
PROCEEDINGS Open Access

On finite-horizon control of genetic regulatory
networks with multiple hard-constraints
Cong Yang, Ching Wai-Ki*, Tsing Nam-Kiu, Leung Ho-Yin

From Optimization and Systems Biology
Zhangjiajie, China. 20 – 22 September 2009

Abstract

Background: Probabilistic Boolean Networks (PBNs) provide a convenient tool for studying genetic regulatory
networks. There are three major approaches to develop intervention strategies: (1) resetting the state of the PBN to
a desirable initial state and letting the network evolve from there, (2) changing the steady-state behavior of the
genetic network by minimally altering the rule-based structure and (3) manipulating external control variables
which alter the transition probabilities of the network and therefore desirably affects the dynamic evolution. Many
literatures study various types of external control problems, with a common drawback of ignoring the number of
times that external control(s) can be applied.

Results: This paper studies the intervention problem by manipulating multiple external controls in a finite time
interval in a PBN. The maximum numbers of times that each control method can be applied are given. We treat
the problem as an optimization problem with multi-constraints. Here we introduce an algorithm, the “Reserving
Place Algorithm’’, to find all optimal intervention strategies. Given a fixed number of times that a certain control
method is applied, the algorithm can provide all the sub-optimal control policies. Theoretical analysis for the upper
bound of the computational cost is also given. We also develop a heuristic algorithm based on Genetic Algorithm,
to find the possible optimal intervention strategy for networks of large size.

Conclusions: Studying the finite-horizon control problem with multiple hard-constraints is meaningful. The
problem proposed is NP-hard. The Reserving Place Algorithm can provide more than one optimal intervention
strategies if there are. Moreover, the algorithm can find all the sub-optimal control strategies corresponding to the
number of times that certain control method is conducted. To speed up the computational time, a heuristic
algorithm based on Genetic Algorithm is proposed for genetic networks of large size.

Background
The major goal of functional genomics is screening
genes that determine specific cellular phenotypes (dis-
eases) and modeling their activities in such a way that
normal and abnormal behaviors can be differentiated.
The pragmatic manifestation of the above goal is devel-
oping therapies based on the disruption or mitigation of
aberrant gene function contributing to the pathology of
certain disease. Mitigation would be accomplished by
the use of drugs to act on the gene products. There are

three things involved in engineering therapeutic tools,
namely, synthesizing nonlinear dynamical networks,
characterizing gene regulation and developing interven-
tion strategies to modify dynamical behavior. In this
paper, we introduce a new optimization finite-horizon
control problem with multiple hard-constraints. First we
review some models for studying genetic regulatory net-
works, Boolean networks (BNs) and Probabilistic Boo-
lean networks (PBNs). A brief review of intervention
strategies is also given. We then introduce our mathe-
matical formulation of the problem and the Reserving
Place Algorithm. The upper bound for the computa-
tional cost is also estimated. We report the results of
computational experiments for different genetic
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regulatory networks by Reserving Place Algorithm and
(or) the Genetic Algorithm. Finally, conclusions are
given at the end of the paper.

A Review on Boolean Networks (BNs) and Probabilistic
Boolean Networks (PBNs)
In computational systems biology, building mathemati-
cal models and efficient numerical algorithms to study
regulatory interactions among DNA, RNA, proteins and
small molecules are important issues [1]. There have
been many mathematical models proposed to study
genetic regulatory networks such as Boolean networks
(BNs) [2], regression model [3], Probabilistic Boolean
Networks(PBNs) [4,5] and reviews on other mathemati-
cal models can be found in [6,7].
Among these models, BNs and its extension PBNs

have received much attention as they can capture the
switching behavior of the biological process [1]. Boolean
networks (BNs) are introduced by Kauffman [2,8]. In a
BN, each gene i is regarded as a vertex in the network
and the gene expression state at time t is quantized to
two levels: on and off (represented by 1 and 0). A BN
consists of a set of genes {v1,v2, …, vn} and a set of Boo-
lean functions {f1, f2, …, fn}. The Boolean function fi :
{0,1}n ® {0,1} represents the rules of the regulatory
interactions among the genes: vi(t + 1) = fi(v(t)), i = 1, 2,
… ,n. Here v(t) = (v1(t), …,vn(t))

t is called the Gene
Activity Profile (GAP). The GAP can take any possible
form from the set S = {(v1, …, vn)

τ : vi Î {0,1}}, thus
totally there are 2n possible states. A BN is indeed a
deterministic model and the only randomness comes
from its initial state. Given an initial state, the BN will
eventually enter into a set of state(s) called the attractor
cycle and stays there forever [2]. The attractors have
biological significance such as states of cell proliferation
or cell apoptosis [9].
However, genetic regulation process exhibits uncer-

tainty and microarray data sets used to infer the model
have errors due to experimental noise in the complex
measurement process. Thus it is more realistic to con-
sider stochastic models. To extend BNs to PBNs, the
main idea is as follows. To determine vi the state of
gene i (i = 1, 2, …,n), there can be more than one Boo-

lean functions f j l lj
i( ) ( , , , ( ))= …1 2 to be chosen. Here

1 22≤ ≤l i
n

( ) is the total number of possible Boolean

functions for gene i. The probability of choosing f j
i( ) as

the predictor function is c j
i( ) , where 0 1≤ ≤c j

i( ) and

c j
i

j

l i ( )( )
.

=∑ =
1

1 One can estimate the probability c j
i( ) by

the method Coefficient of Determination (COD) with

real gene expression data sets [10]. There are at most

N l i
i

n
=

=∏ ( )
1

different possible realizations of BNs. In

an independent PBN, the selection of the Boolean func-
tion for each gene is assumed to be independent, the
probability of choosing the corresponding j th BN is

given by q c j Nj j
i

i

n

i
= = …

=∏ ( ), , , , .1 2
1

In fact, the transi-

tion probability matrix A can be written as the sum of

the Boolean network matrices A A q Ai i
i

N

i, =
=∑ 1

where

0 ≤ qi ≤ 1, and qi
i

N

=∑ =
1

1. Given a PBN, assuming

that the underlying Markov chain is irreducible, its
long-run behavior is characterized by its steady-state
probability distribution [11].

Review of intervention strategies
Intervention strategies are applied to drive the whole
genetic network into a desirable steady-state probability
distribution. The intervention studies used three different
approaches: (1) resetting the state of the PBN to a more
desirable initial state and letting the network evolve from
there, (2) changing the steady-state(long-run) behavior of
the genetic network by minimally altering the rule-based
structure and (3) manipulating external control variables
which alter the transition probabilities of the network
and therefore desirably affect the dynamic evolution. In
[12], the potential effect of individual gene on the global
dynamical network behavior is studied, by means of ran-
dom gene perturbation and intervention. A model for
random gene perturbation is given and a formula for the
transition probabilities in the PBN model with perturba-
tion is also provided. The effects of deliberately affecting
a particular gene by means of intervention are also stu-
died. A methodology for altering the steady-state prob-
abilities of certain states or sets of states with minimal
modification to the underlying rule-based structure is
developed in [13]. In [14], an optimal finite-horizon con-
trol problem for gene intervention is formulated as a
minimization problem with penalty costs. The penalty
costs include both control cost and cost of the terminal
states. The control cost is defined as the cost of applying
control inputs in some particular states. Relatively higher
terminal costs are assigned to those undesirable states.
Other control problems such as imperfect information,
context-sensitive PBN and infinite-horizon control are
discussed in [15,16] separately. In [17], an algorithm is
proposed to study the problem of controlling a gene net-
work (without state feedback) such that it reaches a tar-
get state set with a prescribed maximum or minimum
probability.
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Our contribution
All the above optimal control formulations did not con-
sider the realistic hard constraints that the number of
times of applying controls are bounded. In case of dis-
ease such as cancer, control inputs can be medication or
radiation, etc. They are typically applied during a time
period. Certain treatments such as radiation can not be
applied too many times. The study in [18] fills the blank
by studying an optimal finite-horizon problem with such
hard-constraint. It discusses the problem with only one
control variable. Observing that usually there are multi-
ple treatment methods applied together, we study a
finite-horizon external control problem with multiple
hard-constraints. Our objective is to minimize the cost
of control strategy over certain time period. Beside set-
ting the upper boundaries for the number of times each
control method applied, We adopt the idea that the net-
work should fall into a desirable state set with a pre-
scribed minimum or maximum probability from [17].
Apart from introducing the finite-horizon control pro-
blem with multiple hard-constraints, we provide an
algorithm, the Reserving Place Algorithm, to generate all
optimal control strategy (strategies). As the problems
proposed in our paper and in [18] are both for a fixed
time interval say T, the optimal control strategy is the
sequence of control actions of length T. In [18], the
authors start from set {0,1} which is the possible control
strategies at time t = 1 and check if the hard-constrain
is met, and recursively find those control sequences of
length T meeting the constraint on the number of
applied times. Our algorithm directly focus on control
strategies of length T. Moreover the constraints of the
numbers of times that each control method can be
applied is involved in the generation of control strate-
gies. Besides the optimal control strategy, given a fixed
number of times that certain control method is applied,
the algorithm can provide all the optimal control
sequences. We remark that our proposed formulation
can be applied to both perturbed and context-sensitive
PBNs, though we only discuss examples of instanta-
neously random PBNs.

Methods
We first give some necessary notations to introduce the
mathematical formulation of our optimization control
problem. We then describe an algorithm, the Reserving
Place Algorithm, for obtaining all the optimal solutions.
The upper bound of computational cost is also esti-
mated. Based on this, the drawbacks of the Reserving
Place Algorithm is stated and we apply the Genetic
Algorithm to networks of large size. Here we study an
optimization control problem with multiple hard-con-
straints. Our goal is to find an optimal strategy for
manipulating external control variables to desirably

affect the dynamic evolution of a random PBN over a
finite time horizon with minimum corresponding cost.
Without loss of generality, here we only consider two
control methods. At each time point t (t = 1, 2, …, T),
one of the following three control options will be con-
ducted: Control 0 (i.e. no control), Control 1 and Con-
trol 2, represented by u0, u1 and u2. Their
corresponding transition probability matrices P0, P1, P2
are given. The optimal control problem can be stated as
follows. Given an initial probability distribution x0 = (v1
(0), …,vn(0))

t and a set of target states S′ ⊆ S, our goal is
to find a sequence of actions s over a finite time hori-
zon T that leads the system reaching a target state with

a minimum probability �p (i.e X pT ii S
[ ] ≥

∈ ′∑ , where

[xT]i = vi(T) is the state of gene i at time T) while mini-
mizing the sum of the costs of the control actions

applied at each time point C i
i

T
( ).

=∑ 1
Thus we obtain

the following optimization control problem:

min ( )

,

,

.
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s K

s K
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⎧
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1 1
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0

0

subject to

⎪⎪

(1)

Here si is the number of times that Control i is con-
ducted, and Ki is the maximum number of times that
Control i can be applied, i = 1, 2. We use ij Î {0,1, 2} to
represent that Control ij is applied to the network at
time j. Then the control string i1i2 …, ik represents the
control actions conducted from time 1 to time k. We
define set U = {s = i1i2 … iT : ij Î {0,1, 2}, and 0 ≤ si ≤
Ki, i =1, 2} as the set containing all the possible control
strategies satisfying the multiple hard-constraints. Given
the initial probability distribution vector x0, the state

probability distribution vector x P P xT i iT
= …

1 0 repre-

sents the state vdistribution vector at time T obtained
by control strategy s = i1i2 … iT. The feasible solution
set V is a subset of set U, where

V U X pT i
i S

= ∈ [ ] ≥
∈ ′
∑{ : }.

Optimal solution(s) exists(exist) if V is not empty.

Algorithms
Reserving place algorithm
Our proposed problem is NP-hard. Here we develop an
algorithm for computing all the optimal solutions. In
order to find the feasible solution set for the optimal
control problem with hard-constraint, [18] applied a
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recursive method as follows. They first start with the set
{0, 1}, which contains all the possible control strategies
at time t = 1. Then one can obtain the set {00, 01, 10,
11} for time t = 2. Recursively one can get the feasible
solution set while checking whether the control strate-
gies satisfy the hard-constraint. The problem proposed
in this paper involves more than one control methods
under multiple hard-constraints. The recursive method
in [18] can be applied. Here we introduce a more effi-
cient algorithm, the Reserving Place Algorithm to find

the feasible solution set V U X pT ii S
= ∈ [ ] ≥

∈ ′∑{ : }.

Our algorithm focuses on control strategies of length T
at the right start. For the generation of set U, the num-
bers of times that each control method can be applied
are also involved into consideration. Then one only
need to check whether the state probability distribution
obtained by any control string in the set U satisfies the

constraint X pT ii S
[ ] ≥

∈ ′∑ . Thus the key point is to

generate the set U, the set of all possible control strate-
gies satisfying the hard-constraints.
We first assume that the number of times that Con-

trol 2 is applied is fixed as k, 0 ≤ k ≤ K2. We reserve k
places in the control string of length T for Control 2,

then there are totally CT
k cases. Now we only need to

find all the control strings of length T − k where Con-
trol 0 (i.e. no control) and Control 1 can be applied and
the maximum number of times that Control 1 can be
applied is K1. We note that among all the possible con-

trol strings, binary string
11 100 0

1 1

… …
− −K T K k

 is the biggest

one. Thus by translating decimal digits from 0 to 2T−k −
1 to binary digits and checking the number of times
that Control 1 is applied, one can generate all the con-
trol strings of length T − k satisfying the hard-constraint
for Control 1. Finally we can obtain the set U by
increasing k from 0 to K2.
Computational cost
Here we provide an upper bound of the computational
cost for our Reserving Place Algorithm.
Theorem 1 The computation cost of the Reserving

Place Algorithm is bounded above by MT22n where

M n U C C
T

i j T i
j

K

T
j

i

K

T j
i

j

K

i

K

= =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
−

= =
−

= =
∑ ∑ ∑∑( )

!
! !(

0 0 0 0

2 1 2 1

−− j)!
..

Proof: The main computational cost of the algorithm
comes from the matrix-vector multiplication. For each
control strategy, the number of matrix-vector multipli-
cation is T, where T is the length of time interval. If we

search an optimal solution in the set W = {s = i1i2 … iT
: ij Î {0,1, 2}} the computational cost is T3τ22n, where n
is the number of genes in the network. Since we only
need to consider the strategies in the set

V U X pT ii S
= ∈ [ ] ≥

∈ ′∑{ : }, the computational cost is

T22nn(V), where n(V) is the number of control strategies
in the set V. We note that V ⊆ U, the computational
cost is bounded above by T22nn(U). By the Reserving
Place algorithm, we have

M n U C C
T
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0 0 0 0

2 1 2 1

−− j)!
. (2)

Genetic algorithm
It has been shown that finding a control strategy for a
BN to a global state is actually NP-hard [19]. By Theo-
rem 1, we know that the computational cost of the
Reserving Place Algorithm depends a lot on the length
of the time interval T and the number of genes n. Note
that the number of possible states in the network
increases exponentially with respect to the number of
genes n, thus the computational cost for solving the
optimal control problem can be enormous even for
moderate n. For any of the above two cases, we apply
the Genetic Algorithm (GA) for the proposed multiple
hard-constraint problem. GA is inspired by evolutionary
biology such as inheritance, mutation, selection, and
crossover. It is a search technique used in computing to
find exact or approximate solutions to optimization and
search problems. In the first step, we generate a random
population of size N = 100, consisting policy vectors of
length T = 100. The cost of each policy vector is evalu-
ated which is subsequently turned into the probability
that it would be picked for the next generation. Second,
we pick 2 policies from the current generation with
replacement according to their corresponding probabil-
ities. Then, with cross over rate pc = 0.7, crossover of
the two policies occurs at a random position. After that,
each position of the policies mutates with mutation rate
pm = 0.01. After the above operations, the two resulting
vectors are placed in the new population. Two policies
are picked at a time from the current population and
then the crossover and mutation operations are per-
formed whenever necessary until there are N or N +1
policies in the new generation. We then calculated the
cost and the probability of each policy vector. If N is
odd, we randomly remove one policy vector from the
new generation. The cost and probability of each policy
vector are then calculated. The process returns to the
second step unless the stopping criteria is met. Since
the GA starts by randomly generating an initial
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population, it cannot guarantee to obtain an optimal
solution. Thus to obtain a reasonably good solution, in
numerical experiments, we apply GA many times, and
obtain an optimal solution from all the results obtained.

Results
This section is organized into three parts. First, we pro-
vide a 2-gene hypothetical genetic network. Both the
Reserving Place Algorithm and Genetic Algorithm are
applied. The contrast in computational time is also
given. Then both algorithms are applied to a 3-gene
hypothetical genetic network. Finally, the comparison of
the two algorithm is conducted.

2-gene network
We start with a 2-gene hypothetical genetic network.
The network consists of two genes denoted by A and B.
The states of gene A and gene B are given in Table 1.
There are three external control methods: (i) Control 0:
no control, (ii) Control 1: medication, and (iii) Control
2: radiation. Their corresponding transition probability
matrices are given as follows.

P0

0 7 0 4 0 4 0 0

0 0 0 3 0 0 0 5

0 3 0 0 0 5 0 3

0 0 0 3 0 1 0 2

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞. . . .

. . . .

. . . .

. . . . ⎠⎠

⎟
⎟
⎟
⎟

=,

. . . .

. . . .

. . . .

. . . .

P1

0 3 0 1 0 0 0 0

0 1 0 0 0 4 0 1

0 4 0 5 0 4 0 1

0 2 0 4 0 2 0 8

⎛⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=,

. . . .

. . . .

. . . .

. .

P2

0 1 0 0 0 0 0 0

0 3 0 1 0 2 0 3

0 3 0 4 0 5 0 4

0 3 0 55 0 3 0 3. .

.

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
(3)

Our objective is to find a control strategy that
ensures after time length T the total probability of
gene A being expressed is at least 0.8 (i.e., [x]3 + [x]4 ≥
0.8) with the minimum cost, given an initial state dis-
tribution of x0 = (0.1, 0.4, 0.3, 0.2)t. The maximum

numbers of times that Control 1 and Control 2 can be
conducted are K1 =5 and K2 = 2 respectively. The cost
for conducting Control 1 is 2.5, the cost for Control 2
is 4, and no cost for Control 0. We first apply the
Reserving Place Algorithm to the 2-gene network
when T = 10. Table 2 lists the obtained sub-optimal
strategies with minimum cost for each fixed k from 0
to K2 = 2, where k is the number of times that Control
2 is conducted. From Table 2, there is only one opti-
mal control strategy: conduct Control 2 at time point t
= 7 and Control 1 at time point t = 8, 9,10, with total
cost 11.5 and corresponding state probability distribu-
tion vector xT = (0.0275, 0.1682,0.2679,0.5364)t. For
various values of time interval length T, Table 3 pro-
vides the corresponding optimal strategies and their
costs by Genetic Algorithm. The Genetic Algorithm
cannot always find the optimal solution due to the
random initial guess. Here we repeatedly apply the GA
50 times, and the control strategy is chosen from those
results. The GA algorithm can also obtain (only one)
the optimal solution obtained by the Reserving Place
Algorithm. To contrast the computational cost, Table
4 gives the computing time for the Reserving Place
Algorithm and the average computing time for the
Genetic Algorithm for the 2-gene network under
various values of T.

3-gene network
Here we consider a hypothetical network consisting of 3
genes A, B, C. The states of genes A, B and C are given
in Table 5. There are three external control methods: (i)
Control 0: no control, (ii) Control 1: medication, and

Table 1 States of Genes in the 2-gene network

States 1 2 3 4

A Off Off On On

B Off On Off On

Table 2 Sub-optimal solutions for 2-gene example
(T = 10) by Reserving Place Algorithm

k Control Strategy s = = i1i2 …, iT Cost Computing Time

0 0 0 1 0 0 1 1 1 1

k = 0 0 0 0 0 1 0 1 1 1 1 12.5 0.156

0 0 0 0 0 1 1 1 1 1

k = 1 0 0 0 0 0 0 2 1 1 1 11.5 0.718

0 0 0 0 0 2 2 1 1 1

0 0 0 0 2 0 2 1 1 1

k = 2 0 0 0 2 0 0 2 1 1 1 15.5 9.375

0 0 2 0 0 0 2 1 1 1

0 2 0 0 0 0 2 1 1 1

2 0 0 0 0 0 2 1 1 1

Table 3 Optimal solutions for 2-gene example under
various T by Genetic Algorithm

Control Strategy s = i1i2 …, iT Cost

T = 10 0 0 0 0 0 0 2 1 1 1 11.5

T = 11 0 0 0 0 0 0 0 2 1 1 1 11.5

T = 12 0 0 0 0 0 0 0 0 2 1 1 1 11.5

T = 13 0 0 0 0 0 0 0 0 0 2 1 1 1 11.5

T = 14 0 0 0 0 0 0 0 0 0 0 2 1 1 1 11.5

T = 15 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 11.5

Table 4 Comparison of computing time of the two
algorithms

Reserving Place Algorithm(sec) Genetic Algorithm(sec)

T =10 10.3 29.6

T =11 68.8 29.9

T =12 315.2 30.1

T =13 1177.0 28.9

T =14 4017.9 30.0

T =15 10796.0 29.5
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(iii) Control 2: radiation. Their corresponding transition
probability matrices are given as follows.

P0

1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0
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,
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⎜
⎜
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⎟
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(4)

Our objective is to find a control strategy that ensures the
total probability of gene A unexpressed and gene B
expressed is at least 0.8 (i.e., [x]3 + [x]4 ≥ 0.8) with the mini-
mum cost, given an initial state distribution of x0 = (0.1, 0.2,
0.1, 0.1, 0.25, 0.15, 0.1, 0)t. The maximum numbers of times
that Control 1 and Control 2 can be conducted are K1 = 5
and K2 = 2 respectively. The cost for conducting Control 1
is 2.5, the cost for Control 2 is 4, and no cost for Control 0.
Table 6 gives the obtained sub-optimal strategies with

minimum cost for each fixed k from 0 to K2 = 2, where k
is the number of times that Control 2 is conducted by
the Reserving Place Algorithm. The length of time inter-
val is T = 10. As listed in Table 6, there are two optimal
control strategies both with minimum cost 6.5. The com-
puting time for the Reserving Place Algorithm is 6.94 sec.
For the case of T = 15, the computing time is 8450.4 sec.

In Table 7 we present the best control strategies obtained
by Genetic Algorithm and also its corresponding average
computing time for time intervals T = 10,15, 20.

A comparison of the two algorithms
Based on the numerical experiments, we draw the follow-
ing remarks for the comparison of the Reserving Place
Algorithm and the Genetic Algorithm. The Reserving Place
Algorithm obtains all the optimal control strategies, mean-
while the Genetic Algorithm provides one possible optimal
solution. Moreover, the Reserving Place Algorithm can give
all the sub-optimal control strategies for a fixed number of
times that certain control method is applied. This is useful
in practice as the results can provide more applicable con-
trol strategies to be chosen and more information about
the effects of combining various control methods. In the
aspect of computing time, the computing time of
the Reserving Place Algorithm is closely corresponding to
the length of time interval T as shown in Table 4. On the
other hand, the average computing time for the Genetic
Algorithm is not much influenced by the increase of T. By
Theorem 1, the computational time of the Reserving Place
Algorithm increases exponentially with respect to the num-
ber of genes n. For the Genetic Algorithm, the computing
time depends on n, but not as greatly as the computational
cost of the Reserving Place Algorithm. All numerical
experiments were performed via MATLAB 7.60 in Win-
dow XP using an Intel 3.20 GHz processor.

Conclusions
In this paper, we introduced a new optimal finite-hori-
zon control problem with multiple hard-constraints. We
proposed an algorithm, the Reserving Place Algorithm,
to generate all optimal solutions. The upper bound for
the computational cost was also estimated. We remark
that our formulation can be applied to both perturbed
and context-sensitive PBNs.
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Table 5 States of Genes in the 3-gene network

States 1 2 3 4 5 6 7 8

A Off Off Off Off On On On On

B Off Off On On Off Off On On

C Off On Off On Off On Off On

Table 6 Sub-optimal solutions for 3-gene example
(T = 10) by Reserving Place Algorithm

k Control Strategy s = i1i2 …, iT Cost Computing Time

k = 0 - - 0.08

k = 1 0 0 0 0 0 0 0 1 0 2 6.5 0.644

0 0 0 0 0 0 0 0 2 1

k = 2 0 0 0 0 0 0 0 2 0 2 8 6.22

Table 7 Optimal solutions for 3-gene example under various T by Genetic Algorithm

Control Strategy s = i1i2 …iT Cost Average Computing Time(sec)

T =10 0 0 0 0 0 0 0 0 2 1 6.5 32.25

T =15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 30.23

T = 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 27.7

Yang et al. BMC Systems Biology 2010, 4(Suppl 2):S14
http://www.biomedcentral.com/1752-0509/4?issue=S2/S14

Page 6 of 7

http://www.biomedcentral.com/1752-0509/4?issue=S2
http://www.biomedcentral.com/1752-0509/4?issue=S2


Authors’ contributions
Wai-Ki proposed the optimization problem. Yang designed and analyzed the
Reserving Place Algorithm, performed the numerical experiments. Yang, Wai-
Ki and Nam-Kiu wrote the manuscript. Wai-Ki and Ho-Yin contributed to the
numerical experiment analysis and modification of the manuscript. All
authors have read and approved the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 13 September 2010

References
1. Huang S: Gene Expression Profiling, Genetic Networks, and Cellular

States: An Integrating Concept for Tumorigenesis and Drug Discovery. J.
Mol. Med 1999, 77:169-480.

2. Kauffman S: Homeostasis and Differentiation in Random Genetic Control
Networks. Nature 1969, 224:177-178.

3. Zhang S, Ching W, Tsing N, Leung H, Guo D: A Multiple Regression
Approach for Construction of Genetic Regulatory Networks. Journal of
Artificial Intelligence in Medicine 2010.

4. Shmulevich I, Dougherty E, Kim S, Zhang W: Probabilistic Boolean
Networks: A Rulebased Uncertainty Model for Gene Regulatory
Networks. Bioinformatics 2002, 18:261-274.

5. Shmulevich I, Dougherty E: Genomic Signal Processing. New York:
Princeton University Press, first edition 2007.

6. Jong HD: Modeling and Simulation of Genetic Regulatory Systems: A
Literature Review. J. Comp. Biol. 2002, 9:69-103.

7. Smolen P, Baxter D, Byrne J: Mathematical Modeling of Gene Network.
Neuron 2000, 26:1319-1331.

8. Kauffman S: The Origins of Order: Self-organization and, Selection in
Evolution. New York: Oxford Univ. Press, first 1993.

9. Huang S, Ingber D: Shape-dependent Control of Cell Growth,
Differentiation, and Apoptosis: Switching Between Attractors in Cell
Regulatory Networks. Exp. Cell Res. 2000, 261:1-103.

10. Dougherty E, Kim S, Chen Y: Coefficient of Determination in Nonlinear
Signal Processing. Signal Processing 2000, 80:2219-2235.

11. Ching W, Zhang S, Ng M, Akutsu T: An Approximation Method for Solving
the Steady-state Probability Distribution of Probabilistic Boolean
Networks. Bioinformatics 2007, 23:1511-1518.

12. Shmulevich I, Dougherty E, Zhang W: Gene Perturbation and Intervention
in Probabilistic Boolean Networks. Bioinformatis 2002, 18:1319-1331.

13. Shmulevich I, Dougherty E, Kim S, Zhang W: Control of Stationary
Behavior in Probabilistic Boolean Networks by Means of Structural
Intervention. Journal of Biological Systems 2002, 10:431-445.

14. Datta A, Choudhary A, Bitter M, Dougherty E: External Control in
Markovian Genetic Regulatory Networks. Machine Learning 2003,
52:169-191.

15. Pal R, Datta A, Bittner M, Dougherty E: Intervention in Context-sensitive
Probabilistic Boolean Networks. Bioinformatics 2005, 21:1211-1218.

16. Pal R, Dougherty E: Optimal Infinite Horizon Control for Probabilistic
Boolean Networks. IEEE Transactions on Signal Processing 2006,
54:2375-2387.

17. Chen P, Chen J: A Markovian Approach to the Control of Genetic
Regulatory Networks. Biosystems 2006, 90:535-545.

18. Ching W, Zhang S, Jiao Y, Akutsu T, Wong A: Optimal Control Policy for
Probabilistic Boolean Networks with Hard Constraints. IET on Systems
Biology 2009, 3:90-99.

19. Akutsu T, Hayasida M, Ching W, Ng M: Control of Boolean Networks:
Hardness Results and Algorithms for Tree Structured Networks. Journal
of Theoretical Biology 2007, 244:670-679.

20. Ching W, Cong Y: Finite-Horizon Control of Genetic Regulatory Networks
with Multiple Hard-Constraints. Lecture Notes in Operations Research 2009,
11:33-40.

doi:10.1186/1752-0509-4-S2-S14
Cite this article as: Yang et al.: On finite-horizon control of genetic
regulatory networks with multiple hard-constraints. BMC Systems Biology
2010 4(Suppl 2):S14.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Yang et al. BMC Systems Biology 2010, 4(Suppl 2):S14
http://www.biomedcentral.com/1752-0509/4?issue=S2/S14

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/9930956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9930956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5343519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5343519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11082269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11082269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11082269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17320274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17320274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17069859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17069859?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	A Review on Boolean Networks (BNs) and Probabilistic Boolean Networks (PBNs)
	Review of intervention strategies
	Our contribution

	Methods
	Algorithms

	Results
	2-gene network
	3-gene network
	A comparison of the two algorithms

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

