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The human metabolic reconstruction Recon 1
directs hypotheses of novel human metabolic
functions
Ottar Rolfsson1, Bernhard Ø Palsson1 and Ines Thiele1,2*

Abstract

Background: Metabolic network reconstructions formalize our knowledge of metabolism. Gaps in these networks
pinpoint regions of metabolism where biological components and functions are “missing.” At the same time, a
major challenge in the post genomic era involves characterisation of missing biological components to complete
genome annotation.

Results: We used the human metabolic network reconstruction RECON 1 and established constraint-based
modelling tools to uncover novel functions associated with human metabolism. Flux variability analysis identified
175 gaps in RECON 1 in the form of blocked reactions. These gaps were unevenly distributed within metabolic
pathways but primarily found in the cytosol and often caused by compounds whose metabolic fate, rather than
production, is unknown. Using a published algorithm, we computed gap-filling solutions comprised of non-
organism specific metabolic reactions capable of bridging the identified gaps. These candidate solutions were
found to be dependent upon the reaction environment of the blocked reaction. Importantly, we showed that
automatically generated solutions could produce biologically realistic hypotheses of novel human metabolic
reactions such as of the fate of iduronic acid following glycan degradation and of N-acetylglutamate in amino acid
metabolism.

Conclusions: The results demonstrate how metabolic models can be utilised to direct hypotheses of novel
metabolic functions in human metabolism; a process that we find is heavily reliant upon manual curation and
biochemical insight. The effectiveness of a systems approach for novel biochemical pathway discovery in mammals
is demonstrated and steps required to tailor future gap filling algorithms to mammalian metabolic networks are
proposed.

Background
An in silico model of a genome-scale metabolic network
reconstruction is based upon a biochemically, genetically
and genomically (BiGG) structured knowledge base
[1,2]. It is subject to research that, in many cases, entails
predicting an organism’s phenotypic response to gene
deletions and/or environmental perturbations in silico.
These properties have resulted in widespread applica-
tions of metabolic models in microbial bioengineering,
contextualisation of high-throughput data, and biochem-
ical pathway discovery [2,3]. While the number of

microbial genome-scale metabolic networks has
increased exponentially over the past 10 years [4], fewer
have been reconstructed for higher eukaryotes as their
inherent complexity results in larger and more complex
models which are harder to experimentally validate
[5,6]. To date, only mouse [7-9], bovine [10], and
human [11-13] genome-scale metabolic networks have
been reconstructed. These latter ones have successfully
been applied to systems driven eukaryotic metabolic
research. For example, the human genome-scale meta-
bolic network RECON 1 has been used to reveal tran-
scriptional regulatory signatures of type 2 diabetes [14],
to create tissue-specific models [15], to predict drug-off
target effects [16], and to simulate cell specific metabolic
changes upon pathogen infection [17]. Their potential to
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discover novel metabolic functions has however not
been demonstrated.
RECON 1 accounts for 1496 ORFs, 2004 proteins,

2766 metabolites, and 3311 metabolic reactions. It
represents one of the most comprehensive biological
network reconstructions published to date [11]. RECON
1 is bipartite in nature. First, it is a BiGG knowledge
base containing information on the components of
human metabolism, mined by extensive literature review
[4] and accessible online at http://bigg.ucsd.edu[18]. Sec-
ond, it is a mathematical model in which reactions and
their metabolites are presented in matrix format using
metabolite stoichiometries. RECON 1 is therefore also a
stoichiometric matrix amenable to constraint-based ana-
lysis using linear programming as the reaction stoichio-
metries impose constraints on the flow of metabolites
through the network. As an additional constraint, a
quasi steady state is assumed, meaning that the total
amount of any metabolite being produced must equal
the total amount of that metabolite being consumed.
Using constraint-based analysis, the flow of metabolites
through the network reactions can be calculated. In

addition, and perhaps most importantly, reactions can
be identified which cannot carry flux due to metabolites
being either only produced or consumed in the network
[4,19]. These latter reactions and metabolites represent
gaps in the metabolic network and are referred to as
blocked reactions and dead-end metabolites, respec-
tively. Dead-end metabolites can result in multiple
blocked reactions, referred to as blocked reaction cas-
cades. Consequently they have been further charac-
terised as root-no production or root-no consumption
metabolites to distinguish them from other blocked
metabolites within the blocked cascade [20] (Figure 1a).
In this manner RECON 1 can be utilised to pinpoint
parts of metabolic pathways where knowledge is incom-
plete. A recent investigation highlighted that novel bio-
chemical reactions can still be uncovered in the central
metabolism of E. coli by employing a systems approach
[21]. Considering that 30-50% of all known enzyme
activities are not associated with genes [22-24] and over
50% of all genes in higher organisms are not associated
with protein function [25], it appears that many human
biological processes have yet to be discovered. Enzymes

Figure 1 Automated gap filling of RECON 1 using the SMILEY algorithm. A) A simplified metabolic network. Reactions that are able to carry
flux are shown in blue. Reactions unable to carry flux (red) are blocked and are caused by a root no-consumption metabolite (a in 1) and a root
no-production metabolite (b in 2). Dead end metabolites can cause multiple blocked reactions refferred to as a cascade of blocked reactions.
Reactions 2 and 3 occur in a blocked cascade caused by b. Note that c is a blocked intermediate but not a root-no production metabolite. B)
The SMILEY algorithm identified reactions in the metabolic reaction matrix S (e.g. RECON 1) that were unable to carry flux under steady state
conditions and then computed resolving reactions found in either U or X that needed to be added to S in order to restore flux through the
blocked reaction. C) SMILEY solutions were categorised based on the resolving reactions required to restore flux. A category I reversal solution, if
added to the network shown in A, only restores flux through reaction 1. The category II solution, addition of a novel metabolic reaction, restores
flux through reactions 1, 2 and 3. The category III transport solution restores flux through reactions 2 and 3 only. SMILEY can suggest multiple
solutions for a blocked reaction.
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with no known genes (e.g. orphan enzymes) and genes
of unknown function underlie metabolic network gaps
that manifest themselves as blocked reactions and dead-
end metabolites in RECON 1. As the function and/or
substrate specificity of many known human enzymes has
not been fully elucidated, these similarly serve as candi-
dates for filling network gaps.
Multiple computational algorithms have been devised

to address gaps in metabolic network models in an
automated manner [26]. These methods utilise meta-
bolic network analysis, such as flux variability analysis
(FVA) [27], in order to identify network gaps, alongside
comparative genomics/metabolomics to suggest candi-
date metabolic reactions capable of restoring flux
through the blocked reaction and/or dead-end metabo-
lite. Experimental data, such as organism growth profiles
[28,29] or metabolic flux data [30] can be integrated
with metabolic models in order to highlight model gaps,
although this is not always a requirement [26]. One
such algorithm is the SMILEY algorithm, which has
been successfully used to uncover novel metabolic func-
tions required to explain discrepancies between the
observed and model predicted growth phenotypes of E.
coli on various substrates [28].
Because of the difference between humans and micro-

organisms in terms of the number of related organisms
for which biological, biochemical, and genetic informa-
tion exists, it was not known whether an automated
approach to gap-filling of RECON 1 could yield biologi-
cally plausible hypotheses. Here we investigated the
potential of RECON 1 for discovery of novel reactions
involved in human metabolism. We used FVA to iden-
tify dead-end metabolites and blocked reactions in
RECON 1 and SMILEY to propose reactions capable of
restoring flux through the identified dead-end metabo-
lites. We then characterised the metabolic pathway dis-
tribution of identified gaps and their solution types in
order to get an idea of how gaps are distributed within
RECON 1 and in what manner these gaps are resolved
by SMILEY. Finally we validated the automatically gen-
erated metabolic reaction hypotheses by manual litera-
ture review in order to assess the biological relevance of
the proposed solutions with the goal of identifying suita-
ble experimental targets.

Results
In this study we first identified blocked reactions and
dead-end metabolites occurring in RECON 1 using FVA
[27]. We then employed SMILEY [28] to compute reac-
tions that could be added to the RECON 1 (S) from
universal reaction databases (U, X) to enable flux
through a blocked reaction (Figure 1b). The matrix U
was compiled from an extensive list of known metabolic
reactions obtained from the KEGG database [31] while

the matrix X contained transport reactions in and out
of the system for every metabolite contained within S
and U. SMILEY therefore proposed what reactions, irre-
spective of organism, needed to be added to RECON 1
in order to fill a network gap. If none were identified,
SMILEY suggested transport of the dead-end metabolite
into or out of the cell. Up to twenty solutions were sug-
gested for each knowledge gap and each solution could
be composed of multiple resolving reactions. Note that
the number of solutions returned by SMILEY is user
defined. Inspired by Satish Kumar et al. [20] we split the
computed solutions into three categories based upon
whether the complete solution involved a reversal of the
directionality of the blocked reaction, addition of novel
reaction(s), or addition of a transport reaction, defined
as category I-III type solutions respectively (Figure 1c).
The next four sections deal with the characterisation
and metabolic pathway distribution of the gaps that we
addressed in RECON 1 while the remainder of the
results chapter reports analysis of SMILEY solutions and
specific case studies.

Gap analysis basis
We identified 175 blocked reactions in 80 reaction cas-
cades that were caused by 109 dead-end metabolites
found in RECON 1. These numbers corresponds to 5%
and 4% of the total number of reactions and metabolites
accounted for in RECON 1, respectively. We observed
that over half of the blocked reactions were caused by
root no-consumption metabolites while roughly a quar-
ter were due to root no-production metabolites with the
remainder caused by both types of dead-end metabolites
(Figure 2a). Reactions that have both types of dead-end
metabolites represent metabolic reactions which are
entirely uncoupled from the metabolic network, and
whose effect on global metabolism can therefore not be
described accurately by the metabolic model.

Sub-cellular distribution of gaps
The sub-cellular distribution of the dead-end metabo-
lites and blocked reactions showed that the majority
were found in the cytosol with the remainder distributed
within the various cellular compartments, most notably
in the lysosome, mitochondria, and peroxisome (Figure
2b). This observation agrees with the distribution of
dead-end metabolites found in the eukaryotic metabolic
reconstruction iND750 for Saccharomyces cerevisiae
[20,32]. Because some of the dead-end metabolites were
responsible for multiple blocked reactions, which them-
selves could be associated with both types of dead-end
metabolite, there was not a direct relationship between
the number of dead-end metabolites and the number of
blocked reactions within cellular compartments. In addi-
tion, blocked reactions can take part in metabolic
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subsystems/reaction cascades that span more than one
cellular compartment. For example, in the mitochondria
we found 24 blocked reactions participating in six dis-
tinct reaction cascades and ten dead-end metabolites.
However, only seven of the dead-ends were responsible
for the 24 blocked reactions while the remaining three
metabolites caused blocked reactions in the cytosol. Gap
distributions can be better understood by looking at the
distribution of blocked reaction cascades caused by the
dead-end metabolites. These data suggest that the num-
ber of knowledge gaps in cellular compartments other
than the cytosol is around two to five knowledge gaps
per compartment (Figure 2).

Metabolic pathway distribution of gaps
The metabolic pathway distribution of the blocked reac-
tions is shown in Figure 2C and reflects their sub-cellu-
lar distribution. All of the metabolic pathways shown
had blocked reactions in the cytosol. Most of the
blocked reactions were observed in amino acid metabo-
lism with the remainder distributed within the metabolic
pathways shown. Of those involved in amino acid meta-
bolism, nearly half were part of multiple reaction cas-
cades in tryptophan metabolism (Additional file 1).

These reactions were blocked due to root no-consump-
tion heterocyclic derivatives of tryptophan, such as
anthranilate, kynurenic acid, 5-methoxy-indole acetate,
and more, suggesting missing information on the meta-
bolic fate of these compounds. Apart from knowledge
gaps in tryptophan metabolism, blocked reactions were
also identified in metabolic subsystems associated with
eleven of the twenty most common amino acids. These
gaps were due to single blocked reactions or reaction
cascades implying that current information concerning
the metabolism of these amino acids is fairly complete.
Multiple blocked reactions were also observed in gly-

can biosynthesis, the metabolism of cofactors/vitamins
and lipid metabolism. As opposed to those observed in
amino acid metabolism, these blocked reactions were
involved in relatively few reaction cascades. Many of the
blocked reactions in glycan metabolism, for example,
were part of two reaction cascades involved in the
degradation of heparan sulfate and dermatan sulfate in
the lysosome, respectively. The root no-consumption
metabolite glucose-1, 3-mannose and derivatives thereof
were also the cause of several blocked reactions in gly-
can biosynthesis. Many blocked reactions involved in
the metabolism of cofactors/vitamins took place in the

Figure 2 Characterisation of blocked reactions in RECON 1. A) Classification of blocked reactions in RECON 1 depending on their causative
dead-end metabolite. B) The cellular distribution of dead-end metabolites, blocked reactions, and blocked reaction cascades within cellular
compartments accounted for in RECON 1. C) The metabolic pathway distribution of the 175 blocked reactions investigated. D) The distribution
of BiGG database confidence scores for the blocked reactions investigated. 3 = biochemical and or genetic evidence, 2 = physiological evidence
or evidence from a nonhuman mammalian cell, 1 = modelling evidence, 0 = unevaluated.
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mitochondria due to just two root no-consumption
metabolites causing gaps in the biosynthesis of ubiqui-
none and vitamin D. Similarly, multiple reactions in
lipid metabolism were blocked in glycerophospholipid
biosynthesis in the cytosol due to the root no-consump-
tion metabolite plasmalogen in the cytosol. In total, 32%
of the knowledge gaps investigated were associated with
two or more reactions. Finding a solution to the dead-
end metabolites in these reaction cascades could there-
fore result in the connection of multiple blocked reac-
tions back into the metabolic network. The majority of
blocked reactions were not, however, part of reaction
cascades (Additional file 2).

Knowledge status of reactions causing gaps
We investigated whether the gaps addressed in this
study were correlated with a lack of information avail-
able for each blocked reaction by assessing their confi-
dence scores. Each reaction in RECON 1 has an
assigned confidence score that allows the experimental
evidence underlying the reaction to be quickly assessed
[11]. Figure 2D shows the distribution of confidence
scores of the reactions investigated. Roughly two thirds
of the blocked reactions were supported by biochemical
or physiological evidence, which is similar to what is
observed for all reactions contained in RECON 1 [11].
This distribution implies that the addressed knowledge
gaps are not simply due to ill-defined metabolic reac-
tions. Rather, the fate of the participating metabolites
within the metabolic network or how they contribute to
human metabolism is not known. In order to suggest
plausible hypotheses of how this might take place, we
investigated whether the blocked reactions could be cir-
cumvented or connected back into the RECON 1 using
reactions found in the KEGG database [31] in an auto-
mated manner by running the SMILEY algorithm [28].

Solutions to a blocked reaction are dependent upon the
robustness of its metabolic network
The SMILEY algorithm suggested up to twenty solutions
for each blocked reaction. Each solution fell into one of
the three category types outlined in Figure 1. We first
investigated how trivial it was to bypass the blocked reac-
tions using reactions from the KEGG database (U
matrix). Nearly half of the blocked reactions had more
than one solution indicating that flux could be restored
through these reactions in multiple ways (Figure 3a).
Underlying this is that the more robust the non-organism
specific reaction environment of the blocked reaction is,
the more likely that the blocked reaction will have multi-
ple solutions as there will be more known reactions cap-
able of acting upon the blocked reaction components.
For example, a blocked reaction caused by a common,
well-characterized metabolite that is a component of

multiple metabolic reactions will have multiple SMILEY
solutions while the opposite is true for blocked reactions
caused by less well characterized metabolites. The num-
ber of solutions obtained for a blocked reaction was inde-
pendent of the metabolic pathway (Additional file 3).
Blocked reactions in RECON 1 are therefore not caused
only by dead-end metabolites whose global metabolic
role is unknown, rather metabolites and reactions can be
well characterized metabolic components of other organ-
isms while there fate is not known in humans. The result
complements our earlier observation that knowledge
gaps are found in all metabolic pathways, independent of
the confidence scores of the reactions making up the par-
ticular pathway.

SMILEY solutions involve few resolving reactions
Inspection of the SMILEY output made it clear that
assessing each of the 1335 SMILEY solutions repre-
sented a time consuming task. Our focus was to assess
whether SMILEY could generate biologically relevant

Figure 3 Characterisation of gap filling solutions proposed by
SMILEY. A) The number of SMILEY solutions proposed for each
blocked reaction was not even, suggesting that it is easier to
incorporate some dead-end metabolites into RECON 1 over others.
Approximately 49% of the blocked reactions had a single proposed
solution while 29% could be circumvented in a highly dynamic
manner with twenty proposed solutions. B) 85% of the blocked
reactions had SMILEY solutions composed of less than three
resolving reactions.
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hypotheses of missing reactions in human metabolism
rather than produce a detailed list of missing enzyme
functionalities. We therefore decided to focus on the
SMILEY solutions containing the least number of resol-
ving reactions for each of the 175 blocked reactions
hereafter referred to as S1 solutions.
Analysis of S1 solutions showed that flux could be

restored through all the blocked metabolites by incor-
poration of relatively few resolving reactions. Interest-
ingly, 85% of the blocked reactions were circumvented
with just one or two resolving reactions (Figure 3b). We
observed that this was due to the category of the SMI-
LEY solutions (Figure 4). 74% of the blocked reactions
had a category I or III solution, which in the majority of
cases involved at most two resolving reactions. The
remaining blocked reactions had category II solutions
where novel reaction(s) had to be added in order to
incorporate the blocked metabolite.
Mindful that we might overlook plausible solutions for

blocked reactions having multiple SMILEY solutions by
focusing entirely on S1 solutions, we investigated the
categories of the alternative solutions. We found that,
when available, alternative solutions were either of the
same solution category as the S1 solution or were cate-
gory III transport solutions (Additional file 4). This
result indicated that the S1 solutions directly reflect the
solution categories available for each blocked reaction
although the resolving reactions comprising the solu-
tions were different.

Blocked reactions have different S1 solutions depending
on metabolic origin
Roughly one third of all the blocked reactions were
resolved with category I solutions (Figure 4). Nearly half
of these applied to blocked reactions involved in amino
acid metabolism (Figure 4B), many of which were part
of tryptophan and lysine metabolism in the cytosol.
With respect to their metabolic origin, up to 70% of the
total number of blocked reactions originating from a
particular metabolic pathway had category I solutions
(Additional file 5). Notably, none of the blocked reac-
tions involved in glycan biosynthesis and metabolism
had category I solutions. Instead, these reactions were
primarily resolved by category III transport solutions.
These applied to 90% of the blocked reactions involved
in glycan biosynthesis and metabolism, more specifically
to those in chondroitin sulphate and heparan sulphate
degradation in the lysosome and N-glycan biosynthesis
in the golgi apparatus. Apart from glycan metabolism,
category III solutions applied to multiple blocked reac-
tions involved in the metabolism of cofactors and vita-
mins and in lipid metabolism. Few blocked reactions
within amino acid metabolism and the biosynthesis of
secondary metabolites had category III solutions.

Category II solutions were the least common solution.
With respect to their metabolic origin, 10-50% of the
blocked reactions had this solution type (Additional file
5). Many of these applied to blocked reactions taking
part in various metabolic subsystems of amino acid
metabolism such as tyrosine metabolism and urea cycle
metabolism. Multiple blocked reactions in carbohydrate
metabolism and fatty acid metabolism also had category
II solutions.

Validation of SMILEY solutions
Category I and III solutions were only generated when
no other solution was possible and therefore the blocked
reactions that had these solutions contain metabolites
whose global metabolic role has not been defined. This
is however not a direct indicator of whether or not
these solutions are biologically plausible. Category I
reversal solutions to blocked reactions were validated by
i) quantitative assignment of blocked reaction direction-
alities based on estimates of their Gibbs free energy
changes [33] and ii) a query of experimentally reported
reaction directionalities from the Brenda database [34].
Approximately 50% of the blocked reactions were calcu-
lated to be reversible while 23% were reported reversible
in the Brenda database (Figure 4C and Additional file
6). Only four reactions were reported reversible by both
methods which is due to the high number of the
blocked reactions having unspecified reaction direction-
alities in the Brenda database (67%) and the uncertain-
ties associated with reaction Gibbs free energy
estimation due to unknown in vivo concentrations of
the partaking metabolites [35]. These validation methods
do not exclude reactions as reversible or not. Ultimately
detailed inspection of each gap solution is required.
Figure 5 shows the cytosolic reaction ADPMAN, which
is catalysed by the nudix hydrolase NUDT5 (EC
3.6.1.13) and blocked in RECON 1 due to the root no-
production metabolite ADP-mannose (adpman) [36-38].
The product, mannose-1-phosphate (man1p), is con-
verted to GDP-mannose (gdpman) from either glucose
or mannose and is ultimately utilised in N-glycan bio-
synthesis. A category I solution to ADPMAN was pro-
posed by SMILEY. We found that, although the reversal
of NUDT5 activity has not been reported, the conver-
sion of man1p to adpman has been described in rats
and cows (EC 2.7.7.28) [39]. Furthermore, the reaction
MAN1PT2, catalysed by mannose-1-phosphate guanylyl-
transferase (EC 2.7.7.13), is known to accept both ATP
and ITP in addition to GTP although with reduced
activity [40]. This implies that formation of adpman
from man1p, which is in effect a reversal of EC 3.6.1.13
activity, is plausible. The results suggest that reversing
the directionality of blocked reactions to restore net-
work flux can represent valid biological hypotheses
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Figure 4 Blocked reactions have different SMILEY solutions depending upon their metabolic origin and were validated with
experimental evidence. Blocked reactions were resolved by connecting their corresponding blocked metabolite back into RECON 1. A shows
the number of blocked reactions resolved with each solution category and, directly below in B, the metabolic pathway distribution of the
blocked reactions having that particular SMILEY solution. Some blocked reactions, such as those involved in amino acid metabolism, are easily
bypassed using functionalities already described in the KEGG database. Others, such as those involved in glycan biosynthesis, can only be solved
by transporting their causative dead-end metabolite out of the system. C) Proposed solutions were validated by comparing category I solutions
to experimentally reported enzyme directionalities. Similarly, we investigated whether category II solutions were gene associated in humans and
whether the dead-end metabolites, to which the category III solutions applied, have been detected in human biofluids.
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although the biological fate of the dead end metabolite
remains unknown.
In order to validate the category III solutions, we inves-
tigated whether the metabolites to which the transport
solutions applied have been detected in biofluids by
querying the Human Metabolome Database [41]. The 67
blocked reactions that had category III S1 transport
solutions were part of 24 reaction cascades. We found
that 36 of the blocked reactions, part of eight reaction
cascades, had blocked metabolites that have been
detected in biofluids (Figure 4C). For example, we iden-
tified a cascade of five blocked reactions involved in der-
matan sulfate degradation in the lysosome. Dermatan
sulfate degradation is modelled in RECON 1 by the
degradation of a glycoseaminoglycan chain of a defined
length (Figure 6). Following initial cleavage of the poly-
saccharide from a serine residue at the reducing end of
the core tetrasaccharide linkage by dermatan proteogly-
can preotease, degradation occurs through a series of
enzymatic steps involving desulfonation by sulfatases
and subsequent hydrolysis of the glycosidic bonds con-
necting the monosacharide building blocks, iduronic
acid and N-galactosamine, by exoglycosidases [42,43].
We found that dermatan sulfate degradation was
blocked due to iduronic acid buildup in the cytosol fol-
lowing its cleavage from the dermatan polysaccharide in
the reaction IDOAASE4ly (EC 3.2.1.76) and transport
out of the lysosome in reaction IDOURtly [44-46]. The
SMILEY solution for the blocked reaction IDOAASE4ly
proposed transport of iduronic acid out of the cytosol in
order to restore flux through the dermatan sulfate sub-
system. These results suggest a transport function for

iduronic acid out of the cytosol, which appears plausible
as iduronic acid has been detected in urine (M. Fuller,
personal communication; [43,47]. Iduronic acid was also
identified as a root no-consumption metabolite in
heparan sulfate degradation causing twelve blocked
reactions. The transport solution for iduronic acid
therefore resolves 18 blocked reactions occurring in gly-
can degradation. We found no reports of cell surface
iduronic acid transporters in the literature. Detailed sub-
strate specificity studies for human hexose transporters,
however, have not been performed [48].
As opposed to category I and III SMILEY solutions,

category II solutions involve adding resolving reactions
to RECON 1 to restore flux through the dead-end meta-
bolites. Of the 45 blocked reactions with category II
solutions we found that seven had solutions composed
of resolving reactions associated with human genes. Of
those, five were part of peroxisomal beta-oxidation of
long chain unsaturated fatty acids (Figure 7). These
blocked reactions were all catalysed by 3-ketoacyl coen-
zyme A thiolase (EC 2.3.1.16), an enzyme responsible
for the last step of the four recurring steps of fatty acid
b-oxidation [49]. The SMILEY solutions successfully
coupled the root no-production metabolites of these
reactions, involving 3-oxo fatty acid coenzyme A deriva-
tives, to their corresponding fatty acid in three resolving
reactions. For example, the blocked reaction ACACT4p
that forms octanoyl coenzyme A (ocCoA) from the root
no-production metabolite 3-oxodecanoyl-CoA (3odCoA)
was coupled to decanoyl-CoA (dcaCoA) through its
stepwise oxidation by trans-2-enoyl-CoA reductase (EC
1.3.1.38), enoyl-CoA hydratase (EC 4.2.1.17), and 3-

Figure 5 Category I solution for the blocked reaction ADPMAN. ADP-mannose (boxed in red) is a root no-production metabolite within
RECON 1. The SMILEY solution (green arrow) involved reversal of the blocked reaction ADPMAN (red arrow). This appears plausible as an
enzyme catalysing such a reaction (EC 3.7.7.28) has been described in various mammals [39] along with the finding that mannose-1-phosphate
guanylyltransferase (EC 2.7.7.13) is known to be reversible and accept sugar donors other than GTP [40].
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hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). Peroxiso-
mal b-oxidation of unsaturated long chain fatty acids
has not been completely elucidated in humans. How-
ever, it has been shown to generate ocCoA which is
then transported to the mitochondria where it can be
further oxidised and coupled to ATP production [50] as
suggested by SMILEY. Although these results do not

add to current knowledge of metabolism as these gaps
result from incomplete modelling in RECON 1 of b-oxi-
dation in the peroxisome, they suggest that SMILEY is
capable of generating biologically realistic results to gaps
in RECON 1.
The majority of category II solutions were composed

of resolving reactions not associated with any known

Figure 6 Category III solution for five blocked reactions occurring in dermatan sulfate degradation. Iduronic acid (idour, boxed in red)
was identified as a root no-consumption metabolite in dermatan sulfate degradation in the lysosome. Flux was restored through the blocked
reactions (red arrows) by addition of an extracellular transport function for idour (green arrow). Review of the literature indicates that this SMILEY
generated hypothesis is biologically plausible. See text for details.
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genes (19 solutions) or resolving reactions associated
with enzyme activities encoded for by non-human genes
(19 solutions) (Figure 4C). These represented the most
exciting SMILEY solutions as they have the potential to
unearth novel human metabolic enzymes. Figure 8
shows an example of category II solutions to three
blocked reactions in urea metabolism. The SMILEY
solution to AGPRim (EC 1.2.1.41), involves formation of
its root no-production metabolite N-acetylglutamate-5-
phosphate (acg5p) from N-acetylglutamate (acglu) and
production of N-acetylornithine (acorn) from the root
no-consumption metabolite N-acetylglutamate-5-semial-
dehyde (acg5sa). Acglu and acorn are themselves root
no-consumption and root no-production metabolites in
the blocked reactions ACGSm (EC 2.3.1.1) and ACODA
(EC 3.5.1.16) respectively. Interestingly, the two resol-
ving reactions proposed for AGPRim, catalysed by acet-
ylglutamate kinase (EC 2.7.2.8) and acetylornithine
transaminase (EC 2.6.1.11), therefore restore flux
through all three blocked reactions. These reactions are
part of the arginine biosynthesis pathway in prokaryotes
and plants. They have not been associated with human
genes, as arginine biosynthesis in mammals has been
shown to occur through glutamate rather than N-acetyl-
glutamate [51,52]. Human enzymes with similar func-
tionalities have however been described. For example,
human pyrroline-5-carboxylate synthase (P5CS) encodes
glutamate-5-semialdehyde dehydrogenase activity (EC

1.2.1.41) and glutamate kinase activity (EC 2.7.2.11).
P5CS is therefore a target candidate to catalyse a reac-
tion where acg5sa is produced from acglu. Similarly,
while acetylornithine transaminase activity (EC 2.6.1.11)
has not been reported in humans, ornithine transami-
nase activity (EC 2.6.1.13) has [53]. A literature search
did not reveal whether human ornithine transaminase is
capable of accepting acorn as a substrate. However,
ornithine transaminase from Plasmodium vivax shows
42-53% sequence similarity to eukaryotic ornithine
transaminases and is known to accept both acorn and
orn [54]. We suggest that following manual validation
the hypotheses generated by SMILEY can guide experi-
mental laboratory research. For selected blocked reac-
tions, this is currently underway in our laboratory.

Discussion
The investigation of large complex systems on a global
scale makes it impractical and maybe even impossible to
know details about all involved metabolites, genes, and
proteins. At the same time, a high level of knowledge
about metabolic subsystems and or enzyme activities is
necessary in order to come up with hypotheses of parti-
cular metabolic fates and novel reactions. In this study
we used a systems biology approach to characterise and
fill gaps in human metabolism. The key results include
i) many dead-end metabolites affect reaction cascades,
ii) computationally predicted solutions require thorough

Figure 7 Category II solution for blocked reactions in peroxisomal fatty acid degradation. The blocked reactions (red arrows) are all
catalysed by acetyl-CoA-acyltransferase (EC 2.3.1.16). The SMILEY solutions (green arrows) for each of the five blocked reactions generated a
complete degradation pathway for saturated fatty acids in the peroxisome starting with stearoyl-CoA (StCoa) and ending in octanoyl-CoA
(OcCoa) through stepwise removal of two carbons from the acyl chain. Abbreviations are as described in the BiGG database [18]. Enzyme
commission numbers of all reactions are shown. Metabolites and reactions in blue are not blocked. The number of carbons of each fatty acid-
CoA derivative is indicated. The results show that the SMILEY algorithm is capable of generating plausible solutions to blocked reactions in
human metabolism. The resolving reactions suggested by SMILEY correspond to well-characterised reactions involved in the b-oxidation of fatty
acids [50,79].
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manual curation and biochemical insight, and iii) four
biological plausible hypotheses were identified. This
work highlights that finding gene candidates for meta-
bolic functions in the human genome is not a trivial
issue and the extensive manual effort to curate the

computational predictions of candidate reactions high-
light the overall quality and quantity of data included in
Recon 1.
We characterised knowledge gaps of human metabo-

lism, represented by blocked reactions and dead-end

Figure 8 Category II solutions to three blocked reactions in urea metabolism. Flux was restored through the blocked reaction AGPRim by
the addition of two resolving reactions (EC 2.7.2.8 and EC 2.6.1.11) which couple AGPRim to the blocked reactions ACGSm and ACODA through
the consumption and production of their dead-end metabolites, N-acetylglutamate and N-acetylornithine, respectively. We found no evidence
that could rule out this gap filling hypotheses. The S1 solutions to the blocked reactions ACGSm and ACODA were identical and involved inter-
conversion of the dead-end metabolites of these reactions by glutamate N-acetyltransferase (EC 2.3.1.35). As opposed to the solution for
AGPRim, we did not find any indications that reactions similar to EC 2.3.1.35 are found in humans.
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metabolites identified in RECON 1 [11], to which solu-
tions, in the form of non-organism specific metabolic
reactions, could be found using the computer algorithm
SMILEY [28] (Figure 1). We identified 175 blocked reac-
tions, 70% of which had high confidence scores, and
observed that while they were unevenly distributed
within human metabolic pathways, most were found in
the cytosol (Figure 2). Furthermore, we found that they
arose due to different dead-end metabolite types that
were in some cases responsible for up to 14 blocked
reactions. These properties are likely to affect how trivial
it will be to address these knowledge gaps experimen-
tally and suggest that the impact of resolving these gaps,
both in terms of novel metabolic discovery and their
influence on RECON 1, will be different. For example,
determining the fate of a metabolite, which results in
multiple blocked reactions, will have a different impact
on the biological accuracy of RECON 1 than resolving a
single blocked reaction. Nevertheless, a single blocked
reaction could be of great interest as a candidate target
for novel metabolic discovery as its components could
represent a drug target and resolving the gap could have
unforeseen effects on network robustness, i.e., human
metabolism. Also, assaying cytosolic reactions will be
more straightforward than determining the function of
compartmentalised reactions. Subsequently, which
knowledge gaps are chosen for experimental research is
ultimately a human decision depending on research
goals, biological novelty factors, ease of experimental
validation, and underlying evidence of the knowledge
gap’s validity.
We highlighted four examples of missing knowledge

in human metabolism (Figures 5, 6, 7 and 8) that
resulted in biologically plausible hypotheses using a
combined algorithmic and manual approach. The
hypotheses were strengthened with published experi-
mental data. In the case of iduronic acid (Figure 6), a
major constituent of glycosamine glycans, we argued for
a hypothesis that an extracellular transport reaction
needs to be added to RECON 1. Although no direct evi-
dence for such transport could be identified in the
human genome, the existence of iduronic acid in human
urine (M. Fuller, personal communication) suggests that
a transporter may be a biologically plausible solution.
Further evidence is that the build-up of iduronic acid in
the lysosome has been linked to lysosomal storage disor-
der caused by defects in the sialic acid lysosomal trans-
porter [55]. Similarly, defects in a-L-iduronidase
(3.2.1.76), the exo-glycohydrolase that cleaves iduronic
acid off the non-reducing end of dermatan sulfate and
heparan sulfate are known to cause a different type of
lysosomal storage disorder, called mucopolysacharideosis
I [43]. Despite its apparent involvement in disease, the
metabolic fate of iduronic acid is unknown. The present

work highlights knowledge gaps in human metabolic
processes, such as the fate iduronic acid, which in the
context of investigating lysosomal storage disorders due
to protein deficiencies, have not been relevant but are
now required to generate a complete picture of human
metabolism. Our gap filling examples showed that algo-
rithms, such as SMILEY, can be used to direct hypoth-
eses of novel functions in human metabolism.
Nevertheless, a semi-automated approach was required
to assist with the identification of plausible gap filling
candidates for experimental verification.
Multiple gap finding and gap filling algorithms exist,

including GapFind/GapFill [20] and GrowMatch [29],
and the use of alternative algorithms will undoubtedly
increase the number of possible hypotheses as they
employ different heuristics and data sources (e.g., uni-
versal databases). This work does not provide a compre-
hensive list of possible gap-filling reaction solutions but
rather assesses the use of (semi)-automated computa-
tional approaches for identifying and completing missing
functions in human metabolism on a large-scale. We
found that computational tools, such as SMILEY, do not
necessarily suggest biologically plausible gap filling
hypotheses. The generated hypotheses need to be evalu-
ated in a manual, time-consuming manner, similar to
the gap filing process employed during the reconstruc-
tion approach [4,26]. The search for novel functions is
therefore only semi-automated. Automated algorithms
could however be trained, based on manual effort, to
prioritize or exclude certain types of solutions. In addi-
tion, approaches could be developed that incorporate
methods to build hypotheses of genes associated with
orphan reactions [56-60], which SMILEY does not
directly do.
Identification of genes associated with biological plau-

sible hypotheses as suggested by SMILEY was a major
challenge. Relatively few knowledge gaps were resolved
using known metabolic functions (Figure 3), and the
solutions required detailed literature review such that
homology, of what were often prokaryotic genes/pro-
teins to possible human counterparts, could be assessed.
In light of our results, we believe that existing automatic
gap filling approaches for uncovering gene function will
be of limited use for mammals. This limitation arises
from a lack of phylogenetic information, which is exten-
sively explored for annotating microbial genomes
[58,61]. Although various homology databases exist for
mammalian genomes covering up to seventy mamma-
lian species [62], the majority of phenotypic, genetic,
and biochemical studies have been performed using
mice, and to a lesser extent, human cells. Information
derived from these databases therefore originates from
few organisms making them less useful for annotation
purposes. Furthermore, co-expression analysis is used in
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microbes to determine genes with related function
[63-65] and could serve as a strategy for gene finding in
the human genome. However, analysis of regions of cor-
related transcription (RCT) in human and mouse identi-
fied both related and unrelated genes being co-
expressed [66]. The majorities of RCT were not found
in both human and mouse, which the authors explained
with i) missing definition of homology and/or synteny,
ii) no conserved pattern, and/or iii) physiological differ-
ences between human and mice. This example high-
lights the challenges associated with finding novel gene
functions in the human genome using established meth-
ods from the bacterial world. Novel approaches may
include the use of protein-protein interaction data
[67-69], tissue-specific information [70,71] and disease
information [72] combined with gap filling algorithms.
In particular, the latter work [72] observed a high degree
of correlation between known co-occurring (co-morbid)
diseases in patients and flux-coupling of the reactions
that are perturbed in association with each of the dis-
ease states. Flux coupled reaction sets [73], or perfectly
coupled reaction sets (Co-sets) [74], have been calcu-
lated in genome-scale metabolic models. Co-sets are
often along linear pathways [74]. Thus, a low co-mor-
bidity of two metabolically linked diseases would indi-
cate a missing link along a Co-set, which would break
the flux coupling by creating a pathway split. Similarly,
single nucleotide polymorphisms have been mapped
onto metabolic networks [75] and may be used for iden-
tifying missing functions in human metabolism.
Ubiquitous unknowns e.g. genes with unknown func-

tion and orphan enzymes belonging to orthologous
families, have been identified as top targets for func-
tional elucidation in terms of biological knowledge pay-
off as these are ancient in origin and therefore likely to
be involved in essential metabolic processes [22,25,76].
We believe that combining a metabolic network
approach with knowledge of ubiquitous unknowns could
also represent an ideal method for organism specific
novel function identification.

Conclusions
The results presented here show that RECON 1 allows
the identification of specific metabolic pathways and
reactions for which knowledge is lacking; thereby focus-
ing the search for unknown metabolic functions by put-
ting them into context with previously gathered
metabolic information. Following identification and
characterisation of RECON 1 network gaps, we showed
that gap solution hypotheses can be generated automati-
cally and successfully but require detailed, time consum-
ing manual investigation in order to validate their
biological plausibility. In this manner we have derived
multiple hypotheses, which we intend to use to direct

our knowledge-driven approach towards novel metabolic
discoveries.

Methods
Pre-processing to gap identification
RECON 1 was obtained from Duarte et al. [11]. It con-
tains 356 dead-end metabolites causing knowledge gaps
in eight cellular compartments. The dead-end metabo-
lites in the compartmentalised model are not unique, as
the same metabolite can cause blocked reactions in two
or more cellular compartments. In order to address this
issue, RECON 1 was decompartmentalised, by placing
all intracellular compartment reactions in the cytosol
and removing duplicates. Extra-organism located reac-
tions were kept. Therefore, the decompartmentalised
network accounts for these two compartments. Subse-
quently, the number of dead-end metabolites was
reduced to 145, as they were unique. Note that this
modification affected the following gap analysis in that
compartment specific gaps were not considered for gap
filling; e.g., a reaction present in mitochondria but miss-
ing in cytosol would not result in a gap in the decom-
partmentalised network. All subsequent analysis was
performed using the decompartmentalised version of
RECON 1 (Recon_1_decomp).
As a next step, all blocked reactions present in

Recon_1_decomp were identified using flux variability
analysis (FVA) [27] as reactions unable to carry flux
defined by |Vmax, i | ≤ 10-5 mmol/gdw/hr and |Vmin, i
|≤ 10-5 mmol/gdw/hr for all i reactions in the network.
All exchange reactions were unconstrained permitting
free uptake and secretion of respective metabolites. A
total of 285 reactions were identified.
The SMILEY algorithm has been described previously

by Reed et al. [28] and implemented in the COBRA
toolbox v2.0 (Schellenberger et al, submitted). We
downloaded the KEGG [31] Ligand database (as of
1.10.2009), deemed U. Furthermore, we constructed a
transport matrix, X, by defining a transport reaction
from cytosol to extra-organism and an exchange reac-
tion for each metabolite occurring Recon_1_decomp (S)
and U (Figure 1). Matrix U and X served as reaction
source for the SMILEY algorithm. Prior to the calcula-
tion, metabolites from S were matched to U. Note that
not all metabolites in S have a known KEGG ID and
that subsequent solutions are sensitive to missing KEGG
IDs, meaning that some possible resolving solution may
have been missed in our simulation due to this short-
coming. Current work has focused on adding more
metabolite identifiers to RECON 1 (Thiele et al, in
preparation).
In the next step, each blocked reaction vb, i was cho-

sen as objective function, requiring the SMILEY algo-
rithm to find reactions in U and/or X to be added to S
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such that |vb, i| could carry a flux greater than 10-5

mmol/gdw/hr. SMILEY is designed to find the shortest
possible solution consistent with this requirement [28].
For each blocked reaction, we computed the 20 shortest
SMILEY solutions. Note that the number of solutions
computed is user defined and in some cases 20 distinct
solutions may not exist. For 175 out of 285 blocked
reactions at least one SMILEY solution could be found.

Gap analysis and validation of SMILEY output
SMILEY generated a total of 1335 solutions for the 175
blocked reactions. We filtered the solutions such that: i)
only category II solutions with the least number of
resolving reactions were investigated, and ii) if no cate-
gory II solution was found, the solution involving the
least number of resolving reactions was investigated. In
cases where a blocked reaction had multiple solutions
with the same number of resolving reactions, a random
solution was picked. These criteria generated the S1
SMILEY solution output that is reported in the results.
Biochemical and genetic information concerning each

blocked reaction identified by FVA was obtained from
the Bigg database http://bigg.ucsd.edu/[18]. The reaction
specific information allowed blocked reactions to be
grouped depending on their metabolic pathway, subsys-
tem, and/or other reaction specific features described
within the Bigg database. Similarly, biochemical and
genetic information concerning resolving reactions pro-
posed by SMILEY was obtained from the KEGG data-
base http://www.genome.jp/kegg/[31], which allowed
organisation of the resolving reaction output. For resol-
ving reactions where no human gene or protein infor-
mation was directly available from Bigg or KEGG, blast
homology searches of genes encoding the resolving reac-
tion activity were performed against the human
sequence databases on the NCBI website http://blast.
ncbi.nlm.nih.gov/Blast.cgi and using the STRING data-
base [77]. The localisation of dead-end metabolites in
human biofluids was obtained from the human metabo-
lome project http://www.hmdb.ca/[41]. Resolving reac-
tions were investigated individually by literature review
in order to verify the biological relevance of the pro-
posed SMILEY solutions and generate plausible hypoth-
eses for gap filling of RECON 1. Reaction
directionalities were compared with experimentally
reported reaction directionalities in the Brenda database
[34] and by quantitative assignment of reaction direc-
tionality using the von Bertalanffy 1.0 algorithm [33] an
extension available freely as part of the openCOBRA
project [78]. The details of these calculations will be
published in a separate manuscript. Briefly, experimen-
tally determined or computed standard metabolite
Gibbs energy transformed to cellular compartmental
conditions with respect to in vivo pH (pH = 5.5-8.0),

temperature (37°C), ionic strength (0.25 M) and electri-
cal potential (-150 - 30 mV) was used to predict the
upper and lower bounds on standard transformed reac-
tion Gibbs energy. The upper and lower bounds are
dependent upon in vivo metabolite concentration ranges
which were set to 10-7 - 10-2 M. When the transformed
reaction Gibbs energy range spans zero the reaction is
predicted to be quantitatively reversible. Spontaneous
reactions proposed by SMILEY were assessed in a simi-
lar manner as enzyme catalysed reactions. All gap filling
hypotheses can be found in Additional files 6 and 7.
Reaction and sub-cellular compartment abbreviations
are as described in the BiGG database.

Additional material

Additional file 1: Metabolic subsystem distribution of the 175
blocked reactions. The distribution of the blocked reactions identified in
RECON 1 within metabolic subsystems.

Additional file 2: Dead-end metabolites can cause multiple blocked
reactions. In the majority of cases, dead-end metabolites only cause one
blocked reaction. When a dead-end metabolite is at the end or
beginning of a reaction cascade however, it inhibits flux through all
reactions, which are part of the reaction cascade. The figure shows the
number of blocked reactions found in the reaction cascades. For
example, there is one reaction cascade, which has 14 blocked reactions.

Additional file 3: The SMILEY solution distribution is not dependent
upon the metabolic pathway. Blocked reactions can have multiple
SMILEY solutions independent of the metabolic pathway, of which the
blocked reaction is a part.

Additional file 4: Characterisation of alternative SMILEY solution.
The figure shows the solution categories of the alternative SMILEY
solutions to blocked reactions, which had a category I (A), category II (B)
or a category III (C) S1 solution. A) 30% of the blocked reactions with a
category I S1 solution had alternative category III solutions. The
remaining 70% had either an alternative category I solution or none at
all. B) 61% of the blocked reactions, which had category II S1 solution,
had alternative category II or III solutions. C) None of the blocked
reactions, which had category, III S1 solutions had alternative category
solutions as expected.

Additional file 5: The pathway distribution of blocked reactions and
their SMILEY S1 solutions categories. The figure shows the SMILEY S1
solution category as a percentage of the total number of blocked
reactions found within a particular metabolic pathway. The number of
blocked reactions within each metabolic pathway and their SMILEY
solution type is also shown. Some blocked reactions, such as those
involved in amino acid metabolism, are easily bypassed using
functionalities already described in the KEGG, represented by category I
and II SMILEY solutions. Others, such as those involved in glycan
biosynthesis, can only be solved by transport of their causative dead-end
metabolite out of the system.

Additional file 6: The filtered S1 SMILEY output. The table contains
the filtered SMILEY S1 output as described in materials and methods. The
identified blocked reaction is given in column A. Columns B-J report
properties of the blocked reactions i.e., causative dead end metabolites,
BiGG confidence scores, cellular compartment, whether or not the
blocked reaction is in a cascade, blocked reaction components,
associated genes, the metabolic subsystem and the metabolic pathway
the blocked reaction occurs in. Columns K-O report properties of the S1
solution i.e. the solution category, the experimentally reported
directionality and computed directionalities of blocked reactions having
category I reversal solutions, the number of resolving reactions
composing the solution and the KEGG identifiers of each resolving
reaction. The remaining columns report properties of each individual
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resolving reaction comprising the SMILEY solution i.e. KEGG identifiers,
resolving reaction components, metabolic pathway and subsystem and
any associated enzyme commission numbers or known human genes.

Additional file 7: The complete SMILEY output. The table contains
the complete SMILEY output with up to twenty solutions for each
identified blocked reaction. The identified blocked reaction is given in
column A. In columns B-D the properties of the blocked reaction are
reported (reaction components, gene and metabolic subsystem). In
column E the resolving reactions comprising the complete SMILEY
solution for the blocked reaction is reported with KEGG reaction
identifiers. In the following columns the properties of the resolving
reactions are reported (reaction components, reaction subsystem,
enzyme commission number and gene).
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