enough to keep Gli1 below the threshold required for tumor growth. In c, the feedback is turned off; time courses 
in d show that increased Gli1 levels no longer influence Ptc1 expression, which is then effectively repressed by Shh. High levels 
of Gli1 are thus maintained and tumor growth is high. In this simulation Shh is constitutively at its highest level (0.1) and thus 
not shown.

a. b.

c. d.
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meaning of "low" and "high" for a given variable can be
different in different reactions. Thus, in reactions where
Gli1 is a product, such as a transcription reaction, low,
medium and high on a scale of 0 to 1 might be repre-
sented by 0.4, 0.6 and 0.8. In a catalytic reaction where
Gli1 is a potent non-stoichiometric activator, a concentra-
tion of 0.001 might be "high" in that it causes the reaction
to achieve its maximum rate. This information can be put
into the model rules if available. If not, model simula-
tions can still be run using whatever information is avail-
able.

Common motifs
Positive and negative feedback
Feedback motifs are common in biological systems [39-
43]. Negative feedback loops are essential for maintaining
equilibrium and resisting change while positive feedback
structures amplify signals to enable switch-like behaviour
[39]. Gli1 is a transcription factor that promotes transcrip-
tion of Ptc1 [28,30,33,44]. Figure 2 highlights the Gli1
feedback loop in the hedgehog pathway. NmycP and the
transforming event required for tumor growth are consti-
tutively "on" in figure 2 simulations in order to isolate the
effects of Gli1 feedback on Ptc1 and tumor growth. When
Shh signalling is active, Ptc1 is repressed, causing
increased Gli1 expression. When the Gli1 feedback loop is
active, as in figure 2.a, the system is self-regulating and
tends toward an equilibrium level of Ptc1, Smo and Gli1,
as increased Ptc1 expression tends to upregulate Gli1 even
in the presence of Shh [33]. When the feedback loop is
broken, as in figure 2.b, Shh signalling causes rapid sup-
pression of Ptc1 to low levels and growth of Smo and Gli1
to high levels. Disconnecting the feedback loop is accom-
plished in the model by simply removing Gli1 as a reac-
tant from the production reaction for Ptc1 (rule 3 in figure
1).

Feedforward motif
Cells have a remarkable ability to orchestrate precise
sequences of events using imprecise components. An
important mechanism for accomplishing this feat is to fil-
ter out some signals and respond to others. A feedforward
motif can filter the effects of transient signals while allow-
ing sustained signals to activate downstream components
[45]. Figure 3 isolates a feedforward motif in the hedge-
hog pathway. To isolate the dynamics of the feedforward
motif, the transforming event was constitutively "on" and
the Gli1 feedback loop to Ptc1 was deleted. Shh produc-
tion was on for one-half day at the start of day 1, and then
turned off. Though NmycP responded quickly to this tran-
sient signal, it was not sufficient to activate Gli1 transcrip-
tion. On day 4 a longer Shh signal was turned on. Gli1
transcription began approximately one day after Gli1 pro-
duction began. Tumor growth begins when Gli1 reaches a
moderately high level. When Shh transcription ends,

NmycP levels begin to drop immediately, but Gli1 decline
is delayed. Thus, a series of prolonged aberrant Shh acti-
vation events could sustain tumor growth. Note that times
and rates in this example were implemented to illustrate
modeling concepts and, though physiologically reasona-
ble, may not be accurate.

The feedforward system in figure 3 offers a potential
explanation for the occurrence of medulloblastoma in
haploinsufficient Ptc+/- mice. Approximately 14–20% of
heterozygous Ptc+/- mice develop medulloblastoma
tumors, whereas these tumors are rare in Ptc+/+ mice
[33,34]. Lower production of Ptc1 in heterozygous mice
may make the probability that a perturbation to the
hedgehog pathway will result in decreased Ptc1 expres-
sion for a long enough time to allow tumor growth to ini-
tiate. Transient Shh upregulation, as seen in the
simulation, is not sufficient to allow sufficient Gli1
increase if Ptc1 production is high.

Single Input Motif (SIM)
In a related manner, temporal coordination of develop-
mental processes can be achieved by differential response
to a common signal [45,46]. Single input motifs involve
activation of several parallel pathways by a single activator
[45]. In figure 4, Shh activates three separate pathways.
Each of these parallel pathways is required for tumor
growth and each has a different activation threshold,
decay threshold and rate. The rules for this simulation are
as for the basic model in figure 1, with the Gli1 feedback
loop deleted to illustrate this motif. The simulation curves
have the same shape and characteristic response profile as
the differential equation simulations in [45], demonstrat-
ing that intuitive rules define the correct dynamic behav-
iour.

Chemical reaction kinetics
Although analytical equations are known for basic reac-
tion kinetics and approximations for enzyme-catalyzed
reactions, it is desirable to use simple rules to describe
such reactions when the goal is to integrate these with
other processes for which analytical equations are not
known. A number of software packages are available for
modeling reaction dynamics with differential equations
and can be found, for example, on the systems biology
workbench site [47]. Generic numerical software that
might also be suitable can be found in a number of places,
including the netlib numerical software library [48]. Rule-
based representations of chemical reactions are relatively
simple to write and easily modified, which is useful when
exploring the system effects of different possible reactions
through simulation.

Because of the universal approximation properties of
fuzzy logic models, they are able to represent any nonlin-
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ear process as accurately as desired, given sufficient data.
It may be easier to make very precise chemical reaction
models with differential equations, but robust system
models that integrate many levels, from approximate cel-
lular chemistry to clinical data, may be more useful for
some medical research and more easily constructed with
linguistic rules by biologists and clinicians without
numerical modeling experience.

Rules to determine reaction rates from substrate concen-
trations can be determined in a variety of ways. The math-
ematical details for fuzzy logic rules most appropriate for
modeling chemical kinetics remain to be derived. For
modeling biological systems, simplicity with reasonable
accuracy is a high priority. A second order reaction and an
enzyme catalyzed reaction, both involving activation of
Smo by Ptc1, are implemented with fuzzy rules and exam-
ined here.

An essential part of hedgehog pathway activation involves
release of Ptc1 repression of Smo. Smo activates down-
stream transcription factors of the Gli family, which in

turn upregulate cell cycle components [31,33,38,49]. One
model suggests that Smo is in a balance between active
and inactive states. Smo is activated when it combines sto-
ichiometrically with a small molecule (sm) that changes
its conformation. The small molecule must be actively
transported across the cell membrane by Ptc1, which acts
catalytically.

Figure 5 shows a model of Smo reaction with a small mol-
ecule agonist in a second order reaction after transport
facilitated by Ptc1. Analytical solutions to first, second
and third order kinetics are compared to simulations from
a rule-based model for Smo activation by a small mole-
cule. The simulated time series for Smo activation follows
second order kinetics quite closely. Analytic solutions for
first, second and third order kinetics are shown for com-
parison. This is intended to show that relatively simple
rule-based models give reasonable biochemical dynamics.
We note here that the default rules for first order reactions,
where the rate is proportional to substrate concentration
only, is mathematically equivalent to the usual differen-
tial equation for a first order reaction. Third order reac-

a. A feedforward motif in the hedgehog pathway is highlightedFigure 3
a. A feedforward motif in the hedgehog pathway is highlighted. b. To isolate the dynamics of the feedforward motif, the trans-
forming event was made constitutively "on" and the Gli1 feedback loop to Ptc1 was deleted. A short, half-day upregulation of 
Shh was given at the start of day 1, then turned off. Though NmycP responded quickly to this transient signal, it was not suffi-
cient to activate Gli1 transcription. Shh was upregulated for a longer period starting on day 4. After a one day delay, Gli1 tran-
scription commences. Tumor growth begins when Gli1 reaches a moderately high level. When Shh transcription ends, NmycP 
levels begin to drop immediately, but Gli1 decline is delayed. Thus, a series of prolonged aberrant Shh activation events could 
sustain tumor growth.

a. b.
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tions are also well-approximated by simple reaction rules
with three substrates.

The model in figure 5 is simulated with the following
rules, with only three essential reactions. For each reac-
tion, take the harmonic mean of substrate concentrations
(zero/v. low/low/med/high/v. high); then reaction rate is
(zero/v. low/low/med/high/v. high). The three reactions
are: Reaction 1: Smo_inactive and sm are substrates and
active Smo is the product. The rate coefficient is 1.0e-3 s-1.
Reaction 2: the reverse reaction, has one substrate, acti-
vated Smo-sm complex, and two products, with the rate
coefficient 1.0e-3 s-1. Reaction 3: The sm is transported
across the membrane at a rate much faster than it is used
by Smo and is continually supplied at a constant rate that
is catalyzed by Ptc1.

To analyze the system dynamics of the hedgehog path-
way, it may be sufficient to model the catalytic nature of
Ptc1 action heuristically using rules that capture the non-

linear effects of Ptc1 on Smo: if Ptc1 is zero, Smo activa-
tion is at its normal or highest level, Vmax. When a small
amount of Ptc1 is present, Smo concentration is only 20%
of its highest level (a linguistic value of "very low"). If Ptc1
is higher than that, the equilibrium concentration of
active Smo goes to near zero. Normally, the linguistic
terms zero, very low, low, medium, high and very high are
assumed to mean fractions 0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
respectively, of the maximum possible value. These are
used as defaults for all rules. However, these can be
adjusted when more information is available. In figure 6,
Ptc1 catalyzes Smo inactivation. It was reported that a
concentration of Ptc1 of 1/45 the concentration of Smo
reduces the level of active Smo by 80% [50]. The meaning
of very low, low and medium we set at 0.012, 0.022 (1/
45) and 0.032 for Ptc1 when it acts enzymatically to deac-
tivate Smo. The rule for this reaction was: the inactivation
rate is zero when Ptc1 is zero or very low and very high
when Ptc1 is low or higher. The curve for equilibrium Smo
versus Ptc1 concentration in figure 6.b shows the typical

Shh activates three separate pathways in this model, each with a different activation and decay threshold and rateFigure 4
Shh activates three separate pathways in this model, each with a different activation and decay threshold and rate. a. A single 
input motif in the hedgehog pathway is highlighted. b. Simulation reveals that the unknown "transforming" event activates 
immediately when the Shh signal reaches a high level. NmycP production is also activated immediately by Shh, but it rises more 
slowly. Gli1 production is delayed by the longer signaling chain and threshold levels of Smo and Gli2 that are required for tran-
scription. Tumor growth requires activation of all three pathways at a sufficient level. When the Shh signal is removed, rapid 
decay of the transforming event and NmycP cause tumor growth to quickly stop. Gli1 levels are maintained for a short delay 
before declining after the Shh signal is turned off.

a. b.
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a. Smo is activated when it combines stoichiometrically with a small molecule (sm, red) that changes its conformationFigure 5
a. Smo is activated when it combines stoichiometrically with a small molecule (sm, red) that changes its conformation. The 
small molecule must be actively transported across the cell membrane by Ptc1, or is prevented from exiting the cell membrane 
by Ptc1, which acts catalytically. Active forms are in color, inactive in gray. b. A time series for activated Smo concentration is 
shown when inactive Smo combines stoichiometrically with a small molecule activator. This is a second order reaction. Ana-
lytic solutions for first, second and third order kinetics are also shown. Rules for the model is simulated are described in the 
text.

a.

b.
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Smo inactivation catalyzed by Ptc1Figure 6
Smo inactivation catalyzed by Ptc1. In this simulation two reactions are used, one for activation from a precursor and one for 
deactivation of Smo. Activation occurs spontaneously at a constant rate. The inverse deactivation reaction is catalyzed by Ptc1 
and is much faster when sufficient Ptc1 is present. Here Ptc1 is an essential catalyst: in its absence the deactivation reaction 
does not occur and Smo is continuously activated and maintained at a high level. Smo concentrations were set to be in the 
range of 0.0 to 10.0 nM. The concentration of Ptc1 is given as a fraction of Smo concentration. The vertical dashed lines indi-
cate the concentration range over which the maximum inactivation rate is attained. The rules for this model include only two 
reactions. Reaction 1: Smo activation is proportional to the substrate concentration, Smo_inactive. The product is Smo and the 
rate constant is 1.0e-5. Reaction 2: Smo (active) is the substrate, Smo_inactive is the product, and Ptc1 is an activator. The rate 
is computed by harmonic averaging of the outcomes for the following rules: the rate is proportional to Smo concentration; the 
rate is zero when Ptc1 is zero or very low, and very high when Ptc1 is low or greater.

a.

b.



BMC Systems Biology 2007, 1:13 http://www.biomedcentral.com/1752-0509/1/13
S-shape for an enzymatic reaction, with the greatest
change in rate occurring for Ptc1 concentration of "low",
the value at which the rate goes from zero to very high.

It is important to emphasize that the goal here is not just
to show that fuzzy rules can be found to match differential
equation models of chemical kinetics. Rather, a model
based on intuitively reasonable rules that describe the
reaction qualitatively produce reaction dynamics that are
very close to dynamics derived from chemical kinetics
using rigorous mathematical derivations.

Oscillators, switches and discrete events in the cell cycle
Cell cycle machinery plays a central role in cell prolifera-
tion, apoptosis and cell fate determination. Failure to exit
the cell cycle at the correct time may cause abnormal
development and aberrant re-entry into the cell cycle by
terminally differentiated cells may be a primary cause of
many cancers. Understanding regulation of the cell cycle
is therefore a central issue in the application of molecular
biology to medicine. For that reason, a number of differ-
ential equation models of the cell cycle in yeast have been
constructed for research purposes [51-54]. Regulation of
the mammalian cell cycle is more complex than that of
yeast, though many homologous genes and proteins and
common network motifs are involved.

A model of the mammalian cell cycle was constructed
with several important components. Chromosome sepa-
ration and cell division were included as discrete events
that occur when certain conditions are met. The cell cycle
is an oscillatory system that involves not only continuous
processes, but a series of discrete events [55]. Discrete
events are an important mechanism in cells for control-
ling the precise timing of key events and insuring irrevers-
ibility with imprecise components [56,57]. Thus, even
though many cell cycle parameters are poorly constrained,
the overall behaviour of the cell cycle system is well char-
acterized and heuristic modeling approaches are suitable
for studying the control dynamics or testing possible ideas
for new drug targets [58].

Figure 7 presents a cell cycle model that illustrates how
chemical kinetics, enzyme catalyzed reactions and discrete
events, such as chromosome separation, cell division, and
entry/exit to a combined G1SG2 phase can be integrated.
The primary molecular components of this model are
cyclinD1, cyclinB2, APC, and Cdc14. Cell cycle models
with these or similar components have been constructed
using differential equations [54,59].

Tumor growth is linked to this cell cycle via cell division.
Tumor size in this case is a measure of the number of cell
divisions that have occurred. If the cell cycle arrests, tumor

size shrinks slowly through a continuous apoptotic reac-
tion. Rules for this cell cycle model are as follows:

1. cyclinD1 production is continuous

2. cyclinD1 decay is proportional to cyclinD1 and APC
levels and is rapid

3. cyclinB production is proportional to cyclinD1 level

4. cyclinB decay is zero when APC is less than high, is low
when APC is high, and is very high when APC is very high.

5. Cdc14 production is proportional to cyclinB levels

6. Cdc14 decay is continuous and proportional to Cdc14
concentration

7. APC production is proportional to Cdc14 level, but is
zero when Cdc14 is very low and low.

8. APC decay is directly proportional to cyclinB, cell mass
and entry into G1SG2 and determined by the harmonic
average of these.

9. Chromosome separation event occurs when cyclinD1 is
medium or higher and G1SG2 is in the on state (G1SG2
is a discrete event, either on or off). G1SG2 turns off when
chromosome separation occurs.

10. Cell division occurs when cyclinB is low or less and
decreasing at any rate; chromosome separation event
must also have occurred. G1SG2 turns on when cell divi-
sion occurs and chromosome separation turns off.

11. Cell division turns off when cell mass is very low or
less and cell division is currently on.

12. Cell mass growth is constant. When cell division
occurs (a single event), cell mass is halved. Cell mass has
a range of values between one and two.

The growth rate of cell mass has a controlling effect on the
rest of the cycle. It was set to make the cycle length approx-
imately 1 day, a typical value for human cells undergoing
mitosis [60]. Figure 8 shows time courses for molecular
components and events in the cell cycle model, as well as
tumor growth. The shape and ordering of curves for
cyclinB, Cdc14 and APC are very similar here to those
shown in Tyson's cell cycle model [59]. Chromosome sep-
aration is a discrete event that is on for a brief time at the
beginning of mitosis and then turns off when cell division
occurs. Another discrete event, cell division, is not shown
here. If either of these events does not occur (turn on), the
cell cycle halts. Similarly, knocking out any of the critical
Page 12 of 25
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The cell cycle model shown integrates chemical kinetics, enzyme catalyzed reactions and discrete events, such as chromosome separation, cell division, and entry/exit to a combined G1SG2 phaseFigure 7
The cell cycle model shown integrates chemical kinetics, enzyme catalyzed reactions and discrete events, such as chromosome 
separation, cell division, and entry/exit to a combined G1SG2 phase. Tumor growth is a process that is linked explicitly to the 
cell cycle, thus providing a quantitative model that connects a molecular process model to a clinical manifestation. Each cell 
division increments tumor size, while a continuous apoptotic reaction causes slow decay of tumor size. Rules for this cell cycle 
model are given in the text. Simulation results are presented in the succeeding figures.
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components of this pathway, cyclinD1, cyclinB, Cdc14 or
APC, for example by deleting their production reaction,
will also cause the cycle to halt. In figure 8.b the cell cycle
was set to stop suddenly on day 20. When this happens,
tumor growth, a measure of the number of cell divisions
that have occurred, stops and the tumor slowly decays
through the apoptotic reaction. The latter is a simple reac-
tion with tumor size as the sole participant (as a substrate
that is used up).

Modeling and drug target discovery
Computational models are potentially very useful for
exploring the effects of manipulating complex pathways
through drugs or other means. Rule based models of two
features that make them promising tools for drug target
discovery. First, it is easy for experts to use their domain
knowledge to build models. Rules can be changed easily
without mathematical manipulations to carry out thought
experiments with many hundreds or thousands of com-
ponents. Secondly, algorithms for automatically manipu-
lating fuzzy rules have been developed for a variety of
engineering applications and include genetic algorithms
and neural nets. It may be possible for experts to build
first-stage models of pathways and then apply computa-
tional methods to optimize the models using other data
sources, or to search for optimal drug targets.

To illustrate the use of the model for carrying out compu-
tational experiments a rule-based model was constructed
using elements of the previously presented pathways. Our
goal in this example is to explore the effects of a drug,
HhAntag, that reportedly interferes with Gli1 activation of
cyclinD1, thereby stopping progression of the cell cycle
[34]. HhAntag was introduced as a new component to the
model in figure 1. HhAntag inhibits both Gli1 and, to a
lesser extent, Gli2 expression downstream of Smo.

An interesting reported effect of HhAntag on cultured
neural tissues is that a relatively low dose suppresses Gli1
levels, but a thousand fold increase is needed to halt
tumor growth [34]. This effect is not observed in vivo. An
important key to this difference is the suggestion that the
feedback loop from Gli1 to Ptc1 is operates in the cultured
system but not in vivo. As discussed previously, Ptc1 acts
catalytically on Smo expression: very low levels of Ptc1 are
sufficient to significantly reduce Smo activity [29]. As
shown in figure 9, when the Gli1 feedback loop to Ptc1 is
active small doses of drug are sufficient to suppress tumor
growth (figure 9.b). Without this feedback, the drug is not
as effective in low doses. Only at much higher doses can
the drug suppress both Gli proteins sufficiently to stop
tumor growth (figure 9.c).

It should be emphasized here that the hedgehog pathway
is not well understood and the model presented here is in

preliminary stages. Nevertheless, it illustrates important
modeling ideas. The next step is to replace the tumor
growth module with a cell cycle model. First, we develop
and test a preliminary cell cycle model using rules. This
will then be connected to the hedgehog pathway.

A more complete model for hedgehog regulation of the
cell cycle is shown in figure 10. The cell cycle model dis-
cussed previously has been combined with the compo-
nents in figure 9. Integration of these rule-based models
was simple and required little more than pasting the rule
files for each into one file and modifying the reactions for
cyclinD1 so that Gli1 and Gli2 regulated its production. In
this model, Shh directly induces Nmyc expression and
indirectly affects Nmyc posttranslational modification,
mediated by its indirect targets, cyclinB and possibly other
cyclins [30,44,61]. Shh also binds to Ptc1, as described
previously, activating Gli expression. The tumor growth
process from figure 8 is now replaced by the cell cycle
model from of figure 9. Note that a circular pathway exists
among activated cyclinB, Nmyc and its phosphorylated
form NmycP, and cyclinD1. An additional component or
transforming event, mentioned in figure 1, is needed to
start this cycle, which reinforces the suggestion that
another yet unknown target may also be required for cell
transformation [61].

Once started, the cycle will continue as long as the Shh
pathway remains active. Mitotic degradation of Nmyc per-
mits neuronal precursor cell cycle exit in the absence of
Shh signalling or in the case of an intrinsic program-
directed shift toward differentiation. Thus neural fate
specification and cancer activation are regulated by the
same machinery.

In figure 10.b simulation time courses show the effect of
decreasing insulin growth factor (IGF) on the cell cycle. In
this figure, IGF is decreased beginning on day 6, allowing
GSK-3β to increase. Nmyc-P is then phosphorylated and
degraded. Note that Nmyc-P initially decreases, and then
recovers for one cell cycle through complicated feedbacks.
Incorporating as many of these complicated interactions
into a model is essential for identifying potential drug tar-
gets, as cells are remarkably robust and have built-in fault
tolerance systems that may not be evident from examina-
tion of static network or interaction diagrams [56,62,63].
The effects of drug dose will be the same for this model as
in figure 9, as the primary action of the drug on Gli2 has
not been changed. However, adding details to the cell
cycle now allows more detailed investigation of the inter-
action between the drug, its targets, and cell cycle compo-
nents.
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Simulations of the cell cycle from figure 7 using a rule-based modelFigure 8
Simulations of the cell cycle from figure 7 using a rule-based model. a. The growth rate of cell mass has a controlling effect on 
the rest of the cycle. It was set to make the cycle length approximately 1 day, a typical value for human cells undergoing mitosis 
[60]. The shape and ordering of curves for cyclin B, Cdc14 and APC are very similar here to those shown in Tyson's cell cycle 
model [59]. The cell mass ranges between 1.0 and 2.0. Chromosome separation is a discrete event that is either on or off. For 
clarity, the curve was shifted up by one unit in the graph. Another discrete event, cell division, is not shown here. b. Tumor 
growth in this model is controlled directly by the cell cycle. The rule is: tumor growth is incremented whenever cell division 
occurs. Thus, if the cell cycle stops, tumor growth stops. Tumor growth is also faster when the cell cycle period is shorter. 
Tumor cell apoptosis occurs at a constant rate. Tumor size has a large range of values, 0 to 100 in arbitrary units, to allow vir-
tually unlimited tumor growth in model runs.

a.

b.
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a. This model is similar to the one in figure 1, but a few more details concerning N-myc activation are addedFigure 9
a. This model is similar to the one in figure 1, but a few more details concerning N-myc activation are added. The transforming 
event of figure 1 is constitutively on when Shh is high, so it is not shown here. Tumor growth requires Nmyc-P and either Gli1 
or Gli2 to be active. b. the feedback loop shown as a dotted line from Gli1 to Ptc1 is inactive. The drug suppresses Gli1 and 
Gli2 activity downstream of Smo, inhibiting tumor growth, but high Smo levels allow continued expression of Gli2, which is 
able to activate the cell cycle. Only when high drug doses are present are Gli1 and Gli2 sufficiently suppressed to stop tumor 
growth. c. The feedback loop is now active; Gli1 and Gli2 are suppressed by the drug, but small levels of Gli1 are sufficient to 
activate Ptc1 production, supressing Smo expression, hence Gli2 is lower. As drug dose increases, Gli1 is suppressed and even-
tually Ptc1 production stops, allowing Smo to be expressed.
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In this model, the tumor growth process is replaced with the cell cycle model from figure 7.Figure 10
In this model, the tumor growth process is replaced with the cell cycle model from figure 7. Components of the hedgehog 
pathway now interact directly with cyclin D1; mitotic cyclin (cyclin B) is required for Nmyc phosphorylation to the active 
Nmyc-P state. b. If the cell cycle is activated by injecting Nmyc-P initially, the effect of other components on the cycle can be 
studied. In this figure, IGF is decreased beginning on day 6, allowing GSK-3β to increase. Nmyc-P is then phosphorylated and 
degraded. The effects of drug dose will be the same for this model as in figure 9, as the primary action of the drug on Gli2 has 
not been changed. However, adding details to the cell cycle now allows more detailed investigation of the interaction between 
the drug, its targets, and cell cycle components.

a.

b.
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Conclusion
An important goal of computational modeling of bio-
chemical networks is to identify potential drug targets in
silico. Computational tools that can enhance the ability of
researchers to reason through the complex dynamics of
pathways of interest may be useful for researchers trying to
keep track of dozens or hundreds of interacting network
components, while automatic methods for manipulating
pathway models to search for drug targets have the poten-
tial to revolutionize the drug development process [64].

Integrating the rapidly growing quantities of high
throughput data into meaningful pathway information is
a bottleneck to computational drug screening and discov-
ery [65]. Although informatics tools are currently being
used to identify potential pathway interactions and puta-
tive targets, target identification necessarily requires
detailed understanding of the structure of the pathway
and the role of specific genes and proteins. This informa-
tion is generally available in journal articles as linguistic
pathway descriptions or interactions derived from
hypothesis-driven experiments [66].

A major advantage of the modeling approach presented
here is that it enables the incorporation of biological
expertise into the modeling process. At the same time, it
does not prevent integration of multiple high throughput
data sources into the model. New evolutionary algorithms
based on statistical estimation, called estimation of distri-
bution algorithms [15,67], enable Bayesian probability
distributions to be used as input data to optimize system
parameters. Such statistical data is commonly available
from bioinformatics analyses of microarray expression
data ([68-70]) or proteomics data [71,72]. The framework
presented by the fuzzy logic model presented here thus
allows representation of expert knowledge about a path-
way, and integration of other sources of numerical data
with that data. Further research into efficient algorithms
for integration of data from many sources is an important
area for further research.

Drug discovery is a difficult challenge for computational
and systems biology. Finding a "clever way to throw away
the details may be the most important part of model
building" [1]. Intelligent hybrid systems are an important
method for modeling dynamic networks and complex
biological processes with linguistic or qualitative-logical
data, while allowing for more accurate models as more
data becomes available.

The initial motivation of this modeling approach was to
shift the burden of modeling to biological description and
biological data. We deliberately sought to develop a mod-
eling paradigm that imitates the logical reasoning that
biologists use when analyzing a complex pathway dia-

gram to understand its function and develop new hypoth-
eses to explain observations.

Another motivation for this work, which will be devel-
oped and explicated in future publications, was to find a
quantitative representation of biological systems that was
simple enough to be manipulated by genetic algorithms
as a possible approach to computational drug target dis-
covery and for integration of multiple data sources. Such
a program will likely be similar to current engineering
approaches to fuzzy system discovery [3,4,9,10] and will
be a subject for future research.

Methods
Fuzzy logic (FL) provides a simple way to arrive at a defi-
nite conclusion based upon vague, ambiguous, imprecise,
noisy, or missing input information. FL's approach to
control problems mimics human reasoning, only much
faster. A FL biochemical model requires some numerical
parameters in order to operate, such as initial values and
rate coefficients, but exact values of these numbers are
usually not critical. Since dynamic rules are defined in
terms of fuzzy quantities, the logic of the dynamics can be
prescribed without precise numerical values.

Bionet implementation of fuzzy network models
A potential drawback of fuzzy logic models is the rapid
growth of the rule table when many inputs are involved.
Biological networks typically involve hundreds or thou-
sands of interacting variables, so this is a serious concern.
If the number of fuzzy sets used for each variable is F, then
the number of rules required to define rules for all possi-
ble inputs is FN, where N is the number of variables. At
least four fuzzy sets are needed; even a few hundred vari-
ables causes the number of rules needed to specify a
dynamic model to become huge.

Fortunately, a several simplifications are possible when
modeling biological networks that greatly reduce the size
of the rule base, even when hundreds or thousands of var-
iables are involved. Most importantly, the number of var-
iables involved in any reaction or process is relatively
small. Typically only a few species are involved in a reac-
tion; the vast majority of proteins or genes do not interact
appreciably. Thus, a biological system can be modelled as
many networked reactions or processes.

Figure 11 illustrates a network of interacting fuzzy logic
models. For simplicity these models that consist of net-
worked fuzzy biological processes will be called of Bionet
models. The structure is similar to a functional hybrid
Petri net [73], with processes replaced by fuzzy inference
models. The method here is distinguished from func-
tional Petri nets by the rule based process model. The
focus here is on biochemical networks, so variables are
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a.Triangular membership functions on the interval 0 to 1Figure 11
a.Triangular membership functions on the interval 0 to 1. Linguistic values and equivalent integer designations are shown with 
each membership function. Centroids for the triangular functions evenly divide the interval into five segments. All examples in 
this paper used these membership functions, except that the length of the interval was varied in some cases, or the centroids 
were adjusted. An example of fuzzification of the real value 0.42 is: 0.42 = 0.9 (0.4) + 0.1 (0.6) = 0.9 low + 0.1 medium. B. tri-
angular membership functions are linear on the log of the values. For example, if the range is [10-3, 102], then 0.0316 = 
sqrt(0.001) is fuzzified by linearly combining logarithms of the fuzzy set values. Log(0.0316) = -1.5 = 0.5 log(10-2) + 0.5 log(101) 
= 0.5 very low + 0.5 low.
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generally protein concentrations or gene expression lev-
els. However, Bionet variables are completely general and
may represent any quantity. This is quite useful when
building models in a hierarchical fashion. A variable
might represent an entire complex pathway or tissue.
Rules then define how the "blackbox" pathway or tissue
interacts with other variables without reference to internal
complexities. Later, mechanistic details can be added as
more data becomes available.

In general, the number of rules needed for each reaction is
equal to the product of the number of fuzzy sets for each
component involved in the reaction. If each reactant has
six fuzzy sets or states and there are four reactants in a
process, then there are 64 = 1296 rules that must be speci-
fied. Computations are simplified further by noting that
any real number belongs to at most two fuzzy sets. Thus
the number of rules that must be evaluated at each time
step is 24 = 16 when there are four reactants. Some heuris-
tics can be used to automatically compute the rules. In
general, reactions are limited by the minimum rate for any
one of the reactants. If a substrate for a reaction has con-
centration zero, for example, that will limit the rate of
reaction regardless of how much of any of the other reac-
tants is present. Similarly, if a strong inhibitor is present at
its highest concentration and it shuts down the reaction
completely, then it does not matter what the other con-
centrations are. With similar heuristics, it is sufficient to
specify the effect of each component individually on the
reaction. Rules for combining reactants are then deter-
mined automatically by applying appropriate averaging
heuristics. Example simulations below illustrate the input
information required.

Membership functions
All simulations in this paper used six fuzzy sets, corre-
sponding to the linguistic variables zero, very low, low,
medium, high and highest. The centroid locations for
each of these sets, a scale of 0.0 to 1.0, are 0.0, 0.2, 0.4, 0.6,
0.8, and 1.0. When the universe of discourse is other than
0 to 1, centroids are the endpoints and fractional incre-
ments of 0.2 define the other centroids. We found that six
fuzzy sets were adequate for all simulation requirements
presented here. The discretization error in numerical dif-
ferential equations can be reduced by using a finer grid or
by using a variable grid that puts finer grid points where
greater accuracy is needed. The standard additive model
can achieve greater flexibility for approximating functions
in a similar manner, either by increasing the number of
fuzzy sets or by moving the centroid locations. The latter
was illustrated earlier with the example of catalytic activa-
tion of Smo by Ptc1. The centroids for very low, low and
medium were defined by 0.0012, 0.0022 and 0.0032,
respectively, while leaving the other centroids unchanged.
In Bionet, default centroids can be redefined by simply

listing the centroid values after the rules for a variable in a
reaction. Note that the meaning of a linguistic variable
such as "very low" is reaction dependent. When a protein
is a stoichiometric substrate in a reaction, the default cen-
troids might be appropriate; while for the same variable
acting as a catalyst the meaning of very low might be quite
different.

Model specification
Input information for a Bionet model consists of a list of
variables, also called nodes, along with initial values. Each
reaction between variables is a fuzzy rule-based inference.
A reaction consists of one or more variables and a reaction
rate constant. The rate constant scales the reaction rate
that is determined as an output from the fuzzy inference
and is 1.0 by default. Logical pathway models can be built
to test the logic of interactions even if little is known about
rate constants. If all reactions are defined to have only two
output states, highest and zero, or on and off, the entire
network is equivalent to a dynamic Boolean network
[74,75].

Variables play different roles in different reactions. A vari-
able may be a product in a synthesis reaction. In other
reactions it may be an inhibitor or activator – or even both
depending on its concentration. For simplicity, default
rules are defined for four basic roles: substrate, product,
activator and inhibitor. Stoichiometry determines how
quickly the reactant is produced or used up; activators and
inhibitors have stoichiometry of zero in a reaction.

The essence of model dynamics is the fuzzy inference that
maps fuzzy input variables to fuzzy output variables. Con-
version of precise real values to fuzzy or linguistic values
is accomplished by fuzzification. This is illustrated in fig-
ure 11. The domain or universe of discourse for a variable
can be defined by any real numbers. The minimum and
maximum values are constants for the whole simulation.
The default range is 0 to 1, since in many cases we are
interested in network dynamics with normalized values.
However, specifying a different range is trivial, requiring
only that the range be specified when the node and its ini-
tial value are declared. Most importantly, reaction dynam-
ics are defined in terms of fuzzy sets, not the real values
that are attached to those sets by the centroid values. In
figure 11.a the domain is divided into six fuzzy sets of
equal size. This is the default, though it can also be
changed by listing the centroid values with the node dec-
laration. Although the endpoints are fixed, the placement
of intermediate centroids may be context dependent and
differ with each reaction. This reflects the fact that the
meaning of linguistic terms such as "low" may depend on
whether a particular molecule is a product or activating
enzyme, for example. An example of fuzzification of the
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real value 0.42 is: 0.42 = 0.9 (0.4) + 0.1 (0.6) = 0.9 low +
0.1 medium.

For wider dynamic range, a logarithmic scale has also
been implemented. As illustrated in figure 11.b, triangular
membership functions are linear on the log of the values.
For example, if the range is [10-3, 102], then 0.0316 =
sqrt(0.001) is fuzzified by linearly combining logarithms
of the fuzzy set values. Log(0.0316) = -1.5 = 0.5 log(10-2)
+ 0.5 log(101) = 0.5 very low + 0.5 low. Logarithmic scales
are useful when concentrations vary over a large range and
changes in biochemical activity require concentration
changes over many orders of magnitude. The rate at which
the actual (real-valued) concentration changes in each
reaction is still determined by the reaction rate. We
emphasize again that the reaction rules are still defined in
terms of the effect of fuzzy values (low, medium, and so
on) on the reaction rate. The fuzzy set definitions,
whether linear or logarithmic, provide meaning to the lin-
guistic fuzzy sets in the context of particular reactions.

An example
The reaction network in figure 12 consists of 5 variables
and 8 reactions. Four reactions are not shown – each var-
iable except Shh decays at a constant rate. Shh is set to an
initial value that doesn't change. Simulation results for
this example were shown in figure 2. The universe of dis-
course or range for each variable and an initial value are
set for each variable. The input file used is:

Node Shh 0.1 log 0.001 0.1

Node NmycP

Node Ptc1 0.5

Node Smo

Node Gli1

The keyword 'Node' identifies this as a node definition.
Initial values 0.0 by default if not given explicitly. Simi-
larly, the domain or universe of discourse is [0,1] if not
given. In the above, Shh has an initial value of 0.1 and a
domain of [0.001, 0.1] on a logarithmic scale. This was
done primarily for illustration, since in this simulation
Shh was set to a constant value and maintained. The ini-
tial value for Ptc1 is 0.5; all others have initial value 0.0.
The meaning of "low" or "high" for each variable is con-
text dependent and is defined for each reaction that a var-
iable participates in.

The model has 8 reactions, which are essentially fuzzy
inference engines that map the fuzzy input variables to a
fuzzy output rate. The network of reactions is illustrated in

figure 12. Reactions rates are computed and fire on each
time step. The rate is scaled by the rate constant to give a
reaction rate at this time step. Each reaction consists of a
reaction name, a rate coefficient, and a list of participating
reactants. The reactants can be used up (substrates, stoi-
chiometry < 0), produced (products, stoichiometry > 0) or
participate without changing concentration (activator or
inhibitor, stoichiometry = 0). The reactions for Smo pro-
duction and decay, Reactions 2 and 7, are shown here:

Reaction Smo_production 0.002

pro Smo

inh Ptc1 5 2 1 1 0 0

Reaction Smo_decay 0.002

sub Smo

The keyword 'Reaction' defines a reaction definition. The
reaction name follows the keyword. The number after the
reaction name is the reaction rate constant. If not given
the default value is 1.0. The second reaction shown here,
Smo_decay, has a single reactant, Smo, which is a sub-
strate. The 'sub' keyword implies the following default val-
ues:

Reaction Smo_decay 0.002

sub Smo 0 1 2 3 4 5 stoi -1 centroids 0.0 0.2 0.4 0.6 0.8
1.0

The first six numbers that follow 'sub Smo' are the rules
that define how the reactant Smo contributes to the rate of
this reaction. The six integers are the output rate for each
fuzzy level of Smo. These are a shorthand for the linguistic
rules: "when Smo is zero, the rate is 0; when Smo is very
low, the rate is 1 or very low; when Smo is low, the rate is
2 or low; when Smo is medium the rate is 3 or medium;
when Smo is high, the rate is 4 or high; when Smo is high-
est, the rate is 5 or highest. If more information is availa-
ble to give more accurate rules or centroids, they can be
written here. More likely, these values will be set by auto-
matic optimization methods when high throughput data
is used to refine models that are initially built manually by
experts. We have implemented a simple genetic algorithm
that manipulates the rules and centroids. Incorporation of
procedures for specific data sources remain for future
research, but the model is designed for these enhance-
ments.

The Smo_production reaction fires on every time step. The
default rules for a product, Smo in this case, are 5 5 5 5 5
0. This means that the output rate is 5 or "highest" when
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a. Each reaction or process is a fuzzy inference system, with real inputs and real outputsFigure 12
a. Each reaction or process is a fuzzy inference system, with real inputs and real outputs. b. A subset of the hedgehog pathway 
is represented here. c. The pathway in b. is now represented as a network of fuzzy inference systems. Reactions are linked 
together by variables that may participate in more than one reaction. At every time step, all reactions are executed and varia-
bles are updated.
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the Smo concentration is zero through high (0 to 4). If
Smo reaches the highest concentration, 5, it cannot go
higher because that would exceed its defined limit. The
rate goes to zero at that point. The inhibitor, Ptc1, has
rules 5 2 1 1 0 0, which means that when Ptc1 concentra-
tion is high or highest, the rate is zero. Similarly, when
Ptc1 is zero, the rate is 5 (unaffected), when Ptc1 is very
low, the rate tends to low (2), when Ptc1 is low or
medium, the rate is very low (1).

The actual reaction rate is computed as follows: the real
concentration of each participating reactant is fuzzified.
The rate is a multi-dimensional function of the number of
reactants. Following the usual Standard Additive Model,
the rate is found by adding fractional membership of each
variable to find the total contribution:

If on a particular time step Smo is 0.55 = 0.25 low and
0.75 medium, while Ptc1 is 0.4 high and 0.6 highest, then
equation (1) becomes

0.25 * 0.4 * HA(5,1) + 0.75 * 0.4 * HA(5,0) + 0.25 * 0.6
* HA(0,1) + 0.75 * 0.6 * HA(0,0)

= 0.1 * 1.7 + 0.3 * 0 + 0.15 * 0 + 0.45 * 0

= 0.17

All rates are computed on a 0 to 1 scale, and then scaled
by the rate coefficient. The final rate for this reaction step
is thus 3.4e-4. The value of Smo on the next time step will
be 0.55034.

The list of variables and the definition of all reactions is
the primary input to define a Bionet model. Start and end
times for the simulation and the number of time steps are
also needed as input. At each time step, all reactions take
place and variables are updated. Bionet simulations are
similar to explicit time-stepping schemes in numerical
approximations to differential equations. Bionet imple-
ments the Standard Additive Model or SAM for each fuzzy
reaction [4]. This implementation guarantees the univer-
sal approximator property of the model.

Time limits and time step size must be specified as for any
dynamic model. This method uses explicit time stepping,
so the step size is controlled by the fastest reaction. The
condition rate*∆t < ∆xmax must hold for the fastest reac-
tion, where xmax is either the difference between the
highest and next-to-highest centroid for any variable that

is a product substrate in that reaction, or xmax is the differ-
ence between the next-to-lowest and lowest centroid for
any substrate in that reaction. For all simulations in this
paper, the time step was 1 minute. Most reaction rates
were on the order of 10-3 minutes, but the cyclin decay
rates were faster (1.0 min-1 for cyclin D).

Reaction order is asynchronous to prevent any bias in the
simulation. The order of reactions is randomly chosen at
every time step. Furthermore, if desired, a probability of
firing may be assigned to a reaction. In this case, reactions
will occur with some probability on each of the time steps.
Models that include stochastic reactions can represent sto-
chastic processes in cells, such as stochastic gene expres-
sion [76] or a probability of tumor formation. Whether or
not this is an appropriate or useful model for stochastic
biological processes remains to be determined and likely
will depend on the particular phenomenon of interest.
The flexibility of this approach allows for a variety of
modifications to be tried in future research.

Software availability and requirements
Simulation software, source code and input files contain-
ing rules for all examples discussed in this paper are avail-
able for download on the Bionet web site.

Project name: Bionet

Project home page: http://www.chip.org/~wbosl/Soft
ware/Bionet/bionet.html

Operating systems: Platform independent; GUI version
for MS-Windows only.

Programming language: java (Java 2 runtime environ-
ment)

License: Use of this software is governed by the Gnu Gen-
eral Public License [77].
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