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Abstract

Background: Mathematical models for revealing the dynamics and interactions properties of biological systems
play an important role in computational systems biology. The inference of model parameter values from time-
course data can be considered as a “reverse engineering” process and is still one of the most challenging tasks.
Many parameter estimation methods have been developed but none of these methods is effective for all cases
and can overwhelm all other approaches. Instead, various methods have their advantages and disadvantages. It is
worth to develop parameter estimation methods which are robust against noise, efficient in computation and
flexible enough to meet different constraints.

Results: Two parameter estimation methods of combining spline theory with Linear Programming (LP) and
Nonlinear Programming (NLP) are developed. These methods remove the need for ODE solvers during the
identification process. Our analysis shows that the augmented cost function surfaces used in the two proposed
methods are smoother; which can ease the optima searching process and hence enhance the robustness and
speed of the search algorithm. Moreover, the cores of our algorithms are LP and NLP based, which are flexible and
consequently additional constraints can be embedded/removed easily. Eight system biology models are used for
testing the proposed approaches. Our results confirm that the proposed methods are both efficient and robust.

Conclusions: The proposed approaches have general application to identify unknown parameter values of a wide
range of systems biology models.

Background
In recent years, the rapid development of sophisticated
experiment tools in molecular biology allows the acqui-
sition of high qualitative time series data which can sig-
nificantly improve the ability of revealing the complex
dynamics and interactions of biological systems. Profit-
ing from the rapid technological advances, more and
more researchers from different disciplines can now uti-
lize such observation data to establish mechanism-based
models which can incorporate every possible detail and
functioning of biological systems [1]. One common
approach is to characterize the biological system with a
set of Ordinary Differential Equations (ODEs) [2-7].
Generally, there are two major aspects of building an
ODE model for a biological system from experimentally
measured time series: (1) to determine the structure of
the system through a set of suitable ODEs with

unknown parameters; (2) to determine the unknown
parameters of this ODE model. The identification of
these unknown parameter with fixed model structure
from observations is one of the central issues of compu-
tational systems biology [8]. This type of approach can
be considered as a “reverse engineering process” [9-11].
The parameter estimation problem is generally formu-

lated as an optimization problem that minimizes an
objective function which represents the fitness of the
model with respect to a set of experimental data
[8,12-17]. Two major optimization approaches are com-
monly adopted; the gradient-based nonlinear optimiza-
tion method and the evolutionary based method. Also,
simulations had shown that the simulated annealing
(SA) method can offer promising results [18]. In [19],
many deterministic and stochastic global optimization
(GO) methods for parameter estimation were further
compared using a three-step pathway model with noise
free data assumption; the best result was given by the
Stochastic Ranking Evolution Strategy (SRES) method.
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It is worth mentioning that, due to its simplicity in
implementation, evolutionary algorithms, such as genetic
algorithm and their variants, are extensively utilized for
identifying unknown parameters of systems biology
models [1,11,20-22]. However, most of these aforemen-
tioned approaches need a numerical ODE solver to per-
form the numerical integration for the underlining
differential equations. Studies have revealed that more
than 90% of the computation time is consumed in the
ODE solver during the identification process [19]. In
particular, for nonlinear dynamical systems with high-
parameter-dimension, one trial usually consumes tens of
hours or even days [10,20,21,23]. Furthermore, the con-
vergence property is aggravated by numerical integration
failure, which is a major problem in the optimization
process [11]. The computational burden can be relieved
by reformulating the system involving differential equa-
tions into a system of algebraic equations [12,15,17,24],
which can be classified as “decomposition approaches”.
These decomposition approaches are widely employed
in the parameter estimation of S-systems [7,25]. The
reliability of the decomposed methods depends on the
accuracy of the “smooth” estimated derivatives and the
states of the system. In practice, these data are subject
to significant observation noise. Without proper pre-
processing, the estimation faces the potential of the
overfitting problem and hence the estimation can devi-
ate badly from the “true” value [26,27]. Regularization
can be considered as a mathematical pre-processing on
the measured noisy data set and be used to control the
trade-off between the “roughness” of the solution and
the infidelity of the data [28]. Since we are dealing with
a known structured bio-system, the system model itself
possesses a physical inertia and can serve as physical
constraints which limit the system states within a set of
possible trajectories. In this paper, the over-fitting pro-
blem can be relieved by embedding the model dynamics,
the mass and energy balance constraints into our con-
strained optimization algorithms. Owing to the nonli-
nearity of systems biology models, the cost function to
be minimized is complex and has multiple local minima.
Minimization algorithms face the high possibility of get-
ting trapped at local optima. For these reasons, the para-
meter estimation problem is still a bottleneck and a
challenging task of computational analysis of systems
biology [1,11]. Until now, none of the parameter estima-
tion methods is effective in all cases and can overwhelm
all the other methods. Instead, various methods have
their advantages and disadvantages. Consequently, it is
worthy to develop acceptably “good enough” methods
within a given tolerance and time frame.
For practical purpose, some essential issues should be

taken into account when developing a parameter

estimation method: first, the method must be “efficient”
enough that a trial can be completed within a reason-
able computation time; second, for biological systems,
the observation data is often corrupted by high level of
noise, which complicates the objective function surface
and introduces unwanted additional local minima in the
search space [29]. Hence, the approach should be robust
subject to noise; third, it needs to be flexible enough for
adding/removing physical constraints, such as model
dynamics, the mass and energy balance constraints.
Furthermore, the representative cost function should
have less local minima so as to ease the optimization
algorithm in converging to the global minima. In this
paper, two parameter estimation methods of combining
spline theory [28] with Linear Programming (LP) and
Nonlinear Programming (NLP) are developed, respec-
tively. These methods remove the need for an ODE sol-
ver. Our analysis exhibits that the cost function surfaces
of the two proposed methods are smooth.
Moreover, the cores of our algorithms are LP and NLP

based, which are very flexible and hence additional con-
straints can be embeded/removed easily. Eight systems
biology models were used to test the proposed algorithms.
Experimental results show that the proposed methods are
both efficient and robust (see additional file 1 for details).
This paper is organized as follows: The preliminary pro-

blem formulation is given and the bottleneck of the problem
is highlighted in the next section. Then, two parameter esti-
mation methods surmounting those bottlenecks are pre-
sented. In section 3, two trials are given, a simple enzyme
kinetic model and the mammalian G1/S transition network
model, in order to illustrate the robustness and the effective-
ness of these two proposed methods (more models and trial
results are given in additional file 1 and 2). Finally, conclu-
sions and discussions are given in section 4.

Methods
Parameter estimation problem of systems biology models
Biological pathway dynamics can be modelled by the fol-
lowing continuous ODEs:
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where x � Rn is the system’s state vector (for example
the concentrations of a process), θ � Rk is the system’s
parameter vector (for instance, the reaction rates), u(t) �
Rp is system’s input, y � Rm denotes the measured data
subject to a Gaussian white noise h(t) ~ N(0, s2), and x0
is the initial state. f(·) is a set of nonlinear transition
functions describing the dynamical properties of a biolo-
gical system. Here, g(·) represents a measurement func-
tion. If all the states can be measured, the observer g(·)
becomes an identity matrix. Otherwise, g(·) usually is a
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rectangular zero-one matrix with corresponding rows
deleted (represent the immeasurable states) from the
identity matrix In.
The parameter estimation problem of nonlinear dyna-

mical systems described in (1) can be formulated as a
nonlinear programming problem (NLP) P0 with differen-
tial-algebraic constraints:
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P0 minimizes a cost function that measures the fitness of
the model with respect to a given set of experiment data
subjecting to a set of constraints, where ̂ ∈ Rk is the set
of parameters to be estimated, ||·||l denotes the l-norm
with l > 0, x̂0 is the estimated initial condition, x̂ Rk∈ is
the estimated system states ( ˆ( | ˆ)x t j  represents the esti-
mated variable at time tj with parameter ̂ and initial con-
dition x̂0 ), wij are the weighting coefficients, ŷ is the
estimated measured data. In some applications, additional
constraints are introduced to impose special structural
properties of a given system; they can be implemented in
the form of the equality and inequality constraints Ceq and
Cineq (for instance the system performance and the mass
balance constraints). Finally, θ L and θ U are simple struc-
tural constraints such as the parameter’s upper/lower
bounds (they can be part of the Cineq).
For the NLP-P0 , the direct optimization methods, such

as Newton type methods and many GO methods, require
solving the nonlinear dynamic model (1) for x̂ in order
to compute the cost function. The common method to
estimate ̂( )x t i and ˆ( )x t i is using ODE solvers, which
perform the numerical integration with ̂ fixed at each
iteration [19]. During the process of identification, the
integration has to be executed thousands, even millions
of times. That is the main reason more than 90% of the
time is consumed in the ODE solver [24] and the compu-
tation time spent on the P0 can be hours even days
[10,20]. Moreover, P0 is a nonlinear optimization pro-
blem subjecting to a set of linear and non-linear differen-
tial equation constraints. Hence, P0 is often multimodal

(non-convex) and has many local minima. In a high-
noise environment, the situation becomes more difficult.
Consequently, P0 requires further manipulation in order
to reduce the complexity so as to relieve the computation
burden and also to avoid being trapped in local minima.
Instead of using ODE solvers to estimate x(t) and
x t( ) , one can utilize spline approximation. Given L real
values τi, called knots, with τ0 ≤ τ1 ≤ · · · ≤ τL-1. Using
the Cox-de Boor recursion formula, the B-spline basis of
degree nd = 0, 1, 2, · · ·, L - 2 can be defined as follows:
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of length Li - nd - 2, be the chosen basis functions. Then, the
estimated variable x̂ can be expressed in terms of the basis
function expansion [28]
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where x̂ Ri ∈ is the estimation of the ith state

of (1), pi , m is the weighting coefficient. Let
pi i i i L n

T
j d

= [ , , , ], , ,p p p0 1 2 − − , (5) can be rewritten in
matrix form
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Similarly, the estimated ̂ ( )x ti
can be approximated by
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T

i= (7)
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T

d d j d d
( ) [ ( ), ( ), , ( )], , ,= − −0 0 2 is

the set of the derivatives of the basis functions. There are
various types of splines suitable for this application, such as
cubic spline, B-spline, uniform spline, nonuniform spline
and interpolating spline. For more detail information about
spline approximation theory, please refer to chapter (IX, XI,
and XIV) in [28]. As B-spline is simple in formation and
efficient for computation, it is adopted here. Our extensive
tests have shown that uniform B-spline basis with
N L N

i3 2
≤ ≤ produces good results. Hence, in this paper,

unless otherwise indicated, the uniform B-spline basis with
L N
i ≈

3 was used in the parameter identification process.
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Next, two techniques based on spline for parameter
estimation will be proposed: one is based on linear pro-
gramming (LP) which is very efficient and can cover
many special structured systems and the other one is
based on NLP which is flexible and can cater for general
system structures.

The LP Approach
In many bio-system models, f (x, θ) is autonomous sys-
tem and linear in θ as follows:

x t x t x t x( ) ( ( )) , ( ) .= =Φ  0 0 (8)

where F(x) � Rn ×k is a matrix and its elements are a
function of the state x. Systems with structure (8) covers
a large set of systems biology models, such as enzyme
kinetic pathway model, RKIP pathway model, I�B-NF-�B
model TNFa-Mediated NF-�B-signaling pathway model,
irreversible inhibition of HIV proteinase model, Laub and
Loomis model [2-4,30]. In addition, these types of models
are usually subject to the mass balance constraints which
can be incorporated into the LP easily (It is demonstrated
in the results section via the Enzyme kinetic model).
For noisy data, good smoothing approximation can be

achieved by minimizing the following cost function [26]
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and l ≥ 0 control the trade-off between the “roughness” of
the solution and hence can be used to relieve the overfitting
problem. If the equality Ceq represents the mass balance con-
straint and the inequality constraint Cineq represents para-
meter values’ lower/upper bounds, the B-coefficient vector p
= [p1; p2; · ·· pn ]

T can be computed by solving the following
quadratic programming sub-problem A1 :
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A x beq eq·ˆ = stands for the equality constraints

C xeq( , )^ ^
 = 0 . Aeq is a constant matrix, beq is a constant

vector. It is found empirically that m = 2 and 0 ≤ l ≤
0.05 produce relatively good results. Hence, the para-
meters m = 2, and l = {0, 0.01, 0.03} corresponding to a
noise level {0%, 5%, 10%}, respectively, were used in this
study. Then, the “smooth” estimated state x̂ can be
generated by the B-spline approximation (5).

Replace x(t) by the estimated state ˆ( )x t and integrate
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matrix. Then, P0 can be reformulated into the following
optimization problem:
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Here, wij ≥ 0 is weighting factor. Note that the L1-
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It is a Linear Programming (LP) problem with variable
{a, θ}, which is a convex problem with a wealth of fast
and efficient routines available [31,32].

Combine spline theory and NLP
To deal with systems biology models, of which the states
and parameters are separable, the LP approach is suita-
ble and efficient. In contrast, if the model does not
belong to this category, such as the mammalian G1/S
transition model and S-system model, the aforemen-
tioned approach cannot apply. Thus, a more general
approach will be introduced. Recalling (6) and (7), the
estimation of ˆ( )x t j and ̂( )x t j can be constructed by a
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set of basis functions. We can replace ˆ( )x t j and ̂( )x t j
in (i-iv) of P0 with (6) and (7). With little change, P0 can
be reformulated as
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Note that the constraint-(i) of (2) has been replaced by
constraints (i)-(iii) of P3. Then, NLP-P0-(2) with differ-
ential-algebraic constraints turns into NLP-P3-(14) with
only algebraic equation constraints. Hence, P3 does not
require ODE solvers, which eases the computation bur-
den (as shown in Examples). In contrast to the the
decomposition methods [12,15], which divide the esti-
mation of the system states (and its derivative) and the
parameter estimation into two separate steps, P3 com-
putes the estimated states (and its derivative) and para-
meter values at the same time. Note that constraint (iii)
of P3 governs the estimated state (and its derivative) so
as to ensure these estimates belong to the trajectory
ˆ( | ˆ)x t  , which is a solution of system (1). Thus, the sys-
tem model itself serves as a filter performing regulariza-
tion. Hence, the overfitting problem can be relieved (see
additional file 2 for details).
For a non-linear system, the Lagrangian of (2),

L X( , )
^ ^

 0 , is an implicit function of { , }
^ ^ x0 [31]. How-

ever, many traditional optimization algorithms require
the derivative ∂ ∂L /

^
 during the optimization process.

As L x( , )
^ ^ 0 is an implicit function of ̂ , ∂ ∂L /

^
 can-

not be obtained directly, but has to be computed via
approximation methods [16], which makes the algorithm
unreliable. For P3, the Lagrangian L p( , )

^
 now consists

of simple algebraic constraints. Thus, ∂ ∂L /
^
 and ∂L/

∂p are explicit functions of ̂ and p. In conclusion,
many of the aforementioned difficulties can be reduced.
P3 can be solved by a number of optimization
approaches; either via evolution type algorithms, such as

genetic algorithm (GA), simulated annealing (SA) and
etc, or via traditional NLP algorithms, such as sequential
quadratic programming(SQP), sequential penalty func-
tion, the trust region approach and etc [33,34].

Results
Two biological system models, a simple enzyme kinetic
model and the mammalian G1/S transition network
model, are chosen as benchmarks for evaluating the per-
formance of P2 and P3 respectively.

Enzyme kinetic model
Consider the well-known simplified enzyme kinetic
model. E is the concentration of an enzyme that com-
bines with a substrate S to form an enzyme-substrate
complex ES with a rate constant k1. The complex ES
holds two possible out comes in the next step. It can be
dissociated into E and S with a rate constant k2, or it
can further proceed to form a product P with a rate
constant k3. It is assumed that none of the products
reverts to the initial substrate. These relations can be
represented by the following set of ODEs.
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where k1, k2, k3, are the system unknown parameters.
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and P(t) respectively. Then, the above equation can be
rewritten into
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Then, the mass balance constraint becomes:
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Or in matrix form, we have

Aeq eq· bx = (18)

where Aeq =
⎡

⎣
⎢

⎤

⎦
⎥

0 1 1 0

1 0 1 1
and

b
x t x t

x t x t x teq =
+
+ +

⎡

⎣
⎢

⎤

⎦
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2 0 3 0

1 0 3 0 4 0

( ) ( )

( ) ( ) ( )
.

According to (16), we have
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=∫
x x

x

dt
t t

t i

(19)

An artificial data set with four time courses was cre-
ated. A total of 40 sampling points were assigned on
each time courses. The observation data was perturbed
by a zero mean Gaussian white noise h(t) ~ N(0, s2)
in order to simulate the observation error. The esti-
mated state x̂ was computed by solving the quadratic

programming sub-problem A1. The unknown para-
meter values were estimated using P2. The searching
region of the parameter values was [0, +∞). All the
computations were performed on a Pentium Dual Core
computer (2.13 GHz ×2) with 2 GB RAM. The algo-
rithm was implemented with Matlab-7 using the inter-
ior point algorithm. To quantify the fitness of the
estimated model, the following relative squared error
(RSE) measure J is employed:

J
N n

t x t

x t

x

j

N

i

n
i j i j

i j

=
⋅

−

==
∑∑1

01

2(
( ) ( )

( )
) ,

^

(20)

where ˆ ( )x ti j is the estimated time-course at time tj of

a state variable xi, and xi(tj) represents the “true” time-
courses without noise at time tj. Note that smaller RSE J
reflects better estimation. In order to obtain a statistical
result on the quality of the estimation, 5,000 trials were
performed. At each trial an estimated ̂ is computed
using P2. Then, the mean estimation and standard devia-
tion were deduced. The computation was very efficient
and only took a few seconds for one estimation trial.
Table 1 shows the statistical results of the estimation.

It reveals that all the system parameter values are esti-
mated successfully with a relative error of around 0.01%
in noise free condition. When the system is subjected to
a 10% observation noise level, all the mean estimated
parameter values are within a relative tolerance, better
than 2%. The RSE between the time-courses, produced
by inferred model, and the given time-series data, aver-
aged smaller than 1% even subject to 10% observation
noise level condition. For this reason, we have confi-
dence that the proposed method is robust within ±10%
noise ratio (more complicated models and trials on P2
can be found in part I of additional file 1). Figure 1
shows the responses of one trial.

The mammalian G1/S transition network model
Next, the mammalian G1/S transition network model,
which includes a set of proteins and regulatory gene net-
work, is used to test P3. In the mammalian G1/S transi-
tion network, pRB and AP-1 are the tumor suppressor
from the family of pocket proteins and the family of tran-
scription factors that mediate mitogenic signals, E2F1 is
the transcription factor targeting genes that regulate cell
cycle progression, Cyclin D/cdk4,6, cyclin E/cdk2, com-
plexes characterizing the G1- and S- phases. There are
various positive and negative feedback loops in the net-
work controlling the G1/S transition. The positive feed-
back regulation of E2F1 and a double activator-inhibitor
module can lead to bistability. The double activator-inhi-
bitor module of the antagonistic plays E2F/DP on pRB
make up the key unit of this phase transition. The graph
representation of the mammalian G1/S transition net-
work model can be found in additional file 1 and more
details can refer to Swat et al. [5]. Definition of Variables
for G1/S Transition Model is shown in Table 2. The cor-
responding ODE model is as follows

Table 1 Statistical results of parameter estimation of enzyme kinetic model

Nominal Value Mean estimation ± standard deviation

Noise level: 0% Noise level: 5% Noise level: 10%

k1 0.18 0.1796 ± 33.5081e-6 0.1794 ± 0.0008 0.1808 ± 0.0025

k2 0.20 0.1993 ± 108.4891e-6 0.1968 ± 0.0031 0.1963 ± 0.0106

k3 0.23 0.2300 ± 1.5946e-6 0.2326 ± 0.0001 0.2345 ± 0.0004

J 6.8620e-8 ± 7.7337e-8 1.0996e-4 ± 9.3270e-5 3.0328e-4 ± 3.2160e-4
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where x is the set of state variables. There are totally 9
states and 39 parameters. The nominal parameter values
are shown in Table 3.
Here, P3 was solved by the Stochastic Raking Evolu-

tion Strategy (SRES) algorithm [35]. The searching
region of the parameters was [0, 50θ ]. SRES uses sto-
chastic ranking as the constraint handling technique,
which adjusts the balance between the objective and
penalty functions automatically during the evolutionary
search. The observation data include 4 sets of time
course, which consists of 40 sample points. For trials
with noise free data, the algorithm converged in 8 ~ 9
hours after 250,000 ~ 300,000 iterations. The estimated
parameter values, as shown in Table 3 are almost identi-
cal to the nominal parameter values. However, for k23,
k25 and J15, the estimated values are far from the nom-
inal values, but the RSE measure is almost zero, which
possibly implies that the system is insensitive with the
changes of k23, k25 and J15. This phenomenon reveals
that the G1/S transition model either has some para-
meters that are insensitive to the chosen observation, or
they are non-identifiable parameters [36,37]. It is worth
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Figure 1 The dynamic profiles of a trial with observation data subject to 10% random noises. Solid lines represent the “true” time-series
data without noise, dots represent the measured time-series data with added artificial noise, and diamonds represent the estimated time-series
data produced by the model.

Table 2 Definition of Variables for G1/S Transition Model

Symbol x1 x2 x3 x4 x5 x6 x7 x8 x9

Acronym pRB E2F1 CycDi CycDa AP - 1 pRBp pRBpp CycEi CycEa
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mentioning that the this large computational effort is
the consequence of the very tight convergence criteria,
an almost equal good result can be reached within
200,000 generations in about 6.5 hours with the RSE
measure J is smaller than 1%. Figure 2(a) shows the

“true” time-series data without noise and computed
dynamic time-series data from one identified model.
When 10% random noises are added, the convergence
time increased and the relative estimation errors
between estimated parameters and nominal parameters
increased with the increase of noise. However, the time-
series produced by the estimated model is very similar
to the original data, namely the RSE J is still small. This
phenomenon may imply that there is no need to esti-
mated every parameters accurately to achieve a model
with equivalent dynamical properties with a good degree
of accuracy. As the simulation time is long, performing
thousands of simulations as the first method in order to
evaluate the mean and variance of estimated parameters
is impractical. Thus, due to the lack of space, results of
just a few selected trial are shown in Table 3 (more trial
results can be found in additional file 1).
Trials were performed using Matlab-7. The main rea-

son to use Matlab is that it is a convenient environment
to visualize all the information arising from the optimi-
zation runs of the solver, evaluate new algorithms and
modify existing algorithms. In contrast to the conveni-
ence, it is worth mentioning that Matlab programs
usually are one order of magnitude (10 times or more)
slower than equivalent compiled Fortan or C codes [19].
This is the major drawbacks of carrying programs out
with Matlab. However, even in this situation, the perfor-
mance of the proposed methods is acceptable.
For fair comparison, we also used the SRES algorithm

to solve the same parameter estimation problem in the
same searching region, but using NLP-P0 with differential
algebraic constraints as cost function. In this condition,
after running 1 day, the algorithm failed to produce a set
of parameters that can produce reasonable simulation
result. We further reduced the searching region to [0, 3θ
] and used noise free data, but the estimation result was
still not good and the RSE J is larger than 10.
Here, we use the G1/S model to show the differences

of the cost function surfaces between NLP-P0 and NLP-
P3: in this case, the cost function of P0 is a highly irre-
gular and complicated manifold with multiple local
minima; the augmented cost function adopted in pro-
blem P3 is a much “smoother” function and hence it is
easier for the NLP algorithm to converge to the solu-
tion. In order to simplify the analysis for exposition pur-
pose, we only vary parameters k1 and k2 over the range
k1 � [0; 2 ] and k2 � [0, 3.2 ] and fix all other parameters
at their nominal values. Figure 3(a) displays the cost
function surface of P0 , while Figure 3(b) exhibits the
same data as Figure 3(a) on the expanded scale and Fig-
ure 3(c) is the corresponding contour plots. Figure 3(a)
shows that the cost function surface of is a ridge, which
drops suddenly from 109 to 0. However, Figure 3(b)
reveals the cost function surface of P0 are actually

Table 3 Results of parameter estimation of the
mammalian G1/S transition network model

Parameters Nominal
value

Estimated parameters

Noise
level 0%

Noise
level:
2.5%

Noise
level: 5%

Noise
level:
10%

k1 1 0.9957 1.0150 1.1105 1.6037

k2 1.6 1.5989 1.4138 1.5187 1.0315

k3 0.05 0.0500 0.0528 0.0392 0.0381

k16 0.4 0.4002 0.4440 0.3959 0.9331

k34 0.04 0.0400 0.0414 0.0337 0.0215

k43 0.01 0.0100 0.0142 0.0090 1.45e-10

k61 0.3 0.2985 0.3432 0.2847 0.8185

k67 0.7 0.6999 0.4535 1.3974 1.3108

k76 0.1 0.0999 0.0457 0.2446 0.1845

k23 0.3 0.1219 0.4134 0.6132 0.5579

k25 0.9 0.1785 0.7063 0.8291 0.7874

k28 0.06 0.0601 0.0669 0.0222 0.0198

k39 0.07 0.0700 0.0549 0.0520 0.0334

k96 0.01 0.0100 0.0441 0.0002 4.55e-14

a 0.04 0.0400 0.1257 0.1260 0.1265

J11 0.5 0.4992 0.5612 0.4252 0.6523

J12 5 5.0025 4.8940 4.6892 5.4021

J15 0.001 0.0051 0.0011 0.0010 0.0011

J18 0.6 0.5990 0.7253 0.8014 1.1290

J61 5 5.2581 4.1474 6.4585 7.2003

J62 8 8.0088 29.734 39.403 41.408

J65 6 5.9222 8.7804 9.3474 7.8076

J68 7 6.9916 31.979 25.125 36.795

J13 0.002 0.0050 0.0013 0.0016 2.61e-14

J63 2 1.9740 1.4726 0.4203 19.871

Km1 0.5 0.4905 0.5267 0.5601 0.0410

Km2 4 3.9985 4.0482 4.1061 3.8495

Km4 0.3 0.2999 0.2838 0.2735 0.2338

Km9 0.005 0.0054 3.69e-5 2.03e-5 3.88e-6

Kp 0.05 0.0499 0.0452 0.0496 0.0311

j1 0.005 0.0044 0.0057 0.0041 0.0073

j2 0.1 0.0999 0.0920 0.0983 0.0693

j3 0.023 0.0230 0.0261 0.0164 0.0152

j4 0.03 0.0300 0.0279 0.0253 0.0218

j5 0.01 0.0100 0.0098 0.0101 0.0101

j6 0.06 0.0606 0.0627 0.0608 0.1518

j7 0.04 0.0401 0.0436 0.0404 0.0788

j8 0.06 0.0600 0.1546 0.0024 0.0260

j9 0.05 0.0500 0.0025 0.0439 0.0276

J 7.5399e-
6e

0.0005 0.0009 0.0025
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banana-shaped valley around the nominal value of the
fixed parameters, this unfavorable profile can slow down
the convergence rate of the algorithm. Furthermore,
there are many local minima in the banana-shaped val-
ley. Some algorithms, such as simulated annealing,
genetic algorithm, have been proposed to overcome
these problem. However, these algorithms are all

computationally demanding. In conclusion, these cost
function features make the problem P0 a severe chal-
lenge to every optimization algorithm.
With the same condition, Figure 4(a) displays the cost

function surface of P3, while Figure 4(b) shows the cor-
responding contour line. Compared with the cost func-
tion surface of P0, the cost function surface of P3 is
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Figure 2 The dynamic profiles of two trials. Solid lines represent the “true” time-series data without noise, dots represent the measured time-
series data with added artificial noise, and diamonds represent the estimated time-series data produced by the model: (a) noise free condition
(b) 10% random noise condition.

Figure 3 Cost function surface and contours. (Color online) (a) Cost function surface of the P0 as parameters k1 and k2 are varied; (b) displays
the same data as (a) on the expanded scale; (c) corresponding contours near the nominal parameter value.
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bowl-shaped, which is smoother. Similar results has also
been observed when other combination of parameters
served as variables. Obviously, if all 39 parameters vary
at the same time, the surface of the cost function will be
more “uneven” and more complicated. However, in this
case, from the previous observations, the cost function
surface of P3 is smoother than the cost function surface
of P0.
Furthermore, P3 only involves algebraic equations as

objective function and constraints. These properties
make the NLP-P3 easier to solve.

Discussion and Conclusion
In this paper, two parameter estimation methods based
on spline theory are proposed. One aims at a narrower
class of systems which is linear in parameters; however,
it can cover many commonly found biological systems.
The benefit is that the estimation problem can be trans-
formed in an LP sub-algorithm which are fast and
robust. Additional linear constraints can be embedded
relative easily. For general systems, the problem is
solved by an NLP with algebraic constraints, which is
more computationally demanding.
A simple enzyme kinetic model and the mammalian

G1/S transition network model were used as bench-
marks to evaluate the performance of the two proposed
methods. We illustrate the usefulness with more exam-
ples in additional files 1 but these do not remotely cover
all the conditions.

During the simulation of the mammalian G1/S transi-
tion network model, we found that the estimated para-
meter set FA ≡ {k1, k2, kp, J11, J12, Km1, Km2, j1, j2}
were well within the respective nominal values. While
the set FB ≡ {J61, J62, J63, J65, J68} were far from their
nominal values. However, the time-series produced by
the estimated model were very similar to the original
data. This phenomena reveals that some parameter
values are insensitive in the searching region. Interest-
ingly, we find that the “sensitive” or “easily identified”
parameters set FA are also the parameters of the dou-
ble-activator-inhibitor module of the antagonistic players
E2F/DP and pRB, which makes up the core unit of the
G1/S transition model [5]. This phenomenon may imply
that the parameter values of the core module are sensi-
tive and easy to identify. In contrast, the parameters set
FB seems to be insensitive, which may reflect that pRGp

(x6) is not a key element of the total system. However,
to identify which parameter values or variables are
important, a sensitivity analysis is needed [38], which is
another important topic in systems biology and deserves
a more detailed study. This sensitivity analysis is a pre-
process for isolating those states and parameters which
are sensitive in order to reduce the dimension of the
system model and to improve the numerical stability for
the core estimation problem.
For most biological systems, the ODE models are

often high-dimensional and nonlinear. The problem of
system parameter estimation is computationally

Figure 4 Cost function surface and contours. (Color online) Cost function surface of the P3 as parameters k1 and k2 are varied; (b)
corresponding contours of the cost function.
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expensive and can easily be trapped in local minima. We
find that under noisy conditions, it is almost impossible
to accurately estimate every parameter of the sloppy
biological system model. However, in practice, a model
with equivalent dynamical properties with a good degree
of accuracy can be constructed based on dominant sen-
sitive parameters and system states. The following are
some of practical observations:

1. High quality experiment data is essential for iden-
tifying accurate biology systems. When the experi-
ment data is corrupted with high level noise, it
needs more experimental data. If an insufficient
amount of time-series data is given as observed pro-
files, the high degree-freedom of systems biology
models ensures that many candidate solutions will
be found.
2. Perform a sensitivity analysis and identifiability
analysis before the identification phase [36-38].
3. For systems models with insensitive or non-identi-
fiable parameters, the search may lead to a solution
where some parameters can have large deviation, but
still produce satisfactory system responses. This pro-
blem can be partly relieved by introducing auxiliary
information (additional constraints such as shrinking
the searching region) of the model into the algorithm.
However, it remains difficult to be solved completely
by improving parameter estimation strategy. It indi-
cates that researchers should focus on predictions
rather than on accurately estimating every parameter.

Although the proposed algorithms are fast and robust,
there is certainly room for improvement: for method 1,
it is not general enough to catch every case; for method
2, the price for the simplicity and generality is at the
expansion of the optimization variable dimension.
Under high noise condition, method 2 is still not robust
enough. At the moment, the testing is based on Matlab
which is much slower than native codes produced by C,
Fortran, etc, however the conversion is straight forward.
Currently, many high-speed computation engines are
available that make use of parallelism, for instance
multi-cluster engines, array-processing engines etc.
Hence, one possible way is developed algorithm on
these high-speed computation engines environment.
Another possible way is developing hybrid algorithms to
incorporate elements from evolution algorithms such as
GA, SA and PSO. In this paper, we have considered the
parameter estimation problem with known structure.
However, it is easy to expand our method to structure
identification by introducing an additional penalty term
to the objective function [39].

Additional material

Additional file 1: In this additional file, we tested the proposed
methods on seven systems biology models were used to test: TNFa
-Mediated NF-�B-Signaling Pathway Model, RKIP Regulated ERK
Pathway model and the model of irreversible inhibition of HIV
proteinase; Yeast fermentation pathway Model, large-scale target
genetic network model, a three step pathway model and the
mammalian G1/S transition network model.

Additional file 2: In this additional file, we use E2F/DP dimmer
model to illustrate the differences between the three different type
methods mentioned in the paper: (i) the direct optimization
method; (ii) decomposition methods; (iii) methods Combine spline
theory and NLP.
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