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Abstract
Background: Realistic biochemical simulators aim to improve our understanding of many
biological processes that would be otherwise very difficult to monitor in experimental studies.
Increasingly accurate simulators may provide insights into the regulation of biological processes due
to stochastic or spatial effects.

Results: We have developed GridCell as a three-dimensional simulation environment for
investigating the behaviour of biochemical networks under a variety of spatial influences including
crowding, recruitment and localization. GridCell enables the tracking and characterization of
individual particles, leading to insights on the behaviour of low copy number molecules participating
in signaling networks. The simulation space is divided into a discrete 3D grid that provides ideal
support for particle collisions without distance calculation and particle search. SBML support
enables existing networks to be simulated and visualized. The user interface provides intuitive
navigation that facilitates insights into species behaviour across spatial and temporal dimensions.
We demonstrate the effect of crowing on a Michaelis-Menten system.

Conclusion: GridCell is an effective stochastic particle simulator designed to track the progress
of individual particles in a three-dimensional space in which spatial influences such as crowding, co-
localization and recruitment may be investigated.

Background
One of the main goals of computational cell biology aims
to accurately simulate large biological systems at molecu-
lar resolution. Stochastic effects and spatial constraints are
increasingly being recognized as important factors in the
normal functioning of molecular networks [1]. The effi-
ciency of biochemical networks is enhanced by compo-
nent co-localization [2], and certain signaling networks
are thought to be facilitated by transport and co-localiza-
tion [3]. In addition, molecular crowding has been shown

to affect biochemical systems [4-6]. Modeling and simula-
tion of these kinds of networks requires new kinds of sto-
chastic simulators.

We developed GridCell to simulate biological models
with specific consideration for stochasticity, locality, and
collision. GridCell is based on a simplified model for
molecular movement and interaction. It uses a discrete
three-dimensional cubic grid based on the D3Q27 model
often used in the application of the Lattice-Boltzmann
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Method (LBM) [7]. Each voxel has access to itself and its
26 neighbours and is independent of voxels outside this
immediate surrounding. Figure 1 shows the 27 possible
locations accessible to a voxel from a D3Q27 grid. The
integer-addressed 3D grid avoids floating-point computa-
tion and distance calculations, resulting in an efficient
implementation. Molecules are represented as particles
that move and react stochastically within discrete volumes
in discrete timesteps. Collisions and molecular crowding
are enforced since only one particle can occupy a given
location at any time. GridCell stores the coordinates of all
the particles on the 3D grid at every turn, thereby enabling
particle tracking in both space and time.

The simulation space is visualized via a 3D interface and
2D graphs, and surface plots summarize molecule con-
centrations over space and time. GridCell supports mod-
els specified by the Systems Biology Markup Language
(SBML) (please see Availability & requirements for further
information). SBML models can be obtained from public
repositories such as EBI's Biomodels database (please see
Availability & requirements for further information) or
designed using software such as SBMLeditor or JDesigner
(please see Availability & requirements for further infor-
mation).

Implementation
Algorithm
The simulation employs a two-phase process in which
particles (1) attempt to move and then (2) attempt to
react every turn.

Movement Phase
A particle can move at most once per timestep. Since a par-
ticle only has access to its immediate surrounding, a par-
ticle can only move in one of 27 nearest locations,
including the current location. The selection of the move-
ment direction is made randomly; therefore the particles
follow a Brownian random walk. Figure 2 shows an exam-
ple of 4 different Brownian random walks of particles
starting from the same location. In GridCell, any particle
attempting to move to an occupied location will generate
a collision. A collision prevents the particle attempting to
move from moving during that turn and does not affect
the other particle.

Diffusion
Particles following a Brownian random walk should also
follow the well-known Einstein-Smoluchowski equation

<r2> = 2dDt, (1)

Random Brownian walkFigure 2
Random Brownian walk. Random walks of 4 different par-
ticles in GridCell after 1000 timesteps.
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D3Q27 cubic grid structureFigure 1
D3Q27 cubic grid structure. The 27 possible locations of 
a D3Q27 cubic grid that a given voxel can access.
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where <r2> is the mean-square displacement, d is the
dimensionality, D the diffusion coefficient and t the
elapsed time. Figure 3 shows the mean-square displace-
ment in units of voxel <v2> (averaged over 1000 itera-
tions) versus the number of timesteps nts when the
probability of movement of the particles at every timestep
is equal to 1. As expected for an uncrowded case, the
mean-square displacement increases linearly with the
number of timesteps. This leads to the following relation

<v2> = Ants, (2)

where A is the slope of the graph. By substituting

 and  where svox is the length of the

sides of the voxels in meters and lts is the length of the

timestep in seconds, we get

Since the probability of movement at each timestep of the
particle is equal to 1, D can be substituted for the maxi-
mum diffusion speed Dmax that GridCell can support for a
given timestep and voxel size. This upper limit on diffu-
sion speed is caused by the design decision of restraining
particle movement to its immediate neighbourhood (the

D3Q27 grid). By calculating the slope of the graph and
setting the dimensionality d equal to 3, Dmax can be calcu-
lated as

Dmax = 0.335svox
2/ts. (4)

Smaller diffusion speeds are simulated by applying a dif-
ferent probability of movement such that

D = pmDmax, (5)

where pm is the probability of movement of a particle at
every timestep. As long as the diffusion speeds of the par-
ticles are smaller than Dmax, diffusion will be modeled cor-
rectly. If a larger diffusion speed is needed, one can reduce
the timestep or increase the size of the voxels.

Reaction Phase
A particle may react only once per turn and only with its
immediate surrounding. The reaction phase is completely
independent from the movement phase, therefore it does
not matter if a particle previously moved or collided with
another particle. Common interactions include aggrega-
tion events such as molecular complex formation/dissolu-
tion or conversion events such as chemical reactions.
Only the simplest reactions involving 3 or less particles
are directly supported. Complex reactions involving more
than 3 particles are decomposed into several elementary
reactions. The probability of reaction per timestep is
derived from the overall rate of reaction and is very similar
to the approach taken by ChemCell [8]. Only 3 different
reactions involve 3 or less participants: 1 reactant and 1
product, 1 reactant and 2 products and 2 reactants and 1
product. Let's consider the two reactions that involve a
single reactant

A → B (6)

A → B + C. (7)

Both reactions have a forward rate of reaction k in units of
time-1 and timestep is t second. Assuming a well-mixed
approximation and N particles of type A in the system,
then in both cases the expected number of reaction per
turn is given by N(1 - e-kt). Considering each particle indi-
vidually, each particle has a probability equal to 1 - e-kt to
react during each timestep. In our stochastic model, a uni-
form random number Rn between 0 and 1 is generated for
each particle, and the reaction occurs if Rn < 1 - e-kt. In a
reaction with only 1 reactant and 1 product, the reactant
is simply replaced by the product. In a reaction with 1
reactant and 2 products, a search is first conducted in the
surrounding area. If there is at least 1 free voxel in the sur-
rounding area of the particle, the reaction takes place, and
the second product is positioned in that free location
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Diffusion in GridCellFigure 3
Diffusion in GridCell. Mean-square distance (over 1000 
iterations) of particles versus the number of timesteps in 
GridCell.
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while the first product is placed at the position of the ini-
tial reactant. The reaction is blocked if no free position is
found. This limitation only modifies the overall reaction
rate of the reaction in a situation where the whole cell is
completely filled which would prevent any movement
and reaction to take place.

Consider the following reaction with 2 reactants:

A + B → C, (8)

with a rate constant k in units of (molarity*time)-1 and a
timestep between each iteration of t second. Assuming Na
particle of type A, Nb particle of type B, a Volume V and the
Avogadro's number being Av, then the total number of
reactions Nr in a well-mixed system is given by

On average, the desired number of reactions in our system
should be equivalent to the result of the above equation.
In our system, particles can only react with their immedi-
ate surrounding locations. In a well-mixed system, the
number of A,B pairs that are close enough to each other to
generate a reaction is given by N = NaNbVc/V where Vc is
the volume of the cube containing the 26 "neighbouring"
voxels and V is still the total volume of the simulation. If
each of those pairs react with probability P, then Nr = NP.
Setting the 2 equations Nr = NP = kNaNbt/(AvV) gives the
equation

The formula is independent of V, Na and Nb as expected.
Also, for a given rate constant k, it is possible to have a set
of parameter t/Vc such that P is greater than 1. If that is the
case, a smaller timestep or larger voxel size (proportional
to Vc) has to be selected. A random number Rn is gener-
ated. If Rn <P, then the first reactant will search its sur-
rounding area for the second reactant. If it is found, the
reaction takes place and the product is placed at the loca-
tion of the first reactant. If no reactant is found, the reac-
tion is aborted. Note that the second reactant does not try
to react with the first one, doing so still enables us to get
the right rate of reaction and reduces the number of oper-
ations needed to update the simulation. In the case where
a particle can participate in many different reactions, a
random number is generated to select which reaction is
going to be tested first. If the first reaction does not take
place, then the next reaction on the list is tested. The pro-
cedure will go on until either a reaction takes place or all
possible reactions have been tried. This ensures that, on
average, all reactions are tested equally.

When 2 reactants of the same species form a product such
as

A + A → B, (11)

the individual rate of reaction of particle A needs to be
modified to ensure that the overall rate of reaction is
respected since each reactant will attempt to react with the
other one. Assuming y is the overall probability of reac-
tion and x is the individual probability of reaction of spe-
cies A, then

More complex reactions are implemented by creating a
cascade of several elementary equations. This process,
done automatically by the software, will break the com-
plex reactions into a series of simpler reactions by intro-
ducing "temporary" species. For example, consider the
following reaction with 1 reactant and 5 products.

A → B + C + D + E + F (13)

where k is the rate of reaction in time-1. For each product
exceeding 2, a temporary species is created. In this case, 3
temporary species are created. It follows that the reaction
is broken down into:

T1 → B + C (14)

T2 → D + E (15)

T3 → F + T1 (16)

A → T2 + T3 (17)

where T1, T2 and T3 are respectively the first, second and
third temporary species. By setting the rate of reaction of
equation 17 equal to k and the probability of reaction of
equations containing any temporary species on the reac-
tant side equal to 1, we reduce the artifacts due to the cre-
ation of the "temporary" species to a minimum. Indeed,
the temporary species disappear from the system as
quickly as possible and the overall rate of reaction is iden-
tical.

Shown below is the case where more than 2 reactants
merge into a single product:

A + B + C + D + E → F. (18)

The procedure is similar to the previous case, 1 temporary
species is created for each reactant above 2.

A + B → T1, (19)

N
kNaNbt

AvVr = . (9)

P
kt

AvVc
= . (10)

x y= − −1 1 . (12)
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C + D → T2, (20)

E + T1 → T3, (21)

T2 + T3 → F. (22)

where T1, T2 and T3 are respectively the first, second and

third temporary species. In order to obtain the same over-
all probability of reaction and to reduce the impact of the
temporary species on the system to a minimum, the prob-
ability of reaction of any reaction containing temporary
species on the reactant side (equation 21 and 22) is set to
1. Assuming that P is the probability of reaction of the
reaction presented in equation 18 and P1 and P2 are the

probability of the first and second simple reactions A + B

→ T1 and C + D → T2 then, we set P = P1P2. We also set P1

= P2. Equating the 2 equations gives P1 = P2 = .

In general, the probability of the simple reactions Pn con-
taining no temporary species is equal to

where P is the probability of reaction and Nreactants is the
number of reactants of the initial reaction. Each tempo-
rary particle has a parameter lifetime which indicates the
number of turns the particle has to live in the system
before reverting back to its previous state. The short life-
time of temporary particles is important for 2 reasons.
First, it makes sure that temporary particles are effectively
temporary and never stay in the system for a long period
of time. It also makes sure that all the reactants are to be
close to each other in order for the reaction to complete.
Usually, a lifetime of 2–3 turns is reasonable since it gives
enough time to react with the neighbouring particles
while making sure temporary particles do not constitute
the bulk of the system.

Reversible reactions are handled by creating 2 different
separate reactions, 1 for the forward reaction with the for-
ward reaction rate and 1 for the backward reaction with
the corresponding backward reaction rate. Assuming the
following reaction

A + B + C + D + E ↔ F. (24)

with forward reaction rate kf and backward reaction rate
kb. This reversible reaction is then split into

A + B + C + D + E → F (25)

with a reaction rate kf and

F → A + B + C + D + E (26)

with reaction rate kb.

Temporary particles involved in a reversible reaction have
a flag mentioning if they are participating in a forward or
backward reaction such that they can revert back to the
proper reactants when their lifetime reaches zero.

Performance analysis
Preliminary tests have been conducted to determine how
the software reacts to different system sizes. The tests have
been executed on a stand-alone microprocessor: a 3.2
GHz P4 with 2GB of RAM. The current algorithm is com-
puted serially. As it can be shown in Table 1, the time
required to compute a timestep increases linearly with the
number of particles and voxels present in the system.
Tables 2 and 3 demonstrate how the performance is
affected by independently modifying the number of vox-
els or the number of particles. The maximum number of
particles that can be currently simulated is equal to the
maximum number of voxels that can be supported, which
is 107. Table 4 shows that the number of reactions occur-
ring at each timestep has a negligible effect on the per-
formance. The reason is that all reactions have to be
tested, regardless of whether or not they actually react.
There are no practical limitations to the number of chem-
ical species or the number of different reactions present in
the system beyond the absolute limit on the number of
voxels.

User Interface Features
The rendering is implemented in OpenGL, and most user-
interface functions are written using the PLIB library,
which is available online http://plib.sourceforge.net/.
GridCell's user interface (Figure 4) consists of a) a menu
system, b) an interactive 3D simulation space, c) a species
panel, d) a 2D plot of concentration versus time, and e) a
2D plot of concentration versus space.

P

P P
Nreactants

n =
⎢

⎣
⎢

⎥

⎦
⎥

2
(23)

Table 1: GridCell performance versus system size

Number of Voxels 1e3 1e4 1e5 1e6
Number of Particles 3e2 3e3 3e4 3e5

Time (s) 1.62e-4 1.58e-3 1.6e-2 1.7e-1

Time required to compute a timestep versus the size of a simulation.

Table 2: GridCell performance versus number of voxels

Number of Voxels 1e3 1e4 1e5 1e6

Time (s) 1.6e-5 1.6e-4 2.14e-3 2.06e-2

Time required to compute a timestep versus the number of voxels. 
No particles in the system
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The menu system (Figure 4a) provides the ability to load
SBML models, set parameters and control the simulation.
User-designated simulation parameters include the
number of times to run the simulation, the timestep, the
total simulation time, the sampling rate which is the fre-
quency that the 2D graphs are updated and the results
saved to file, and the frame rate which designates the fre-
quency of updating the 3D visualization. GridCell com-
putes the means and the standard deviations of the
concentration over time if the user chooses to run multi-
ple iterations of the simulation. These preferences may be
saved and used later in any simulation. GridCell saves the
particle concentrations and the 2D surface plot data in
user-specified tab-delimited files. Spatial information
such as specific compartment geometries or co-localiza-
tion of particles is specified in an optional configuration
file.

A key feature of the GridCell user interface is the ability to
interact with the three-dimensional simulation volume
(Figure 4b). Users can navigate into the 3D scene with
mouse and keyboard controls to rotate, pan and zoom.
Buttons are present to i) start/pause simulations, ii)
change the particle representation from cubes to points
for faster rendering, iii) turn off the visualization for opti-
mal simulation performance, and iv) hide or show all par-
ticle types.

The species panel (Figure 4c) contains the current amount
of each species, and allows species selection for the visual-
ization plots. A second column specifies which species to
render in the 2D surface plot of concentration versus
space (Figure 4e). Particle colours are automatically
selected from a predefined colour palette.

Finally, two plots to summarize particle concentrations
with respect to time (Figure 4d) and space (Figure 4e) are
provided in real-time. The 2D spatial plot displays

increasing concentration with increasing brightness along
a selected Cartesian axis.

Results and discussion
Michaelis-Menten reaction
The Michaelis-Menten equations are used to describe
most enzymatic reactions. Its kinetics is given by the fol-
lowing equation:

E + S ↔ ES → E + P. (27)

The enzyme E reacts with the substrate S to form the com-
plex ES with a rate of reaction k1. ES decomposes into the
enzyme E and a new product P with a rate k2, or reverts
back to its original form E + S with rate kr.

Crowding
One of the main differences between GridCell and other
simulators is its ability to simulate particle crowding.
Molecular crowding occurs when particle density affects
movement and reactivity. Crowding is typically ignored in
most models since kinetics are often based on controlled,
in vitro conditions that are not crowded. In addition, sim-
ulators do not typically support this feature since it is
computationally expensive to keep track of all particle
positions and their excluded volume, and to implement
collision-detection algorithms. Some simulators (e.g.
Smoldyn [9]) have shown crowding effects by explicitly
introducing cubic obstacles [10] in the model. In contrast,
GridCell implicitly exhibits molecular crowding effects by
allowing inter-particle collisions. We demonstrate the
effect of crowding by adding inert particles to a Michaelis-
Menten system. Inert particles do not react with other
molecules but reduce their movement and affect the over-
all number of reactions. The simulation parameters are
described in Table 5. Figure 5 shows the number of prod-
ucts over time for a wide range of concentrations of inert
particles averaged over 20 iterations. The individual simu-
lations provided almost identical results to one another
with a relative standard deviation smaller than 3.5% at the
end of the simulation. The number indicated in the leg-
end signifies the percentage of the voxels occupied by
inert particles. In this specific example, with a voxel size of
3.2-20 litres, this amounts to approximately 30000 inert
particles per step of 10%.

Table 3: GridCell performance versus number of particles

Number of Particles 1e3 1e4 1e5 5e5

Time (s) 21.3e-2 26.4e-2 68.1e-2 22.8e-1

Time required to compute a timestep versus the number of particles. 
The system contains 1e6 voxels.

Table 4: GridCell performance versus the average number of reactions

Average Number of Reactions 0 16.5e3 29.5e3 39.5e3 47.5e3

Time (s) 7.4e-2 7.3e-2 7.25e-2 7.2e-2 7.1e-2

Time required to compute a timestep versus the average number of reactions occuring at each timestep. The system contains 1e6 voxels and 1e5 
particles.
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Interestingly, the maximum rate of reaction is obtained
when the inert particles occupy 20% of the volume, which
agrees with the fact that macromolecular crowding may
enhance reaction rates, as the particles have to search a
smaller volume to find each other [11]. However, above
30%, the reaction rates decrease linearly as more and
more inert particles are added. Under well-mixed and un-
crowded systems, GridCell provides similar results to
other ODE simulators and stochastic algorithms such as
the stochastic simulation algorithm (SSA) from Gillespie
[12] with the exception of a small stochastic noise [13].

Related Work
GridCell is related to a family of Monte Carlo (MC) simu-
lators (Table 6). SmartCell [14] and MesoRD [15] subdi-
vide the simulation space into smaller subvolumes
(voxels) that can contain many particles. Each subvolume
is composed of a well-mixed solution, and particles can
diffuse to adjacent subvolumes. This approach permits
quicker simulations, but it is impossible to track individ-
ual particles, and molecular crowding has no effect on
movement and reaction rates. Cell++ [16] combines a cel-
lular automata engine with Brownian dynamics in order
to simulate large quantities of small molecules on a dis-
cretized grid, while large molecules exhibit stochastic
behaviour and move in a continuous space. Both spaces
are then superimposed onto each other, and reactions can
take place between the two different spaces. Currently,
only collisions between particles (both small and large)
and a fixed membrane separating two compartments are
supported. Therefore, molecular crowding effects are not
simulated. Unlike Cell++, MCell [17] tracks all individual
particles in a continuous 3D space, and the diffusing par-
ticles follow Brownian dynamics. Particles may collide
and interact with effector sites and 2D membrane sur-
faces, but not with other particles. ChemCell [8] calculates

GridCell user interfaceFigure 4
GridCell user interface. GridCell user interface with (a) menu, (b) 3D space, (c) species panel, (d) 2D plot of concentration 
versus time, and (e) 2D surface plot of concentration versus space. Simulated model involves the translocation of particles 
through a membrane with embedded enzymes.

Table 5: Simulation parameters

Volume (litres) 10-14

Number of S particles 3000
Number of E particles 1000

k1 (M-1s-1) 107

k2 (s-1) 1
Kr (s-1) 1

Simulation time (s) 10
Timestep (s) 10-3

Parameters of the Michaeles-Menten simulation.
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Table 6: Spatial simulators

GridCell SmartCell MesoRD Cell++ MCell Smoldyn ChemCell

Molecule representation Particle Population Population Large particles and populations of 
small particles

Particle Particle Particle

Stochastic Yes Yes Yes Large particles only Yes Yes Yes
Space Discretized Discretized Discretized Continuous (large particles) and 

discretized (small particles)
Continuou
s

Continuou
s

Continuou
s

Particle-collision support Yes No No No No No No
Diffusion support Yes Yes Yes Yes Yes Yes Yes
SBML support Yes Yes Yes No No No No
Web availability Yes Yes Yes Yes Yes Yes No

Comparison and description of various simulators.

the probability of reaction at every timestep, and particles
follow Brownian motion in a continuous space that
requires a computationally expensive search algorithm to
find nearby particles, and the use of dimensionless parti-
cles removes the ability of particles to collide with one
another. In contrast, GridCell enables stochasticity-based
investigations of SBML networks while considering spatial
effects of recruitment, localization and crowding.

Future Directions
GridCell performance is tightly linked to the number of
voxels in the simulation space. The simulator can cur-
rently support a maximum of 107 voxels/particles which is
not enough to simulate at a molecular resolution struc-
tures as complex as a complete cell, the long term goal of
GridCell. However, the simple and regular algorithm of
GridCell, which does not require any searches or complex

operations, is a prime candidate for acceleration by paral-
lelization to achieve performance speedup and simulate
large-scale systems.

Conclusion
GridCell is a stochastic simulator that uses a 3D grid and
accounts for locality, very low concentration stochastic
effects and particle collisions. Its user-interface makes it
easy to use while providing several tools to analyze the
system. GridCell reproduces the results obtained with
ODEs and the Stochastic Simulation Algorithm (SSA) for
simple systems when crowding and locality do not affect
the system. We also show that particle collisions can have
a significant impact on the speed of reaction and that the
well-mixed assumption and dimensionless particles can
induce a significantly different response in a biological
system. The discrete 3D grid and the nearest-neighbour
interactions remove the need to do any distance calcula-
tion, particle search and floating-point arithmetic. The
regularity and simplicity of the algorithm makes it a good
candidate for acceleration with a parallel architecture
which will open the door to the simulation of even more
complex systems.

Availability and Requirements
The software is available at http://iml.ece.mcgill.ca/Grid
Cell and runs under the Windows XP operating system.
This package includes sample SBML and GridCell config-
uration files. GridCell requires the Systems Biology
Markup Language Library (libSBML 2.3.4-Xerces; http://
sbml.org/software/libsbml/) and the OpenGL utility
toolkit (GLUT 3.7.6; http://www.xmission.com/~nate/
glut.html). EBI's Biomodels database: http://
www.ebi.ac.uk/biomodels/. SBMLeditor: http://
www.ebi.ac.uk/compneur-srv/SBMLeditor.html. JDe-
signer: http://sbw.kgi.edu/software/jdesigner.htm. Sys-
tems Biology Markup Language (SBML): http://sbml.org. 

Authors' contributions
LB designed and programmed the GridCell simulator.
SAA contributed to the programming of the GridCell sim-

Effect of crowding on Michaelis-Menten product formation using GridCellFigure 5
Effect of crowding on Michaelis-Menten product for-
mation using GridCell. Effect of increasing the number of 
inert particles on product formation of a Michaelis-Menten 
system using GridCell. The mean has been calculated over 20 
iterations. Percentage of voxels occupied by inert particles.
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ulator and its graphical user interface. MD and WJG con-
tributed to the conception and design of the GridCell
simulator. LB and SAA drafted the manuscript and MD
and WJG revised the manuscript. All authors read and
approved the final manuscript.
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