
BioMed CentralBMC Systems Biology

ss
Open AcceResearch article
Genetic and environmental pathways to complex diseases
Julia M Gohlke†1, Reuben Thomas†1, Yonqing Zhang2, 
Michael C Rosenstein3, Allan P Davis3, Cynthia Murphy3, Kevin G Becker2, 
Carolyn J Mattingly3 and Christopher J Portier*1

Address: 1Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, 
Research Triangle Park, NC 27709, USA, 2Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 
Baltimore, MD 21224, USA and 3Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, 
ME 04672, USA

Email: Julia M Gohlke - gohlkej@niehs.nih.gov; Reuben Thomas - thomasr3@niehs.nih.gov; Yonqing Zhang - zhangyon@grc.nia.nih.gov; 
Michael C Rosenstein - mcr@mdibl.org; Allan P Davis - apdavis@mdibl.org; Cynthia Murphy - cmurphy@mdibl.org; 
Kevin G Becker - beckerk@grc.nia.nih.gov; Carolyn J Mattingly - cmattin@mdibl.org; Christopher J Portier* - portier@niehs.nih.gov

* Corresponding author    †Equal contributors

Abstract
Background: Pathogenesis of complex diseases involves the integration of genetic and
environmental factors over time, making it particularly difficult to tease apart relationships between
phenotype, genotype, and environmental factors using traditional experimental approaches.

Results: Using gene-centered databases, we have developed a network of complex diseases and
environmental factors through the identification of key molecular pathways associated with both
genetic and environmental contributions. Comparison with known chemical disease relationships
and analysis of transcriptional regulation from gene expression datasets for several environmental
factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork
supports our network hypotheses. This analysis identifies natural and synthetic retinoids,
antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential
environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine
signaling and organophosphate pesticides as potential environmental modulators of
neuropsychiatric phenotypes.

Conclusion: Identification of key regulatory pathways that integrate genetic and environmental
modulators define disease associated targets that will allow for efficient screening of large numbers
of environmental factors, screening that could set priorities for further research and guide public
health decisions.

Background
Determining the extent to which environmental versus
genetic factors are responsible for particular phenotypes is
a central question in all of biological research. Elucidating
associations between genotype and phenotype has been a

central goal in human health research for some time, and
has resulted in an impressive collection of research on
genotype-phenotype relationships [1,2]. While continued
analysis of rare monogenic phenotypes is important for
mechanistic discoveries [3], unraveling the interplay
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between genetic and environmental determinants of com-
plex phenotypes will be critical for improving public
health [4]. For example, gene-environment interactions
have been shown to play a critical role in childhood leuke-
mia and asthma [5-7]. However, much less is known
about gene-environment interactions as they relate to the
etiology of the common complex disease phenotypes
such as unipolar depressive disorders, ischemic heart dis-
ease and cerebrovascular disease, all of which fall within
the top six causes of the global burden of disease, and are
projected to increase as the epidemiological transition
continues in developing countries [8].

Network and bioinformatic methods have recently been
applied to synthesize data on gene-disease relationships
for those diseases that have a strong genetic component
[9-11]. In addition, utilization of functional information
to prioritize candidate driver genes in cancer has been
advocated [12]. However, application of network theory
to determine the interplay between genetics and environ-
mental factors in complex diseases has been left unex-
plored. We hypothesize genetic and environmental
factors involved in the progression of a particular complex
phenotype are participants in the same underlying cellular
processes. To test this hypothesis, we develop networks of
complex diseases and environmental factors through link-
age of human genetic association studies and mechanistic
analyses of environmental factors, using evolutionarily
conserved molecular pathways as the unifying system to
define relationships. We further explore relationships
identified by this method through comparison to known
disease-chemical relationships and analysis of transcrip-
tional regulation in gene expression datasets for metabolic
syndrome phenotypes, neuropsychiatric phenotypes and
several predicted environmental modulators.

Results and discussion
Clustering phenotypes by pathways
To identify common pathways between complex diseases,
we annotated gene-phenotype relationships found in the
Genetic Association Database (GAD) [1] (see Additional
File 1), then analyzed these phenotype-associated gene
lists using the Structurally Enhanced Pathway Enrichment
Analysis (SEPEA) algorithm (See methods for summary
and described in detail in [13]). This resulted in a cluster-
gram of disease phenotypes based on the underlying path-
ways that are represented by the sum of polymorphic
genes associated with a particular phenotype (See Meth-
ods) (Figure 1). Distinct clusters of phenotypes with sim-
ilar broad clinical characteristics are evident such as
cancers, cardiovascular and metabolic diseases, immune-
related disorders, and neuropyschiatric disorders. Further-
more, the pathways that define these clusters are consist-
ent with our current understanding of disease etiology.
For example, the cancer cluster is defined by low p-values

for Erbb, p53, and cell cycle pathways and the neuropsy-
chiatric cluster is defined by low p-values for neuroactive
ligand receptor interactions, calcium signaling, as well as
tryptophan and tyrosine metabolism. Moreover, immune
related pathways (e.g. Jak-STAT signaling, Toll-like recep-
tor signaling, T cell receptor signaling etc.) contribute not
only to classic autoimmune and infectious disease pheno-
types, but also to a large proportion of the divergent phe-
notypes represented, such as cardiovascular and
cerebrovascular disorders, kidney disease, as well as
Alzheimer's disease and longevity, among others. Several
unexpected results are also evident, such as the co-cluster-
ing of pregnancy loss and preeclampsia with immune
phenotypes such as lupus erythematosus and Behcet's
Disease and the co-clustering of asthma with Parkinson's
disease.

Interesting relationships are observed through a compari-
son of pathways that are associated with preclinical phe-
notypes to those pathways that are significantly associated
with outright disease. For example, when we look at com-
mon neuropsychiatric disorders, such as depression and
anxiety disorder, we see that genes associated with these
phenotypes are specifically associated with neuroactive
ligand receptor interactions, calcium signaling, as well as
tryptophan and tyrosine metabolism. However, we see
that these pathways significantly associated with neu-
ropsychiatric disorders are also associated with obesity,
hypertension, and blood lipoprotein composition as well
as substance abuse and smoking, all of which are signifi-
cant risk factors for heart disease [14]. In contrast, genes
associated with outright disease phenotypes (e.g. vascular
disease, heart failure, myocardial infarction, and stroke),
are significantly enriched in cardiovascular specific path-
ways such as the renin-angiotensin system and the VEGF
signaling pathway, as well as immune related pathways,
suggesting genetic susceptibility to outright heart failure
can be distinguished from genetic susceptibility to risk
factors for development of heart disease. Therefore, this
phenotype-pathway cluster of genetic associations can
delineate pathways that may be important at different
points in the progression of complex chronic diseases.

An interaction network of phenotypes and environmental 
factors
Next, we sought to meld current knowledge of genetic sus-
ceptibility factors with environmental factors that contrib-
ute to a particular complex phenotype. To accomplish
this, we identified enriched pathways based on compiled
lists of environmental factor-gene/protein relationships
described in the Comparative Toxicogenomics Database
[15]. Networks between phenotypes (using genetic associ-
ation studies as described above) and environmental fac-
tors were then developed where edges represent at least 2
significant pathways between a given phenotype-pheno-
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Unsupervised Hierarchical Cluster of Phenotypes by PathwaysFigure 1
Unsupervised Hierarchical Cluster of Phenotypes by Pathways. Genes associated with a particular phenotype were 
evaluated for enrichment in KEGG pathways using SEPEA. P-values for KEGG pathway enrichment were then clustered using 
Spearman rank correlation in Cluster and the graphic was prepared using TreeView [73], where color ranges linearly from blue 
(p = 1) to orange (p = 0). Phenotype-gene relationships were downloaded from the Genetic Association Database [1] in June 
2007 and phenotypes were further grouped according to Additional file 1. Request the TreeView file of this cluster from Julia 
Gohlke gohlkej@niehs.nih.gov for more detailed exploration.
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type, phenotype-environmental factor, or environmental
factor-environmental factor pair. In addition, 8 categories
including neoplastic, cardiovascular, metabolic, immune,
endocrine, neuropsychiatric, pulmonary, and hemato-
logic were used to more broadly define phenotypes. These
broad categorizations are important as many of the rela-
tionships found in the Comparative Toxicogenomics
Database are derived from animal models.

We compared our predicted phenotype-environmental
factor relationships to a set of 1084 manually curated
direct chemical-disease relationships as reported in the
Comparative Toxicogenomics Database [16]. The
receiver-operator curve (ROC) is illustrated in Figure 2.
This figure suggests the relative loss in specificity out-
weighs the gain in sensitivity at a SEPEA pathway enrich-
ment p-value cutoff of approximately 0.003 for both
specific and broad categorizations of environmental fac-
tor-phenotype relationships. At this p-value cutoff, 226 of
the 10,793 predicted environmental factor-phenotype
relationships are supported by manually curated evi-
dence, demonstrating the majority of connections within

our network define new hypotheses of environmental fac-
tor-phenotype relationships, yet this overlap is much
higher than would be expected by chance (p < 10-16).
When the diseases analyzed are collapsed into the eight
broad disease categories, 48% (or 271 out of 567) of the
manually curated relationships are captured in our analy-
sis (p < 10-16). This suggests that our method is more sen-
sitive in identifying known chemical-disease category
relationships than in identifying known specific disease-
chemical relationships. This result makes sense in light of
the fact that environmental factor data is largely derived
from animal models, where one would not predict strong
concordance between phenotypes and specific human
diseases. In addition, the pathways analyzed are not spe-
cific to tissue and/or life stage, suggesting a specific disease
of a particular tissue or developmental stage will be hard
to differentiate using this method. Based on the hypothe-
sis that there are common pathways associated with both
the genetic and environmental components of broad dis-
ease categories.

Receiver operating characteristic (ROC) curveFigure 2
Receiver operating characteristic (ROC) curve. A graphical representation of the sensitivity versus (1-specificity) com-
paring environmental factor-phenotype predictions at different p-value cutoffs to a manually curated set of direct chemical-dis-
ease relationships from the Comparative Toxicogenomics Database [16] using either specific diseases or broad categorizations 
of diseases. The SEPEA pathway enrichment p-value cutoff of 0.003 is indicated with arrows for each analysis.
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A graphical representation of the predicted network is pre-
sented in Figure 3, where environmental factors with
known physiological actions are colored coded based on
MeSH annotation (see Additional File 2 for complete
annotation of nodes). Because the above comparison
determined the sensitivity and specificity of our environ-
mental factor-phenotype predictions based on only those
1084 chemical-disease relationships manually curated
within CTD, we wanted to determine if the phenotype-
phenotype, environmental factor-environmental factor,
and environmental factor-phenotype relationships pre-
dicted in this graph are supported by known broad cate-

gorizations of phenotypes and physiological actions of
the environmental factors. Therefore, we computed the
significance of the number of edges that are shared
between nodes in a given category using the graph cluster-
ing coefficient [17]. Using this method, the clustering of
the metabolic, immune, neoplastic, and neuropsychiatric
phenotypes are considered significant (p ≤ 0.05). How-
ever, when the MeSH annotated environmental factors are
added, only the immune and neoplastic categories are sig-
nificant (p ≤ 0.05), suggesting the broad categorization
used may not be suitable to describing endocrine and car-
diovascular phenotypes, or the MeSH annotated physio-

Interaction Network of Phenotypes and Environmental FactorsFigure 3
Interaction Network of Phenotypes and Environmental Factors. Phenotypes are represented as circular nodes and 
environmental factors as diamond shaped nodes. Edges represent sharing at least two significantly enriched pathways (p ≤ 
0.003) using lists of genes associated with a particular phenotype or environmental factor, according to the phenotype-gene 
relationships in the Genetic Association Database [1] or the environmental factor-gene relationships found in the Comparative 
Toxicogenomics Database[15], respectively. MeSH IDs are used as environmental factor node labels. Environmental factors 
with pharmacological or toxicological action in the MeSH record are color coded based on broad phenotype categories 
according to annotation in Additional file 2. *Phenotypes which do not fit into a specific category or environmental factors with 
undetermined pharmacological or toxicological action are gray. Request the Cytoscape session file of this network from Julia 
Gohlke gohlkej@niehs.nih.gov for more detailed exploration. Annotation of the circled metabolic syndrome and neuropsychi-
atric subnetworks can be found in Additional file 3.
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logical actions of many of the environmental factors in
this network.

An important application of this work is generating
hypotheses of interacting environmental factors that may
be important in the prevention, initiation, progression, or
treatment of complex diseases based on the network rela-
tionships found between phenotypes and environmental
factors. Therefore, the tight cluster of metabolic syndrome
phenotypes and neuropsychiatric disorders identified in
Figure 3 are examined in further detail through analysis of
gene expression datasets.

Metabolic syndrome cluster
Significance in both PPAR signaling and adipocytokine
signaling form the tight subnetwork of 93 environmental
factors linked to several metabolic syndrome phenotypes
such as serum lipoprotein and triglyceride levels, body
mass index, insulin sensitivity, type II diabetes, and obes-
ity (see Additional File 3). Consistent with our results, a
recent network analysis of microarray datasets from diabe-
tes patients suggests PPAR signaling is the key underlying
pathway in the pathogenesis of Type II diabetes [18]. Thi-
azolidinediones, which are antidiabetic PPARγ agonists
[19,20], the PPARα agonist fenofibrate and the HMG-CoA
reductase inhibitor atorvastatin, both of which are used in
the treatment of hyperlipidemia [21,22] are identified in
this subnetwork. Furthermore, dopamine antagonists,
which includes several antipsychotic medications known
to cause weight gain [23] are identified in this cluster.
Retinoids are also found in this cluster, which is particu-
larly intriguing in light of novel research showing retinal-
dehyde represses diet-induced obesity [24]. In fact, the
widely used antineoplastic synthetic retinoic acid receptor
alpha agonist Ro 41–5253 has recently been shown to
induce PPARγ activity [25]. In addition, the increasing
body of evidence linking Body Mass Index, retinoids, and
cancer risk was recently highlighted in the most compre-
hensive analysis to date on diet and cancer risk [26]. In
addition to the pharmaceuticals identified, di-n-hexyl
phthalate (DHP), a widely used plasticizer that has
recently been shown to act as a PPAR agonist [27] in addi-
tion to previous findings that high levels of exposure
cause reproductive toxicity in animal models [28]. The
Omega 3 fatty acids present in fish oil are an important
dietary environmental factor identified in this cluster [29].

To test the hypothesis that regulation via PPAR and adi-
pocytokine signaling plays an important role in environ-
mental and genetic factors influencing metabolic
syndrome phenotypes, we analyzed gene expression data-
sets after exposure to several predicted environmental
modulators, as well as gene expression datasets from
Familial combined hyperlipidemia cases, obese versus
lean Pima Indians and obese versus lean mice fed a con-

trolled diet (Table 1) [30-44]. Lists of significantly up or
down regulated genes were submitted to DiRE http://
dire.dcode.org/, a transcription factor binding site (tfbs)
enrichment optimization algorithm that identifies tfbs
that are enriched in evolutionary conserved regions sur-
rounding a given set of genes versus a randomly generated
background set of genes [45]. Lists of the tfbs enriched in
the evolutionarily conserved regions surrounding the sig-
nificantly up or downregulated gene list for each dataset
are compiled in Additional file 4. Across all of these inde-
pendent datasets, binding sites for the three transcrip-
tional regulators of PPAR and adipocytokine signaling,
namely PPAR, NFkB, and STAT, are consistently enriched
in the differentially expressed gene sets (p ≤ 0.005) (Figure
4A). Therefore, this alternative analysis supports our pre-
vious subnetwork predictions suggesting a variety of envi-
ronmental factors as well as genetic contributions to
metabolic syndrome phenotypes can be integrated at the
level of PPAR and adipocytokine signaling pathways.
When the enriched tfbs identified for these metabolic syn-
drome subnetwork datasets are compared to enriched tfbs
identified in the neuropsychiatric datasets (described
below), we see that PPAR, PU.1 and FREAC binding sites
are significantly enriched in these metabolic syndrome
datasets (p ≤ 0.05).

Other tfbs beyond PPAR and adipocytokine signaling reg-
ulators that are highly enriched across these datasets offer
hypotheses for future experimental research in the tran-
scriptional regulation of metabolic syndrome pheno-
types. For example, EBOX sites for basic helix-loop-helix
transcription factor and PU.1, an ETS like tf, are important
in cell fate programs in hematopoesis, particularly in the
monocyte/macrophage lineage [46,47]. This is intriguing
in light of numerous studies showcasing the importance
of macrophages not only in cardiovascular disease, but in
the development of obesity as well[48,49] and their con-
nectivity to PPAR signaling [50,51]. ZIC1 is a zinc finger
transcription factor known to be important during early
developmental programs [52], while preliminary genetic
association work suggests ATF/CREB tfs may also play a
role in obesity[53]. Finally, FREAC sites bind several fork-
head members (FOXF2, FOXC1, FOXD1, AND FOXL1),
which have been shown to be important in the regulation
of gut-associated lymphoid organ development and regu-
lation of intestinal glucose uptake in mice [54,55].

Neuropsychiatric cluster
Our results suggest data from genetic association studies
for several neuropsychiatric diseases (autism, schizophre-
nia, depression, bipolar disorder, attention deficit hyper-
activity disorder, anxiety disorder, obsessive compulsive
disorder, and Huntington's disease) converge on tyrosine
metabolism and neuroactive ligand receptor interactions,
forming a tight cluster of these phenotypes linked by sig-
Page 6 of 15
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nificance in these two pathways. In fact, genes that code
receptors and metabolic enzymes of the dopamine and
serotonin signaling systems form the basis of this result.
In contrast to the metabolic syndrome cluster, very few
environmental factors (11) are found in this tight cluster
and include the opiate pentazocine, the muscarinic recep-
tor agonist pilocarpine, and the GABA modulator pento-
barbital (Additional File 3). In addition, the
acetylcholinesterase inhibiting organophosphates, well
known for their use as pesticides, are identified in this
cluster.

We analyzed gene expression datasets from case versus
control studies for several of the phenotypes, as well as
gene expression datasets generated from fetal astrocytes or
rat forebrain after exposure to the organophosphate pesti-
cide chlorpyrifos (Table 1). Following the method
described for analysis of the gene expression datasets for
the metabolic syndrome cluster, lists of significantly up or
down regulated genes were submitted to DiRE [45]. Lists
of enriched tfbs in regions surrounding the significantly
up or downregulated gene lists for each dataset are availa-
ble in Additional file 4. Across all of these datasets, enrich-
ment for EBOX and MEF2 binding sites are found most

consistently in the differentially expressed genes for the
neuropsychiatric cluster datasets (Figure 4B). Consistent
with the result, several studies suggest coordinated action
of the EBOX binding proneural bHLH transcriptional acti-
vators and Mef2c in the differentiation of neuronal sub-
types in the developing mammalian forebrain [56-59].
When the enriched tfbs identified for these neuropsychi-
atric subnetwork datasets are compared to enriched tfbs
identified in the metabolic syndrome datasets described
above, we see that only chicken ovalbumin upstream pro-
moter transcription factor (COUP) binding sites are sig-
nificantly enriched in neuropsychiatric datasets (p ≤
0.05). COUP-TFs are members of the steroid receptor
superfamily in which dopamine is thought to be a physi-
ological activator [60].

Consideration of bias associated with genetic association 
studies
One potential source of bias is the likelihood of false pos-
itive associations represented in the GAD database. For
example, a large multi-center study could not validate sev-
eral previously reported genetic risk factors for acute coro-
nary syndrome [61]. In addition, publication of false
positive events could lead to more extensive publication

Gene expression regulation across microarray datasetsFigure 4
Gene expression regulation across microarray datasets. Enriched transcription factor binding sites (tfbs) were identi-
fied in evolutionarily conserved regions surrounding differentially up and downregulated genes from metabolic (A.) or neu-
ropsychiatric (B.) microarray datasets identified in Table 1 (see Methods). Results for each microarray dataset are presented in 
Additional file 4. The mean frequency of identifying a particular tfbs enriched in a dataset was 13% (dotted line). Those enriched 
tfbs that are consistently identified across the metabolic (A.) or neuropsychiatric (B.) datasets are color coded red (p ≤ 0.005), 
whereas those tfbs that are specific to the metabolic datasets versus neuropsychiatric datasets and vice versa (p ≤ 0.05) are 
identified with an asterisk.
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bias as these results are followed up for related pheno-
types. To address this potential for bias, we have re-evalu-
ated 3 phenotypes for which extensive meta-analyses of
genome-wide association (GWA) findings exist [62-64].
The list of genes from these recent meta-analyses of GWA
studies for Alzheimer's Disease, Parkinson's Disease, and
Schizophrenia represent a subset of those KEGG repre-
sented genes found within GAD, as only one novel gene
for each phenotype was identified by the GWA meta-anal-
ysis across these phenotypes (Additional file 5). Subse-
quently, the SEPEA algorithm was re-run using the genes
associated with each phenotype based on these meta-
analyses of GWA results. In general, the predicted
enriched pathways were consistent across results obtained
with the GAD and GWA generated lists, however there
were some notable differences (Additional file 5). For
example, for both the GAD and GWA Alzheimer's Disease
gene lists, the Renin-Angiotensin System pathway ranked
the highest, however, using the results from the meta-

analysis of GWA studies suggests folate related pathways
may be important whereas the GAD results suggest tyro-
sine metabolism is altered. In fact, tyrosine metabolism
ranks high for all three phenotypes using the GAD gener-
ated gene list, whereas Parkinson's Disease is the only
phenotype in which the GWA studies confirm this result.
As more GWA results become available for other pheno-
types, this potential limitation of the current analysis can
be more fully evaluated.

Pathways to disease
Ultimately, a particular phenotype is produced by the
integration of outputs from a multitude of molecular
pathways within an organism. Therefore, we explored the
higher order structure of pathway networks by overlaying
our analysis onto the network structure of interconnected
KEGG pathways (Figure 5). This analysis allows us to
simultaneously visualize the key pathways to complex dis-
ease progression from the genetic standpoint by adjusting

Table 1: Global gene expression datasets utilized for validation of metabolic syndrome and neuropsychiatric subnetworks

METABOLIC SYNDROME

Condition Species Tissue GEO Acc. Reference

obese/lean Human adipocytes GSE2508 [30]
obese/lean Mouse adipocytes GSE4692 [31]
Familial combined hyperlipedemia Human monocytes GSE11393 [32]

Treatment Species Tissue GEO Acc. Reference 

Fenofibrate Rat liver GSE8251 [33]
4-hydroxyphenylretinamide Rat liver GSE3952 [34]
9-cis retinoic acid Rat liver GSE3952 [34]
Targretin Rat liver GSE3952 [34]
Vitamin A deficient diet Rat liver GSE1600 [35]
Omega 3 fatty acids Rat cardiomyocytes GSE4327 [36]
Thiazolidinediones Human 3T3-L1 adipocytes GSE1458 [37]
Atorvastatin Human monocytes GSE11393 [32]
Cyfluthrin Human astrocytes GSE5023 [38]

NEUROPSYCHIATRIC DISORDERS

Condition Species Tissue GEO/EBI Acc. Reference 

Bipolar Disorder Human prefrontal cortex GSE12654 [39]
Depression Human prefrontal cortex GSE12654 [39]
Schizophrenia Human prefrontal cortex GSE12654 [39]
Schizophrenia Human frontal cortex E-MEXP-857 [40]
Anxiety Mouse various brain regions GSE3327 [41]
Autism Human lymphoblastoid cell lines GSE7329 [42]
Autism Human whole blood GSE6575 [43]

Treatment Species Tissue GEO Acc. Reference 

Chlorpyrifos Human astrocytes GSE5023 [38]
Chlorpyrifos Rat forebrain GSE9751 [44]
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node size to reflect the number of human phenotypes
associated with a particular pathway based on the sum of
disease associated genetic polymorphisms, as well as from
the environmental standpoint, by adjusting the color of
the pathway node to reflect the number of environmental
factors associated with a particular pathway.

Looking at the intersection of the top 15 pathways most
often enriched in genetic association studies and environ-
mental factor research (Table 2), suggests metabolism of
xenobiotics by cytochrome P450, retinol metabolism, Jak-
STAT signaling, Toll-like receptor signaling, and adipocy-
tokine signaling may be five critical pathways important
to disease progression from both a genetic and environ-
mental standpoint. From our analysis of phenotypes illus-
trated in Figure 1, we see that metabolism of xenobiotics
by cytochrome P450 is significantly enriched in genetic
association datasets for several phenotypes including can-
cers, cardiovascular disease, and immune related disor-
ders. Adipocytokine signaling defines the cardiovascular
and metabolic syndrome phenotypes, many of which
have reached epidemic levels over the last 30 years [65],
suggesting environmental components are critical in the
etiology of these phenotypes. Retinol metabolism is sig-

nificantly enriched in genetic polymorphism lists for hor-
monally regulated cancers such as breast, endometrial,
testicular, prostate and thyroid, as well as pregnancy com-
plications, reproductive dysfunction, and cardiovascular
and endocrine disorders. This group of phenotypes is par-
ticularly interesting in light of the latest time trend statis-
tics from the National Cancer Institute and Centers for
Disease Control. As a whole, cancer incidence rates have
been declining over the last decade, with the exception of
5 sites (thyroid, liver, kidney, skin, and testis). Thyroid
cancer has by far the largest increase in incidence over the
last decade, with an annual percent change of 5.3 between
1994 to 2004 [66]. In addition, pregnancy complications
and endocrine disorders account for 5 of the 6 primary
diagnoses with the greatest percent increase in ambulatory
care visits over the last decade [67]. These time trends sug-
gest environmental components are critical in rising inci-
dence of endocrine related phenotypes, as the timeframe
hardly crosses a generation, highlighting the importance
of continued research on exposure routes and health
effects of potential endocrine disrupters found in our
environment [68,69].

Pathway Interaction NetworkFigure 5
Pathway Interaction Network. Nodes represent KEGG metabolic and signaling pathways and are connected based on the 
KEGG database [72]. Node size is reflective of the number of phenotypes associated with the particular pathway based on 
application of SEPEA (p ≤ 0.003) to gene lists annotated from The Genetic Association Database[1]. Intensity of node color is 
reflective of the number of environmental factors associated with the particular pathway based on enrichment of gene lists 
annotated from The Comparative Toxicogenomics Database[15].

0   1-5   6-14    15-26     27-59

0 659
Page 9 of 15
(page number not for citation purposes)



BMC Systems Biology 2009, 3:46 http://www.biomedcentral.com/1752-0509/3/46
Finally, we note the centrality of PPAR and adipocytokine
signaling in the pathway network as the primary linkage
between metabolism and cellular signaling pathways (Fig-
ure 5). As mentioned previously, these two pathways
define the metabolic syndrome cluster in Figure 3. Several
genetic and environmental factors are associated with
each of these pathways, suggesting genetic and environ-
mental modulators are critical to the role of these path-

ways in human disease progression, such as in metabolic
syndrome phenotypes and cardiovascular disease.

Conclusion
According to systems theory, although individual genes or
environmental factors may be a critical component in the
pathogenesis of a particular complex disease, it is ulti-
mately the modulation of underlying pathways that the
particular gene/environmental factor is a part of that

Table 2: Top pathways enriched using genetic association research or environmental factor research.

Top 15 pathways enriched using phenotype-gene research compiled in the Genetic Association Database
Pathway Name KEGG pathway ID Number of diseases significantly enriched 

for pathway 
Number of environmental factors significantly 

enriched for pathway 

Antigen processing and presentation path:hsa04612 59 57
Metabolism of xenobiotics by 
cytochrome P450

path:hsa00980 49 421

Hematopoietic cell lineage path:hsa04640 40 52
Renin-angiotensin system path:hsa04614 28 29
Retinol metabolism path:hsa00830 27 659
Natural killer cell mediated 
cytotoxicity

path:hsa04650 26 97

Neuroactive ligand-receptor 
interaction

path:hsa04080 24 30

Tyrosine metabolism path:hsa00350 23 28
Jak-STAT signaling pathway path:hsa04630 20 104
Complement and coagulation 
cascades

path:hsa04610 16 24

Linoleic acid metabolism path:hsa00591 15 97
Cytokine-cytokine receptor 
interaction

path:hsa04060 15 63

Adipocytokine signaling pathway path:hsa04920 15 185
T cell receptor signaling pathway path:hsa04660 13 38
Toll-like receptor signaling pathway path:hsa04620 12 114

Top 15 pathways enriched using environmental factor-gene research compiled in the Comparative Toxicogenomics Database

Pathway Name KEGG pathway ID Number of diseases significantly enriched 
for pathway 

Number of environmental factors significantly 
enriched for pathway 

Retinol metabolism path:hsa00830 27 659
Apoptosis path:hsa04210 11 457
Metabolism of xenobiotics by 
cytochrome P450

path:hsa00980 49 421

gamma-Hexachlorocyclohexane 
degradation

path:hsa00361 7 224

Androgen and estrogen metabolism path:hsa00150 5 194
PPAR signaling pathway path:hsa03320 11 189
Adipocytokine signaling pathway path:hsa04920 15 185
p53 signaling pathway path:hsa04115 7 160
Toll-like receptor signaling pathway path:hsa04620 12 114
Focal adhesion path:hsa04510 5 114
Cell cycle path:hsa04110 2 113
Pentose and glucuronate 
interconversions

path:hsa00040 2 106

Jak-STAT signaling pathway path:hsa04630 20 104
Fc epsilon RI signaling pathway path:hsa04664 6 104
GnRH signaling pathway path:hsa04912 1 100
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determines the resultant phenotype. Here we have inte-
grated gene centered knowledge from epidemiological
and mechanistic environmental research in an attempt to
discover the interplay between genetic and environmental
mediators of phenotype at the pathway level. In addition,
we have provided a higher order structure of pathway
interconnectivity to build hypotheses of disease progres-
sion based on clusters of pathways defining phenotypes.

The methods and findings presented here open the door
to a number of new hypotheses that can be explored
regarding the genetic and environmental factors govern-
ing human disease. The results suggest retinol metabo-
lism, Jak-STAT signaling, Toll-like receptor signaling, and
adipocytokine signaling are key pathways that should be
prioritized targets for high-throughput screening currently
being implemented to improve toxicity testing [70,71].
For example, analysis of the metabolic syndrome subnet-
work highlights the need for further epidemiological and
mechanistic analyses of several compounds for their
potential modulation of metabolic syndrome pheno-
types, including plastic derivatives, synthetic and natural
retinoids, pyrethrins and antipsychotic medications. In
addition, the role of endocrine pathways in numerous
phenotypes for which rates have increased over the last 30
years indicates a continued need to evaluate in greater
detail the role of endocrine disruption in cancer, preg-
nancy and reproductive complications, and metabolic
syndrome phenotypes. The multifactorial nature of com-
plex diseases necessitates using knowledge-based, sys-
tems-driven evaluations, like the one presented here, for
uncovering promising hypotheses for future research
aimed at improving public health.

Methods
Characterization of Phenotype-Gene Relationships
The Genetic Association Database is an NIH supported
gene-centered public repository of human association
studies examining a wide range of human phenotypes,
including non-mendelian common diseases, and is one of
the largest databases of human disease associated poly-
morphisms currently available. All gene-phenotype rela-
tionships (N = 28,341) in the Genetic Association
Database were downloaded (June 8, 2007). Phenotypes
were further annotated to collapse synonyms, as well as
group similar phenotypes into categories (see mapping
used in Additional file 1). Only those phenotypes with at
least 3 unique genes associated with it were analyzed fur-
ther, resulting in 10,089 unique phenotype-gene relation-
ships used in subsequent analyses.

Characterization of Environment-Gene Relationships
The Comparative Toxicogenomics Database is an NIH
supported public database that provides curated interac-
tions between environmental factors and genes or pro-

teins. Using either a MeSH concept or descriptor as the
environmental factor identifier, all unique environmental
factor-gene/protein relationships as of June 2007 (N =
47,025) were evaluated to define relationships between
environmental exposures and human genes.

Annotation of MeSH concepts or descriptors was per-
formed using the 2007–2008 MeSH browser http://
www.nlm.nih.gov/mesh/MBrowser.html to identify any
known biological actions of the environmental factors
within the MeSH record. All environmental factors
described in the Comparative Toxicogenomics Database
fall within the Chemicals and Drugs [D] heading. To iden-
tify the most biologically relevant categorization, priority
for annotation was set as follows: Noxae [D27.888.569],
Physiological Effects of Drugs [D27.505.696], Therapeu-
tic Uses [D27.505.954], Molecular Mechanisms of Action
[D27.505.519]. If no information was available within
these categories, then annotation by substance structure
using all other trees under Chemicals and Drugs was
implemented to annotate the given environmental factor.

Evaluation of Gene-Pathway relationships
All sets of genes associated with a particular phenotype or
environmental factor were analyzed for over-representa-
tion in specific molecular pathways found in the KEGG
database [72] using Structurally Enhanced Pathway
Enrichment Analysis (SEPEA), a novel pathway enrich-
ment algorithm that incorporates relationships between
nodes within a pathway using specific scoring rules
described in detail elsewhere [13]. Briefly, the heavy ends
scoring rule gives more importance to genes at the begin-
ning (e.g. receptors) or end (e.g. transcription factors) of a
pathway and the distance scoring rule gives more impor-
tance to those pathways where the perturbed genes (for a
given condition) are close relative to each other in the
pathway network. In this application, we use the
SEPEA_NT3 method (see [13] for a detailed description).
Broadly, the null hypothesis states that the distribution of
the number of perturbed genes for a given condition in a
specific pathway is not different from the distribution of a
random set of genes chosen from all the genes involved in
the KEGG pathways analyzed, in the context of the rules
described above. Here we are incorporating a heavy ends
scoring rule using a power function (0.5δ, with δ being the
distance from a terminal node in the pathway), instead of
a linear function as described in [13] Equation 8. Utiliza-
tion of this power function emphasizes the underlying
hypothesis of the biological importance of this rule in the
final significance evaluation. We found that this emphasis
resulted in a network with more clear separation of phe-
notypes and chemicals. In this analysis, those KEGG path-
ways developed based on a particular phenotype (disease
pathways) were eliminated based on the potential redun-
dancy of information found in the Genetic Association
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Database. Furthermore, only those KEGG pathways that
had at least 3 human genes associated with them were
analyzed.

Pathway-Phenotype-Cluster
To determine relationships between human phenotypes
based on polymorphisms associated with those pheno-
types, phenotype p-values for KEGG pathway enrichment
were clustered using Spearman Rank correlation with
average linkage using Cluster version 2.11 and viewed
using TreeView [73] downloaded July 2007 from http://
rana.lbl.gov/EisenSoftware.htm

Phenotype-Environmental factor Network
Each phenotype-phenotype, phenotype-environmental
factor, or environmental factor-environmental factor pair
with at least two common significant pathways was
assigned an edge. Network connectivity between pheno-
types and environmental factors were determined for a
range of SEPEA pathway enrichment p-value cut-offs and
the sensitivity and specificity of the results as compared to
manually curated, direct chemical-disease relationships
found in the Comparative Toxicogenomics Database
(CTD) database (downloaded in September 2008)[16].
This dataset contains direct chemical-disease relationships
reported in the literature in human and animal model
studies. We reduced this CTD database to those diseases
found in GAD, which resulted in 1084 CTD relationships.
We further collapsed these into the 8 broad disease cate-
gories. This analysis was used to establish the optimal
pathway enrichment significance p-value cutoff of less
than 0.00321 (which corresponds to a FDR ≤ 0.32 as com-
puted using the Benjamini-Hochberg method [74]). This
FDR is comparable to other pathway enrichment algo-
rithm cut-offs (e.g. 0.25 for GSEA [75]), and is considered
acceptable if one is primarily interested in hypothesis gen-
eration. The significance of these results was evaluated
using the binomial cumulative distribution function
where the probability (pk) of observing at least 226 (or
271) significant chemical-disease (or chemical-disease
category) relationships by random chance was deter-
mined using the data for 4559 chemicals from CTD and
for 204 diseases in GAD. Graphical representation of the
network was determined using the edge weighted spring
embedded algorithm in Cytoscape 2.5.0 downloaded
Aug. 2007 [76] with the following parameters: spring
strength = 5.0, spring rest length = 10.0, rest length of a
disconnected spring = 1500, and strength of a discon-
nected spring = 0.06. Only those environmental factors
with at least 2 genes associated with them were included
in the final representation.

Statistical Evaluation of Network
Each environmental factor or phenotype was labeled with
one of 9 categories (Cardiovascular, Neurologic/Psychiat-

ric, Neoplastic, Metabolic/Gastrointestinal, Immuno-
logic, Hematologic, Endocrine/Reproductive, Pulmonary,
Other) based on their classification in knowledge of the
phenotype or Mesh categorizations for environmental fac-
tors as described above (See Additional file 2). The graph
clustering coefficient method described in [17] was used
to statistically evaluate the network generated. Briefly, p-
values for the observed graph clustering coefficient for a
given disease category (i) which has n(i) nodes associated
with it in the network are based on choosing n(i) nodes
randomly from the large network and computing the clus-
tering coefficient for this random subset of nodes (based
on 1000 permutations).

Identification of enriched transcription factor binding sites 
in differentially expressed genes from microarray datasets
Up and downregulated gene lists from the microarray data
as described in Table 1 was accessed from the publication
associated with the datasets [30-36,77-84], or via down-
loading from GEO in Feb. or Nov. 2008. In the latter case,
differentially expressed genes were identified using mat-
test and mafdr (Matlab 7.4.0.287 (R2007a)) with a fold
change cutoff of 1.5 and a q value cutoff of 0.10. Lists of
up or downregulated genes for each dataset were then sub-
mitted to DiRE http://dire.dcode.org/, a transcription fac-
tor binding site (tfbs) enrichment optimization algorithm
that identifies tfbs that are enriched in evolutionary con-
served regions surrounding a given set of genes versus a
background set of genes [45]. Based on analyses using tis-
sue specificity gene expression datasets, the developers of
DiRE show that an importance score cutoff of 0.10 is rea-
sonable for achieving good specificity and precision [45],
therefore we used this cutoff to identify those tfbs that are
significantly enriched in sequence surrounding up or
downregulated genes from each dataset (Additional File
4). Similar TRANSFAC binding sites [85] were then col-
lapsed to avoid double counting tfs with similar binding
sites (Additional File 6). Significance of consistently iden-
tifying a particular tf class across the metabolic or psychi-
atric datasets was tested using a binomial cumulative
distribution, where the probability of observing at least x
number of significant tfbs for a given tf across significance
lists generated from the 12 (metabolic) or 9 (neuropsychi-
atric) datasets with a probability parameter equal to the
mean frequency of occurrence of any tf that satisfied the
importance score cutoff of 0.1 among all the datasets
(0.137) was computed. To test the specificity of our find-
ings as they relate to the metabolic syndrome datasets ver-
sus neuropsychiatric datasets analyzed, we compared the
probability of finding a specific tfbs at least the observed
number of times using the metabolic syndrome datasets
versus the neuropsychiatric datasets and vice versa using a
hypergeometric distribution.
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Generation of Pathway Interconnectivity Network
Connectivity between pathways was downloaded from
KEGG (Aug. 16, 2007). Pathway network layout was gen-
erated using the force directed algorithm in Cytoscape
2.5.0 [76], where node size reflects the number of pheno-
types associated with each pathway and node color grada-
tion reflects the number of environmental factors
associated with each pathway using a p-value cutoff of
0.003.
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