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Abstract

Background: Comparison of various kinds of biological data is one of the main problems in bioinformatics and
systems biology. Data compression methods have been applied to comparison of large sequence data and protein
structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to
try to apply data compression methods to comparison of biological networks. In existing compression methods,
the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of
overlapping edges.

Results: This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large
biological networks. In the proposed methods, an original network structure is compressed by iteratively
contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a
compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic
networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae,
and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently
measure the similarities between metabolic networks.

Conclusions: Our proposed algorithms, which compress node-labeled networks, are useful for measuring the
similarity of large biological networks.

Background
Development of algorithms for comparing various kinds
of biological data is one of the important topics in
bioinformatics and systems biology. Methods for com-
parison of DNA and/or protein sequences have been
extensively studied and have been applied to analyses of
real sequence data quite successfully. Due to increased
interests in systems biology, extensive studies have
recently been done on comparison of biological
networks.
For comparison of metabolic networks, Ogata et al.

developed a method based on clustering [1], Tohsato et
al. extended a multiple sequence alignment technique to
multiple alignment of metabolic pathways using a

scoring scheme based on EC (Enzyme Commission)
numbers [2], Pinter et al. applied a tree matching
technique to alignment of metabolic pathways [3], and
Wernicke and Rasche developed a simple backtracking
algorithm utilizing the local diversity property [4]. For
comparison of protein-protein interaction networks,
Kelley et al. developed PathBlast using dynamic pro-
gramming [5], Liang et al. developed NetAlign using a
clique-based method for computing maximal common
subgraphs [6], Li et al. developed MNAligner using inte-
ger quadratic programming [7], Singh et al. developed
IsoRank algorithm based on Google’s PageRank method
[8], and Zaslavskiy et al. developed a gradient ascent-
based method and a message passing-based method [9].
On the other hand, data compression methods have

been applied to comparison of large sequence data
[10,11] and protein structure data [12,13]. Since it is still
difficult to compare global structures of large biological
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networks and data compression-based methods can be
applied to comparison of large-scale sequence data, it is
reasonable to try to apply data compression methods to
comparison of biological networks. In this paper, we
propose such methods.
In order to apply data compression to biological net-

works, data compression methods for graphs are
required. For compression of graphs, Adler and
Mitzenmacher developed a method based of Huffman
coding of vertices [14], Peshkin developed GRAPHI-
TOUR based on iterative contractions of identical
edges [15], and Cook and Holder developed SUBDUE
based on contraction of frequent subgraphs and MDL
(minimum description length) principle [16], which
was further extended to EDIF for lossless compression
by Yang et al. [17]. However, the method by Adler
and Mitzenmacher does not seem to be useful for
comparison of networks because it does not make
much use of structural information. In GRAPHI-
TOUR, the uniqueness of compression results is not
guaranteed because there is some ambiguity in selec-
tion of overlapping edges (isomorphic graphs may be
differently compressed depending on the orderings of
vertices in input data), which is not suitable for com-
parison of network structures. This point is also
unclear in EDIF and SUBDUE. Therefore, we develop
in this paper novel graph compression methods for
which it is guaranteed that two isomorphic graphs are
compressed in the same way. Using these compression
methods, we measure the similarity of two networks
by means of the universal similarity metric (USM)
proposed by Li et al.[11]. USM is defined using Kol-
mogorov complexity which represents the amount of
information contained in data, and is obtained by
removing redundant parts maximally. Therefore,
Kolmogorov complexities are approximated by com-
pression sizes.
We apply the proposed methods to comparison of

metabolic networks, and compare the results with those
of GRAPHITOUR. The results of hierarchical clustering
for several organisms suggest that the proposed methods
outperforms GRAPHITOUR, and can adequately mea-
sure the similarities between metabolic networks.

Methods
Graph compression method
Since our proposed methods are based on GRAPHI-
TOUR, we briefly review the GRAPHITOUR algorithm
[15]. GRAPHITOUR is based on iterative contractions
of identical edges. In order to efficiently contract edges,
GRAPHITOUR selects edges appearing most frequently,
and solves an instance of maximum cardinality match-
ing problem, which finds as many edges as possible such
that no two edges share a common vertex.

Figure 1 shows an example of contraction of identical
edges. The graph of (A) contains 4 edges labeled with ‘a’
and ‘b’, 2 edges with ‘a’ and ‘a’, 1 edge with ‘b’ and ‘b’,
and 1 edge with ‘a’ and ‘c’. GRAPHITOUR selects edges
with ‘a’ and ‘b’ because they appear most frequently, and
solves the maximum cardinality matching problem for
their edges. However, optimal solutions are not necessa-
rily uniquely determined. (B) shows a contracted graph
after the top-left edge with ‘a’ and ‘b’ is substituted with
a new vertex labeled with ‘ab’. On the other hand, (C)
shows a contracted graph after the top-right edge with
‘a’ and ‘b’ is substituted. This example implies that
GRAPHITOUR can generate different compressed
graphs. In order to measure the similarity of networks,
the same compressed graph should always be obtained.
Therefore, we improve GRAPHITOUR for that purpose,
and propose the following algorithm, which we call
CompressEdge, to uniquely determine contracted edges
in each iteration.
Procedure CompressEdge
Input: undirected graph G(V, E) with labeled vertices

V and edges E (a total order ≤ is defined for the set of
labels L, and each ν Î V is labeled with lν Î L);
Output: induced compression rules R and compressed

graph;
Begin

R := ∅;
s(l) := {l} for each label l Î L;
while |E| > 0

ε(l1, l2) := {(ν1, ν2) Î E| ( , )l l 1 2
= (l1, l2) where

l l 1 2
≥ , l1 ≥ l2};

ε := {ε(l1, l2)| no two edges in ε(l1, l2) share a
common vertex};
if ε = ∅ then return (R,G);
εmost := {ε(l1, l2) Î ε| |ε(l1, l2)| ≥ |ε(l3, l4)| for all
ε(l3, l4) Î ε};
selectε(l1, l2)(Î εmost) such that s(l1) ∪ s(l2) <s(l3)
∪ s(l4)

or (s(l1) ∪ s(l2) = s(l3) ∪ s(l4) and (l1, l2) < (l3, l4))
for all ε(l3, l4) Î εmost,
where l1 ≥ l2, l3 ≥ l4;

add a new label ln to L such that ln > l for all l Î L;
s(ln) := s(l1) ∪ s(l2);
R = R ∪ {ln ¬ (l1, l2)};
for each edge e Î ε(l1, l2)

substitutee with a new vertex labeled with ln;
return (R, G);

End
This proposed algorithm avoids contraction of edges

which share a common vertex. In the example of
Figure 1, our algorithm does not choose edges whose
endpoints are ‘a’ and ‘b’, instead chooses the second
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candidate edges whose endpoints are ‘a’ and ‘a’, and
obtains the graph of (D) as the result. It should be
noted that the proposed algorithm does not solve the
maximum cardinality matching problem because it
selects only edges such that all edges with the same
labels do not share a common vertex.
However, it is not sufficient to uniquely determine

contracted edges because there can be more than one
set which has the same number of edges, that is, |εmost|
> 1. Therefore, we introduce a total order to sets of
labels to determine the priority of edges. Each edge has
a pair of labels (l1, l2) corresponding to two endpoints
of the edge. Let s1 and s2 be sets of labels. We can
define a total order for s1 and s2 as follows.
First, we sort s1 and s2 by descending order, respec-

tively. We compare i-th elements s i
1
( ) , s i

2
( ) of s1 and s2,

and define s1 <s2 if s i
1
( ) < s i

2
( ) and s j

1
( ) = s j

2
( ) (for all j <i)

hold for some i. The proposed algorithm selects edges
with the smallest set of labels from εmost according to
the total order. For example, if we compare s1 = {l1, l3}
with s2 = {l3, l2} under l1 <l2 <l3, s1 and s2 are sorted as
(l3, l1) and (l3, l2), respectively, and we have s1 <s2.
When edges with (l1, l2) are contracted, a new label ln

is added to L, where ln > l for all l (≠ ln) Î L. In compu-
tational experiments, Morgan index [18] based on graph
structures is assigned to each vertex. However, new
added labels themselves do not reflect the original graph
structure. Therefore, in order to make effective use of
the total order of original labels, we introduce a set of
labels for each label l, s (l), which consists of only origi-
nal labels. Then, s (ln) is defined to be s (l1) ∪ s (l2)
when (l1, l2) is substituted with ln. The algorithm com-
pares s (l1) ∪ s(l2) with s (l3) ∪ s (l4) before comparing
edges of (l1, l2) and (l3, l4). For example, for the graph
of Figure 1D, the algorithm selects edges with (’aa’, ‘b’)
as contracted edges because it appears most frequently.

However, if there is another edge with (’b’, ‘b’) than
shown in Figure 1D, edges of (’aa’, ‘b’) and (’b’, ‘b’) are
compared. We suppose that ‘a’<’b’<’c’<’aa’ and ‘aa’ was
obtained by contracting edges with (’a’, ‘a’). Then, the
corresponding sets to (’aa’, ‘b’) and (’b’, ‘b’), s1 = s(’aa’) ∪
s(’b’) = {’a’,’a’,’b’} and s2 = s(’b’) ∪ s(’b’) = {’b’,’b’}, are
compared, sorted as {’b’,’a’,’a’} and {’b’,’b’}, respectively,
and we have s1 <s2. Then, edges with (’aa’, ‘b’) are
selected, and contracted to vertices with a new label
‘aab’, where ‘aab’>’aa’ and s (’aab’) = s (’aa’) ∪ s(’b’) =
{’a’,’a’,’b’}.

Extension to contraction of multiple edges
In the previous algorithm, identical edges are contracted
at each iteration. In this section, we propose another
algorithm, which we call CompressVertices, to contract
identical sets of multiple connected edges. In order to
uniquely determine the contracted sets of connected
edges, we must introduce a total order to a set of edges.
For that purpose, we apply degree sequence [19], which
is defined to be the non-increasing sequence of degrees
of vertices. For example, the degree sequence of Figure
1A is (3, 3, 3, 2, 2, 2, 1). Moreover, in order to distin-
guish labels of vertices, we introduce the non-increasing
sequence of pairs of the degree and the label for each
vertex included in the set of edges, which we call dl-
sequence. In dl-sequence, the degree is not calculated
for the original graph, but is for the set of edges, and we
define the inequality of elements of dl-sequence by; (d1,
l1) > (d2, l2) if d1 > d2 or (d1 = d2 and l1 > l2). Then, we
can define a total order for dl-sequences

dl d l d lk k1 1
1

1
1 1 1( (( , ), ,( , )))( ) ( ) ( ) ( )= … and dl d l d lk k2 1

2
1
2 2 2( (( , ), ,( , )))( ) ( ) ( ) ( )= …

by dl dl if d l d li i i i1 2
1 1 2 2< <( , ) ( , )( ) ( ) ( ) ( ) and ( )( ) ( ) ( ) ( )d d and l l for all j ij j j j

1 2 1 2= = <

hold for some i. For example, the dl-sequence of two
connected edges of (’a’, ‘a’) and (’a’, ‘b’) in Figure 1A,

aa

aa

b

b

c

a

a

ab

c

ab

a

a

c

ab

ab

a

a

a
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b

b

c
(A) (B) (C) (D)
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c
(E)
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c
(F)
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Figure 1 Example of contraction of identical edges. (A) Graph with 7 vertices and 8 edges. (B, C) Graphs contracted from graph (A) by
GRAPHITOUR. (D) Graph contracted from graph (A) by our proposed method. (E) Graph contracted from graph (A) by substituting two edges
(’a’, ‘a’) and (’a’, ‘b’) with ‘aab’. (F) Graph contracted from graph (A) by substituting three vertices and the edges between the vertices with ‘aab’.
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that is a–a–b, is ((2, ‘a’), (1, ‘b’), (1, ‘a’)). Here, in the
example, if the edges are substituted with a new vertex,
a self loop is remained to the new vertex due to the
edge of (’ a’, ‘b’) as shown in Figure 1E. The remained
edges should be also contracted. Therefore, we modify
CompressEdge, and propose the following algorithm to
contract identical sets of vertices and the edges between
the vertices instead of individual edges. In the example
of Figure 1E, the graph of Figure 1F is obtained by this
algorithm.
Procedure CompressVertices(M)
Input: maximum number of vertices M and undir-

ected graph G(V, E) with labeled vertices V and edges E
Output: induced compression rules R and compressed

graph;
Begin

R := ∅;
s(l) := {l} for each label l Î L;
while |E| > 0

V = ∅; m := 2;
whileV = ∅ and m ≤ M

(V, dli) := SelectVertices(m);
m := m + 1;

if V = ∅ then return (R, G);
add a new label ln to L such that ln > l for all l Î L;

s l s ln d l dl ii i i
( ) = ( )

′ ′( )∈ ′: ;,

R = R ∪ {ln ¬ dli};
for each set of vertices u Î V

substituteu with a new vertex labeled with ln;
return (R, G);

End
Subprocedure SelectVertices(m)
Begin

V(dli := ((d1, l1), …, (dm, lm))) := {{ν1, …, νm} ⊂ V |
ν1, …, νm are connected and (the dl-sequence of
{ν1, …, vm})= dli};
V := {V(dli)| u1 ∩ u2 = ∅ for all u1,u2 Î V(dli)};
if V = ∅ then return (∅, ∅);
Vmost := {V(dli) Î V| |V(dli)| ≥ |V(dlj)| for all V(dlj)
Î V};
selectV(dli)(Î Vmost) such that

s s l s s li d l dl i j d l dl ji i i j j j
(: ( )) (: ( ))( , ) ( , )= < =

′ ′ ′ ′∈ ′ ∈ ′ 

or (si = sj and dli <dlj) for all V(dlj) Î Vmost;
return (V(dli),dli);

End
First, the algorithm tries to find two vertices and the

edge between the vertices to be contracted. If it does

not find such two vertices, it tries to find more than
two vertices and the edges between the vertices until it
finds or up to the given number of vertices, M. Figure 2
shows an example of contraction by the algorithm. The
graph of (A) contains 4 edges labeled with ‘a’ and ‘b’, 2
edges with ‘a’ and ‘c’, and 2 edges with ‘b’ and ‘c’. How-
ever, it cannot select any edge because they are overlap-
ping each other. Therefore, it tries to find three vertices
to be contracted. (B) shows the candidate sets of vertices
{’ a’, ‘b’, ‘c ‘} and three edges (’a’, ‘b’), (’b’, ‘c’), and (’c’,
‘a’), which appear most frequently two times in the
graph. However, they are overlapping again. Finally, it
selects the candidate sets of (C), vertices {’a’, ‘b’, ‘b’} and
two edges of (’a’, ‘b’), which appear also most frequently.
(D) shows the graph contracted from the graph (A) by
substituting the selected vertices and edges with a new
vertex labeled with ‘abb’.
CompressVertices(2) of M = 2 is equivalent to Com-

pressEdge. It should be noted that the algorithm uniquely
determines the contracted sets of connected edges in
each iteration although different subgraphs can be substi-
tuted with vertices of the same label in M ≥ 4. For exam-
ple, both graphs of a-b-a-b and a-a-b-b are represented
as ((2, ‘b’), (2, ‘a’), (1, ‘b’), (1, ‘a’)) in dl-sequence. It is to
be noted that for three vertices, different subgraphs can-
not have the same dl-sequence. The algorithm is still effi-
cient because it compares dl-sequences instead of
comparing subgraphs, where subgraph isomorphism pro-
blem is known to be in NP-complete.

Similarity measure
The universal similarity metric (USM) was proposed by
Li et al.[11], and has been applied to several biological
data [12,13]. USM between two objects o1 and o2 is
defined using Kolmogorov complexity K(o) as follows:

USM o o
K o o K o o

K o o
( , )

max( ( | ), ( | ))
max( ( ),( ))

,
* *

1 2
1 2 2 1

1 2

= (1)

where o o1 2
* *, denote shortest programs for generating

o1,o2, respectively.
Kolmogorov complexity K(o) of an object o is defined

to be the length of the shortest program P for a univer-
sal Turing machine U which outputs o, and the condi-
tional Kolmogorov complexity of o1 given o2 is defined
to be the length of the shortest program P which out-
puts o1 when o2 is given as follows:

K o P P U P o

K o o P P

( ) min | || ,

( , ) min | ||

= ( ) ={ }
=

is aprogramsuch that

i1 2 ss aprogramsuch thatU P o o, .2 1( ) ={ }
⎧
⎨
⎪

⎩⎪
(2)

It should be noted that K(o) is considered as a mea-
sure of the amount of information that the object o
contains.
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Since it is not possible to obtain these Kolmogorov
complexities for real data, we approximate K(G) of a
graph G by C(G) = |R| + |EC|, where |R| means the
number of rules extracted from G by our method, and |
EC| means the number of remaining edges after the
compression of G. The conditional Kolmogorov com-
plexity K(G1|G2) of G1 given G2 can be approximated to
be C(G1 ∪ G2) − C(G2) as in [12,13], where G1 ∪ G2

means the concatenated graph G′(V′, E′) of G1(V1, E1)
and G2(V2, E2) such that V′ = V1 ∪ V2, E′ = E1 ∪ E2, |V′|
= |V1| + |V2| and |E′| = |E1| + |E2|. Even if there are
identical vertices (i.e. vertices with identical labels)
between G1 and G2, they are added to V′ as different
vertices.
Substituting K(o) of Eq.(1) with C(G), the approxi-

mated USM for graph compression, GUSM, between
two graphs G1 and G2 is given as follows:

GUSM G G
C G G C G C G

C G C G
( , )

( ) min( ( ), ( ))
max( ( ), ( ))

.1 2
1 2 1 2

1 2

= −
(3)

It should be noted that GU SM(G, G) = 0 if |Ec| =0
for C(G). If G1 and G2 are similar, then G1 and G2 are
generated from almost the same set of rules R, that is, C
(G1 ∪ G2) ≈ C(G1) ≈ C(G2) ≈ |R|, and GU SM(G1 ,G2)
approaches to 0.

Results and discussion
To evaluate the proposed measure, we used metabolic
pathways for several organisms, H. sapiens, M. muscu-
lus, A. thaliana, D. melanogaster, C. elegans, E. coli,
S. cerevisiae, and B. subtilis, from the KEGG database
[20] (see Table 1). We used chemical compounds as
nodes and chemical reactions as edges. For evaluation

purposes, it is not appropriate to use protein-protein
interaction networks because the accuracy of the net-
works is not sufficient [21]. Furthermore, we compared
the results with those of GRAPHITOUR because other
methods such as PathBLAST [5], NetAlign [6], and
MNAligner [7] do not give the similarity of networks,
and focus on finding interesting subnetworks or most
similar subnetworks to a query network.
In our first computational experiment, all nodes in the

metabolic networks were labeled with chemical com-
pounds, and there was only one edge having the same
labels, that is, |ε(l1, l2)| = 1. Then, our compression
algorithm for G(V, E) produced rules R and the remain-
ing graph Gc(Vc, Ec) as C(G) = |R| + |Ec| = |E|. This
means that G is not compressed. Many other methods
also cannot select frequent subnetworks for such
networks.
Since we would like to compare network structures

for the metabolic networks, we replaced labels with
Morgan index [18]. Figure 3 shows an example of

(A) (B)

a

a

b

b

b

b

c

a

a

b

b

b

b

c

(C)

a

a

b

b

b

b

c

(D)

abb

c

abb

Figure 2 Example of contraction by CompressVertices Example of contraction of identical sets of vertices and the edges between the
vertices by CompressVertices. (A) Graph with 7 vertices and 8 edges. (B) Candidate vertices {’ a’, ‘b’, ‘c ‘} and three edges (’a’, ‘b’), (’b’, ‘c’), and (’c’,
‘a’) to be contracted. (C) Candidate vertices {’a’, ‘b’, ‘b’} and two edges of (’a’, ‘b’) to be contracted. (D) Graph contracted from graph (A) by
substituting vertices {’a’, ‘b’, ‘b’} and the edges with ‘abb’.

Table 1 Statistics of metabolic pathways

organism # nodes # edges

H. sapiens 1550 1673

M. musculus 1518 1640

A. thaliana 1389 1395

D. melanogaster 1238 1250

C. elegans 1049 1009

E. coli 1103 1256

S. cerevisiae 983 1028

B. subtilis 994 1065

Statistics of metabolic pathways for several organisms, H. sapiens, M. musculus,
A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis.
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calculation of Morgan index. First, 1 is assigned to each
node. Next, the sum of values of adjacent nodes is
assigned for each node. This iteration is repeated until
the number of different values of Morgan index does
not increase. We call the index obtained in this way the
original Morgan index. Morgan index obtained by one
iteration of this procedure is equivalent to the degree of
each node, and Morgan index depends on graph
structures.
We fixed the number of iterations of the Morgan

index procedure, applied our compression algorithms to
individual and concatenated metabolic networks, G1, G2,
G1 ∪ G2, and calculated GU SM (G1, G2) from C(G1), C
(G2) and C(G1 ∪ G2). To confirm that our compression
algorithms work for measuring the similarity of meta-
bolic networks, we obtained hierarchical clustering
results using the nearest neighbor (single linkage)
method, and compared them with actual phylogenetic
trees and hierarchical clustering results by GRAPHI-
TOUR. Moreover, we performed such experiments with
several numbers of iterations from 1 to 20 because the
number of iterations of the original Morgan index is at
most 11 for the metabolic networks.
Figure 4 shows the results of hierarchical clustering

using CompressEdge for metabolic networks of several
organisms, H. sapiens, M. musculus, A. thaliana, D. mel-
anogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis
with Morgan indices of 1, 2, 3, 6, 11, and 12 iterations.
The numbers of contracted edges for the metabolic net-
work of H. sapiens with Morgan indices of 1, 2, 3, 6, 11,
and 12 iterations were 251, 1367, 1387, 1395, 1395, and
1395, respectively. The results of more than 5 iterations
were almost similar to those of 12 iterations. Figure 5
shows the results on the number of different values of

Morgan indices for the metabolic networks for 1-20
iterations of the Morgan index procedure. We can see
from this figure that the number of different values of
Morgan indices is almost constant for more than 11
iterations. For a small number of iterations, it is consid-
ered that metabolic networks were not compressed well
because many edges have the same labels and share
common nodes. This means that the number of itera-
tions is required to be large for measuring the similarity
more accurately. However, for that purpose, much larger
numbers than the number of iterations of the original
Morgan indices, that is at most 11, are not needed
because the number of different values of Morgan
indices is almost constant for more than 11 iterations
(see Figure 5). According to the results of hierarchical
clustering in Figure 4, H. sapiens was always the nearest
to M. musculus. Bacterial organisms of B. subtilis and E.
coli were furthest from H. sapiens in the result of 12
iterations. It is considered that the result of 12 iterations
is almost consistent to actual phylogenetic trees. This
suggests that the proposed method can adequately mea-
sure the similarities between metabolic networks.
Figure 6 shows the results of hierarchical clustering

using CompressVertices(3) for metabolic networks. The
result of 3 iterations was already similar to the results of
more than 5 iterations. It is considered that there are
more overlapping edges in networks for a smaller num-
ber of iterations, and our proposed method contracted
their edges well for a small number of iterations.
Figure 7 shows the results of hierarchical clustering

using GRAPHITOUR for metabolic networks. In the
result of 10 iterations, E. coli was farthest from
H. sapiens. The result of 12 iterations was not well clus-
tered because D. melanogaster is likely to be closer to

1
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1

1

1
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2
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3

1
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Figure 3 Example of calculation of Morgan index. (A) 1 is assigned to each vertex. (B) first iteration. (C) second iteration.
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H. sapiens than to C. elegans [22]. These suggest that
our proposed method can measure the similarities better
than GRAPHITOUR.
Furthermore, the proposed methods are efficient. The

computational time was at most 9 seconds in Compres-
sEdge, 17 seconds in CompressVertices(3), even for the

concatenated network of H. sapiens and M. musculus
with Morgan index of 12 iterations. These experiments
were done in a single processor core on a PC with Xeon
X5460 3.16GHz CPUs and 8GB memory under the
Linux (version 2.6) operating system, where the g++
compiler was used with optimization option -O3.
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Figure 4 Results of hierarchical clustering using CompressEdge for metabolic networks of several organisms, H. sapiens, M. musculus, A.
thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis with Morgan indices of 1, 2, 3, 6, 11, and 12 iterations.

Hayashida and Akutsu BMC Systems Biology 2010, 4(Suppl 2):S13
http://www.biomedcentral.com/1752-0509/4?issue=S2/S13

Page 7 of 11



 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20

# 
di

ffe
re

nt
 v

al
ue

s 
of

 M
or

ga
n 

in
de

x

# iterations

��������	�

���������
���������	�

�������	�������
��������	�

������
������������

�����������

Figure 5 Results on the number of different values of Morgan indices for metabolic networks of several organisms, H. sapiens, M. musculus,
A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis for 1-20 iterations of the Morgan index procedure.
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Figure 6 Results of hierarchical clustering using CompressVertices(3) for metabolic networks of several organisms, H. sapiens, M. musculus,
A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis with Morgan indices of 1, 2, 3, and 6 iterations.
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We also compared our proposed methods with simple
methods based on node and edge numbers. We calcu-
lated distances between two organisms as the differences
of the number of nodes or edges, and obtained hierarch-
ical clustering results using the nearest neighbor

method. We can see from the results (Figures S1 and S2
in the supplementary information web page) that
H. sapiens was the nearest to M. musculus, but other
relations were different from actual phylogenetic trees.
This result shows that our proposed methods are better
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Figure 7 Results of hierarchical clustering using GRAPHITOUR for metabolic networks of several organisms, H. sapiens, M. musculus, A.
thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis with Morgan indices of 1, 2, 3, 6, 10, and 12 iterations.
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than those based on node or edge numbers. In addition,
our methods generate rules to contract edges iteratively.
It means that they try to find hierarchical substructures
for a given graph. We defined the similarity between
graphs, GUSM, based on the number of such rules. It
can be considered that GUSM implies whether hierarch-
ical substructures are also similar, or not.
We proposed two methods, CompressEdge and Com-

pressVertices(M), where M denotes the maximum num-
ber of vertices to be contracted at a time. It should be
noted that the minimum number is 2 because a vertex
itself cannot be contracted. CompressEdge is equivalent
to CompressVertices(2). If a graph has many overlap-
ping edges, CompressEdge (and CompressVertices(2))
would not extract many rules, that is, many edges are
not contracted and are remained. Consider a graph G
that all edges of G are overlapping. The similarity
between G and itself, GU SM (G, G), must be 0. How-
ever, GU SM (G, G) = 1 because any edge of G is not
contracted, C (G) = |Ec| and C (G ∪ G) = 2|Ec|. There-
fore, CompressVertices(M) for M > 2 is needed.

Conclusions
In this paper, we have proposed novel methods for
compressing biological networks. One of the impor-
tant properties of the proposed methods is that iso-
morphic networks are compressed in the same way.
Unlike many other methods comparing biological net-
works, our methods are able to give the similarity
metric of their networks. Moreover, our methods are
very efficient because they do not compare subgraphs
directly. We have applied the proposed compression
methods to comparison of metabolic networks, and
compared the results with those of an existing
method. The results suggest that the proposed com-
pression methods are useful for comparison of biologi-
cal networks.
Our proposed methods were applied to only undirected

graphs in this paper. However, it is possible to extend our
algorithms to deal with directed graphs. It is easy to
extend CompressEdge, and the modified method can still
be efficient. Our methods are efficient as well as GRA-
PHITOUR, and it is important to keep the efficiency
after extending them. Metabolic networks can also be
represented as directed graphs and undirected graphs
using chemical compounds as nodes and the relation
between compounds (e.g., involve the same reaction) as
edges. It is an interesting issue to examine whether our
methods are robust for any representation of a network.
It is considered in general that random networks are

more difficult to be compressed than scale-free net-
works. However, our methods cannot compress meta-
bolic networks that are known as scale-free networks
because all nodes in metabolic networks are labeled

with distinct chemical compounds, and there is only
one edge having the same labels. Our proposed methods
are useful only for comparison of networks. If the same
labels can appear multiple times, it is expected that our
methods can also differentiate these networks. However,
it is difficult to compare them in a simple way because
the compression size depends on the distribution of
node labels. Since we do not have realistic models for
generation of random and scale-free networks with node
labels, application of our proposed methods to differen-
tiation of random networks from scale-free networks is
left as future work.
Though we have applied the methods to comparison

of networks, the application is not limited to compari-
son. It might be applied to detection of network motifs
with hierarchical structures because our method itera-
tively compresses edges (edges can be replaced by small
subgraphs).
One drawback of our proposed compression methods is

that it is not a lossless compression method (i.e., the origi-
nal network cannot be reconstructed from compressed
data). Therefore, improvement of the method towards
lossless compression is also important future work.

Availability
The source code of CompareVertices is available
through the supplementary information web page
(http://sunflower.kuicr.kyoto-u.ac.jp/morihiro/gracomp/).
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