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Abstract

Background: Despite the availability of numerous complete genome sequences from E. coli strains, published
genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for
many applications, such as engineering strains for desired product formation, and we sought to explore how
constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts.

Results: We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic
network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog
groups including ORFs associated with reactions in the most recent metabolic model for £. coli K-12. For
orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to
reaction associations represented in this model could then be easily propagated to other E. coli strain models. All
remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a
pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic
model update for E. coli K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-
specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110)
and four pathogenic strains (two enterohemorrhagic £ coli O157:H7 and two uropathogens). When compared to
the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai)
and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and
reaction differences. All six E£. coli models were evaluated by comparing model predictions to carbon source
utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media
with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all
16 E. coli genomes was also constructed, reflecting the conserved ancestral core of £. coli metabolism
(iIEco1053_core). Comparative analysis of all six strain-specific £. coli models revealed that some of the pathogenic
E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the
lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into
the evolution of metabolism within this species.

Conclusion: Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct
additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately
predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer
metabolic phenotypes of interest, such as designing new industrial E. coli strains.

Background

The gram-negative bacterium E. coli is one of the best-
studied microorganisms. This bacterial species includes
pathogenic strains that cause disease in various tissues
in mammalian and other vertebrate hosts. Some of the
more common diseases associated with pathogenic E.

* Correspondence: dbaumler@wisc.edu

'Genome Center of Wisconsin, University of Wisconsin-Madison, Madison,
Wisconsin, USA

Full list of author information is available at the end of the article

( BiolMed Central

coli strains are caused by bacteria found in the gastroin-
testinal tract or urinary tract, and is a major cause of
human morbidity and mortality worldwide. E. coli infec-
tions cost the healthcare industry over a billion dollars
annually with the enterohemorrhagic (EHEC) and uro-
pathogenic (UPEC) E. coli strains alone responsible for
more than 73,000 and 7,000,000 illnesses annually in the
United States, respectively [1-3]. A number of genome
sequences for these pathovars exist, and comparative
analysis between commensal and pathogenic strains has
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revealed different virulence strategies [4-10]. However,
the metabolic properties that differentiate these strains
have not been thoroughly investigated. The metabolic
content of the genomes of these strains is complex with
each strain predicted to contain over 1,000 genes encod-
ing metabolic enzymes and transporters [11]. One
method to investigate the complexity of genome-scale
metabolic networks is through the construction of com-
putational models.

Computational modeling of bacterial metabolism
offers a promising approach to predict strain-to-strain
variation in metabolic capabilities and microbial strate-
gies used during host association. The number of avail-
able genome-scale metabolic models (GEMs) has grown
recently, and they capture the metabolic capabilities of
numerous microbial taxa important to human health,
biotechnology and bioengineering [12,13]. Systems biol-
ogy combines computational and experimental
approaches to study the complexity of biological net-
works at a systems level, where the cellular components
and their interactions lead to complex cellular behaviors.
Genome-scale biological networks have proven useful
for interpreting high-throughput data and generating
computational models. Mathematical models are con-
structed from network reconstructions, and they include
variables, parameters, and equations to describe the
potential behavior of these networks. Numerous types of
genome-scale biological networks have been constructed
including metabolic, regulatory, and transcriptional and
translational machinery for E. coli K-12 [14-17].

To date, GEMs have been constructed for only two
commensal strains of E. coli, E. coli K-12 (strain
MG1655) and E. coli W [15,18]. The E. coli K-12 GEM
has been used to engineer strains to increase valuable
product formation [19-23], facilitate enzyme function
discoveries [24], provide insight into the genome evolu-
tion of other enterobacteria [25,26], and improve the
understanding of the connectivity of metabolic reactions
within the cell [27]. Furthermore, computational meta-
bolic models can be validated and refined by comparing
in silico predictions with experimental data, where the
discovery of disagreements or incorrect in silico predic-
tions can lead to improvements and/or hypotheses
about component interactions and unknown network
components. An iterative process thus develops where
the models are used to analyze experimental data and
discrepancies lead to improved models and additional
biological discovery. Such approaches have proven suc-
cessful for updates to the E. coli models for regulation
and metabolism [14,24,28,29].

Currently the construction of metabolic networks
relies primarily on information derived from genome
annotations, enzymatic/pathway databases, and pub-
lished literature. By combining these resources, the
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elementally- and charged-balanced reactions catalyzed
by enzymes associated with a given gene can be identi-
fied [30,31]. These reactions incorporate pertinent infor-
mation such co-factors, substrates, products,
reversibility, stoichiometry, and subcellular location. A
genome-scale metabolic network contains a list of reac-
tions, as well as the gene to protein to reaction (GPR)
associations, and is used to formulate constraint-based
GEMs. By comparing GEMs for pathogenic and non-
pathogenic E. coli strains, metabolic differences can be
identified that may lead to the development of new con-
trol strategies for E. coli associated disease.

Here we describe the construction of a detailed GEM
for the pangenome of the species E. coli, and the use of
this GEM to rapidly generate six strain-specific GEMs
to compare genome-scale metabolism between four
strains from two pathogenic lineages with two commen-
sal K-12 strains. In addition, an ancestral E. coli core
GEM was constructed consisting of only those meta-
bolic reactions associated with genes that are conserved
across 16 E. coli genomes. The metabolic potential of
this ancestral core was also examined. Experiments were
performed to iteratively refine and validate the six
strain-specific GEMs under aerobic and anaerobic con-
ditions. Once strain-specific GEMs were validated, the
properties and metabolic differences distinguishing these
pathogenic and commensal E. coli strains were compu-
tationally investigated, revealing that some pathogenic E.
coli strains are more metabolically efficient than other
strains in some environmental conditions. The E. coli
GEMs generated in this work provide new tools for
investigating the evolutionary and metabolic differences
of these strains in conditions reflecting those environ-
ments encountered in human hosts. This is the first
study to examine the metabolic properties of numerous
strains of such a phylogenetically related group of
microorganisms, and provides insight into the evolution
of metabolism for the species E. coli.

Methods

Bacterial strains and growth conditions

Six E. coli strains and one Salmonella strain were used
in this study (listed in Table 1). Frozen cultures were
streaked onto Luria Bertani (LB) agar plates and grown
overnight at 37°C. Isolated colonies were then used to
inoculate MOPS (morpholinepropanesulfonic acid)
minimal media (TekNova, Hollister, CA) and incubated
overnight with shaking (220 rpm) at 37°C, and then
overnight cultures were used to inoculate batch cultures
grown with continuous sparging aerobically (70% N,
25% O,, and 5% CO,) or anaerobically (95% N, and 5%
CO,) as previously described [32]. For carbon plate utili-
zation assays, isolated colonies were used to inoculate
Sheep Blood Agar plates (Biolog, Hayward, CA) and
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Table 1 List of bacterial strains used in this study.
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Strain Genotype Source or reference

E. coli K-12 MG1655 Wild type Dr. Patricia J. Kiley, University of Wisconsin-Madison [81]

E. coli K-12 W3110 Wild type ATCC 39936

E. coli O157:H7 EDL933 (EHEC?) Wild type Dr. Charles W. Kaspar, University of Wisconsin-Madison [7]
E. coli O157:H7 RIMD/Sakai (EHEC) Wild type ATCC BAA-460 [6]

E. coli CFT073 (UPECP) Wild type Dr. Rodney A. Welch, University of Wisconsin-Madison [10]
E. coli UTI89 (UPEC) Wild type Dr. Scott J. Hultgren, Washington University, St. Louis [5]
Salmonella enterica serovar typhimurium LT2 Wild type Dr. Diana M. Downs, University of Wisconsin-Madison [82]

“Enterohemorrhagic E. coli (EHEC)
PUropathogenic E. coli (UPEC)

incubated at 37°C overnight aerobically or anaerobically
in sealed Whirl-Pak® Long-Term Sample Retention
Bags (Nasco, Fort Atkinson, Wisconsin) saturated with
an anaerobic gas mixture (95% N, and 5% CO,) as
described [33,34]. Anaerobic conditions were confirmed
using an obligate aerobic bacterium that exhibited no
growth and no respiration in any of the anaerobic con-
ditions examined. Cells were collected and used to
inoculate Biolog PM1 plates following the manufacturers
recommendations with a minor modification of adding a
top layer of mineral oil to each well for anaerobic cul-
ture conditions.

Updates to the E. coli K-12 MG1655 metabolic network
Prior to generating a pangenome GEM, additional genes
in the genome of E. coli K-12 MG1655 were evaluated
as possible updates to the most recent E. coli GEM
(iIAF1260)[15]. The annotations for E. coli K-12
MG1655 were obtained and examined from the ASAP,
EcoGene, KEGG, and EcoCyc databases [35-38]. ORFs
encoding enzymes that were not included in iAF1260
were further investigated to develop elementally and
charge-balanced reactions and to assign the reaction to
a subcellular location based on pSORT predictions [39].
In some instances new ORFs were added as isozymes to
existing reactions and the gene-to-protein-to-reaction
associations updated. This resulted in the addition of 79
new ORFs to the iAF1260 GEM to create
iEco1339_MG1655 (Additional file 1). Of the new 79
ORFs (Additional file 2), 62% were based on experimen-
tal data from the literature for E. coli strains [40-68] and
the rest were based on sequence homology to enzymes
already existing in E. coli metabolic networks or to
experimentally characterized enzymes from other enter-
obacteria. These gene additions resulted in 42 new reac-
tions, 32 new isozymes, and 30 new metabolites to the
in silico model for E. coli K-12 MG1655.

Generation of an E. coli pangenome metabolic network
Draft and complete enterobacterial genomes in the
ASAP database have been continually updated using

new publicly accessible genomes since the database’s
inception [35]. There are more than 150 genomes of
enterobacteria in the ASAP database (along with pre-
dicted orthologs), 39 of which are E. coli genomes. Of
these E. coli genomes, 16 are completely finished, and
we have used the information from these genomes and
that of Salmonella typhimurium LT2 (Table 2) to gener-
ate an E. coli pangenome metabolic network based on
metabolic enzymes present in the union of 76,990 ORFs.
Each ORF was assigned in the ASAP database to an
ortholog cluster group (OCG), and the 76,990 ORFs
map to 17,647 OCGs. This reduced the number of

Table 2 E. coli genomes used to construct the
pangenome metabolic network.

Strain ORFs Genome number
E. coli K-12 MG1655 4141 1
E. coli EDL933 (EHEC)? 5,196 2
E. coli 53638 (EIEQ)° 5172 3
E. coli CFT073 (UPEQ)" 4,889 4
E. coli E2348/69 (EPEC)® 4,652 5
E. coli EC4115 (EHEQ)® 5467 6
E. coli UTI89 (UPEC) 4,944 7
E. coli E24377A (ETEC)® 4,953 8
E. coli Sakai (EHEC)? 57253 9
E. coli SE1 4973 10
E. coli APEC O1 (APEC)f 5045 11
E. coli SMS-3-5 4,906 12
E. coli 536 (UPEQ) 4599 13
E. coli HS 4,393 14
E. coli ATCC 8739 4,236 15
E. coli K-12 W3110 4171 16
Salmonella enterica typhimurium LT2° 4,506 -

®Enterohemorrhagic E. coli (EHEC)
PEnteroinvasive E. coli (EIEC)
“Uropathogenic E. coli (UPEC)
dEnteropathogenic E. coli (EPEC)
“Enterotoxigenic E. coli (ETEC)
fAvian pathogenic E. coli (APEC)
9Included for comparative purposes
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genes that had to be evaluated for inclusion in the meta-
bolic network and allowed generation of strain-specific
GPRs to rapidly be formulated (Additional file 3). Not
all of these OCGs play a metabolic role and/or have suf-
ficient experimentally determined details for metabolic
network inclusion. For example only 32.3% of ORFs in
the total genome (1,339/4,141) are accounted for in
the updated GEM for E. coli K-12 MG1655
(iEco1339_MG1655). All of the gene to protein to reac-
tion association information from the E. coli K-12
MG1655 (iEco1339_MG1655) and the Salmonella LT2
(iRR1083)[69] GEMs were mapped to the OCGs that
contained the respective ORFs. The annotations for the
genes composing the remaining OCGs were analyzed
for additional new metabolic reactions and isozyme
additions (Additional file 4) leading to the generation of
an E. coli pan-GEM named iEco1712_pan (Additional
file 5). All eight SBML files generated in this work were
checked for syntax and internal consistency using the
validation tool (http://sbml.org/validator/validate.php)
and found to conform to all specifications of SBML
through Level 3 Version 1 Core (Release 1).

Flux Balance Analysis

Fluxes through metabolic network reactions can be pre-
dicted using flux balance analysis (FBA) [70]. In FBA,
fluxes are constrained by steady-state mass balances,
enzyme capacities and reaction directionality. These
constraints yield a solution space of possible flux values,
and FBA uses an objective function to identify flux dis-
tributions that maximize (or minimize) the physiologi-
cally relevant predicted solution. Cellular growth rate
(or biomass production) is often used as an objective
function for FBA [71], and was used for FBA analyses
performed in this study. The same biomass equation,
growth (GAM) and non-growth (NGAM) associated
ATP requirement values, and PO (number of ATP
molecules produced per pair of electrons donated to the
electron transport system) ratio were used for all E. coli
developed models, and were the same as that in
iAF1260[15]. For FBA and dynamic simulations the
reported [15] wildtype biomass was used and for deter-
mination of essential reactions the core biomass was
used. Using FBA, in silico predictions of growth yield,
growth rate, and carbon source utilization were com-
pared to experimentally determined values for all six E.
coli strains and for Salmonella L'T2 in both aerobic and
anaerobic conditions (Additional files 6 and 7). For car-
bon source utilization and gene deletion simulations, a
maximum uptake rate of 10 mmol per gram of dry
weight per hour (mmol/gDW cell/h) was used. FBA was
also used to predict essential reactions by constraining
reactions to have zero flux and maximizing growth rate.
If the resulting maximum predicted growth rate (using
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FBA) was zero then the reaction was considered to be
essential. Reaction deletion simulations were evaluated
under both aerobic and anaerobic conditions.

Batch Growth Experiments and Simulations

We performed dynamic FBA simulations of batch
growth [72] and compared these results with experimen-
tal data (Additional file 6). In the laboratory, cells were
grown overnight in MOPS minimal medium with the
addition of glucose (11 mM) as the sole carbon source,
and used to inoculate batch cultures to an optical den-
sity (ODgoo nm) Of ~0.02. Batch growth under aerobic
and anaerobic conditions was conducted at 37°C and
spectrophotometric measurements, viable cells/ml, and
biomass (g dry cell weight) were determined at each
time point. Samples were collected every hour and
passed through a 0.2 um syringe filter, and then frozen
at -70°C for subsequent UPLC analysis. The filtered
supernatants were then analyzed to determine glucose
concentrations at each time point using a UPLC follow-
ing manufacturers recommendations (Waters Co., Mil-
ford, MA). Growth rates, growth yields, and glucose
specific uptake rates were determined from experimental
data using the linear least squares estimate as described
[73]. Biomass to ODggo conversion values were also cal-
culated for each strain (Table 3). These conversion
values were used to estimate initial biomass (T,) values
using the initial ODgy, measurements (O.D.600 = ~0.02)
for each experiment. The T, values were used as para-
meters for dynamic FBA simulations of batch growth to
determine the exponential growth rates (1/h), biomass
yields (g biomass/1g glucose), and times (h) needed to
reach stationary phase for the corresponding experimen-
tal conditions (aerobic or anaerobic growth in MOPS
with 11 mM glucose). For each strain, experimental
values from three biological replicates were then com-
pared to those calculated from three computational
simulations with matching starting biomass values
under aerobic and anaerobic conditions.

UPLC analysis

Glucose analysis was conducted using an Acquity UPLC
equipped with an Acquity BEH Glycan column
(Waters). A mobile phase (75% [v/v] Acetonitrile/25%
[v/v] HyO with 0.2% [v/v] Triethylamine; pH 9.1) was
used at a flow rate of 0.1 ml/min to separate small
molecules on a Waters Acquity UPLC equipped with an
evaporative light scattering detector and photodiode
array.

Phylogenetic Analysis

A maximum parsimony phylogenetic analyses of seven
taxa were conducted in MEGA4 [74] using a concate-
nated protein sequence data set of AcnA, GapA, IcdA,
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Table 3 Experimental strain-specific conversion factors for aerobic or anaerobic growth conditions.

Biomass (gDWY/L) to ODgoo + SE

Viable cells (CFU/ml) to ODggo + SE

Biomass (ng) to Viable cells (CFU)

E. coli Strain Aerobic Anaerobic Aerobic Anaerobic Aerobic Anaerobic
K-12 MG1655 0415 + 0013 0468 + 0015 156*107 + 1.04%10°  140%10° + 500%10"  0.266 0334

K-12 W3110 0410 + 0018 0442 + 0020 886*10° + 49410  1.15%10° + 735%10" 0463 0384
EDL933 0436 + 0018 0.543 + 0010 200%10° + 409*10°  3.00*10° + 120¥10° 0218 0.181

Sakai 0376 + 0015 0436 + 0007 920%10° £ 991*10”  1.20%10° + 920%10" 0409 0.363
CFT073 0491 + 0019 0.525 + 0015 420%10% + 154*10°  2.10%10° + 1.60*10° 0223 0.25

UTI89 0.380 + 0012 0469 + 0015 100%107 + 680107 320%10° + 320*10° 038 0.147
Salmonella LT2 0431 + 0010 0459 + 0010 800*10” + 434*10°  500%10° + 3.84*10" 0539 051

Mdh, MtID, Pgi, and ProA with S. typhimurium LT2
used as the outgroup species. These genes were chosen
since they have been successfully used for phylogenetic
analyses of enterobacteria [75]. The alignment for this
data set and subsequent maximum likelihood phyloge-
netic analyses was performed in MEGA4 using default
parameters.

Results

The metabolic model for E. coli K-12 MG1655 was
developed 20 years ago and has undergone numerous
improvements and updates. It is now a sophisticated
compartmentalized GEM containing over 1,200 genes
and 2,000 reactions. It has been used extensively for bio-
technology and discovery applications. Here we gener-
ated a GEM for the pangenome of E. coli, and used the
information from this larger metabolic network to gen-
erate strain-specific E. coli GEMs for two pathogenic
lineages and an ancestral core GEM containing reactions
conserved across all E. coli strains. Using this new col-
lection of GEMs we validated strain-specific models by
comparing predictions to experimental data, conducted
a comparison of strain-specific GEMs from three E. coli
lineages (commensal, EHEC, and UPEC), and examined
the metabolic networks of numerous E. coli strains in an
evolutionary perspective based on phenotypic traits.

Updating the E. coli K-12 MG1655 metabolic model

The contents of the E. coli K-12 MG1655 genome were
surveyed for new genes/reactions to add to the existing
GEM (iAF1260). This effort added a total of 79 genes to
iAF1260, of which 15 encoded proteins with significant
similarity to proteins with characterized enzymatic activ-
ity, 15 were added based on orthology to genes found in
the S. typhimurium LT2 GEM (iRR1083), and 49 were
added based on experimental evidence from the scienti-
fic literature (Additional file 2). Three of the new genes
were linked to metabolic reactions that were already
included in iAF1260, but whose associated genes were
previously unknown (i.e. orphan reactions). The 79 new
genes added 42 new metabolic reactions and 30 new

metabolites to the GEM. Exchange/transport reactions
to permit cis-dihydrodiol-phenylacetyl-CoA utilization
were also added resulting in an updated GEM for E. coli
K-12 MG1655 designated as iEco1339_MG1655 com-
posed of 1,339 genes, 1,069 metabolites, and 2,428 reac-
tions (Additional file 1). This includes eight new
reactions for phenylacetate metabolism that were added
following our observation that E. coli K-12 MG1655 can
grow in minimal media with phenylacetate as a sole car-
bon source (data not shown). The 42 new reactions in
iEco1339_MG1655 were classified into 15 metabolic
subsystems (Figure 1A). There were 24 genes added to
the GEM that likely encode isozymes that participate in
32 existing reactions across 13 metabolic subsystems
(Additional file 2). A total of 370 reactions in
iEco1339_MG1655 contain multiple isozymes.

Generation of an E. coli pangenome metabolic model
Understanding the evolution of metabolism for the spe-
cies E. coli requires comparing genome-scale metabolic
content among different strains of E. coli and its rela-
tives. To faciltate these comparisons we mined the con-
tents of 16 E. coli genomes to identify reactions that
could be added to iEco1339_MG1655 to generate a pan-
genome metabolic network representing all metabolic
reactions associated with genes present in any one of
the E. coli genomes (Table 2). All genes from the sixteen
E. coli and the S. typhimurium LT2 genomes (81,496
ORFs total) were classified into orthologous cluster
groups (OCGs) based on ortholog relationships from
the ASAP database [35]. This analysis resulted in a total
of 17,647 OCGs with 16,417 representing the E. coli
pangenome and 1,230 OCGs unique to S. typhimurium
LT2. Of the 16,417 E. coli pangenome OCGs, 2,894 are
found in all sixteen E. coli genomes, 4,146 are shared by
two or more E. coli strains, and 9,377 are unique to
individual E. coli genomes. Each additional genome
added on average 806 new genes; however this number
decreased as more genomes were analyzed (Figure 2).

A GEM for the pangenome was then constructed.
Existing gene to protein to reaction (GPR) associations
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E. coliK12 MG1655 E. coli pangenome

E. coli ancestral core

A B

(n;184)

(n=32)

UPEC

EHEC & UPEC

(n = 60)

(n = 55)

(n=21)

() Alternate carbon metabolism (Il) Menaquinone biosynthesis

(Il Amino acid metabolism (' ) Murein metabolism

(W) Carnitine degradation (" ) Nitrogen metabolism

(Il) Cell envelope biosynthesis () Oxidative phosphorylation

() Citric acid cycle (I9) Purine and pyrimidine metabolism

(W) Cofactor and prosthetic group biosynthesis
() Glycerophospholipid metabolism

() Glycine betaine biosynthesis

() 'norganic ion transport and metabolism
(1) Lipopolysaccharide biosynthesis/recycling
(Jl) Membrane lipid metabolism

(1)) Pyruvate metabolism

(1) Transport inner membrane
([77) Transport outer membrane
() Unassigned

() Urea degradation

(|:]) tRNA charging

Figure 1 A summary of metabolic reaction additions and deletions to GEMs used in this study. In comparison to the previous E. coli K-12
MG1655 GEM (iAF1260), subsystem classification for new reaction additions to (A) iEco1339_MG1655. In addition, in comparison to
iEco1339_MG1655, subsystem classification for reactions additions to (B) iEco1712_pan, or reaction deletions for (C) iEco1053_core, (D) reaction
deletions shared in both EHEC strains (iEco1344_EDL933 and iEco1345_Sakai), (E) reaction deletions shared in both UPEC strains
(iEco1288_CFT073 and iEco1301_UTI89), and (F) reaction deletions shared in both EHEC and EPEC strains.

from GEMs of iEco1339_MG1655 and S. typhimurium
LT2 (iRR1083) were mapped to their corresponding
OCGs. The remaining OCGs were analyzed to see if
they could be added to the pangenome metabolic

network by adding additional isozymes or new reactions.
This led to the addition of 373 OCGs and 32 new reac-
tions beyond those found in the updated E. coli K-12
MG1655 GEM (iEco1339_MG1655), resulting in a pan-
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Figure 2 Escherichia coli core and pangenome metabolic
network evolution according to the number of sequenced
genomes listed in table 2. Number of conserved genes (black
diamonds), total number of unique genes without orthologs in prior
genomes (blue squares), and total number of gene additions to the
pan-GEM (red triangles), and total number of metabolic reactions
additions to the pan-GEM (green circles) for a given number of
genomes analyzed for the different strains of £ coli.

GEM, iEco1712_pan (Additional file 5), consisting of
1,712 genes, 1093 metabolites, and 2,452 reactions
(Additional file 4). Each additional E. coli genome added
to the pangenome metabolic analysis resulted on aver-
age added 27 new metabolic genes, 20 isozymes, and
approximately 2 new metabolic reactions to the pan-
GEM (Figure 2). The 32 reactions added to iEcol712_-
pan fall into 11 metabolic subsystems (Figure 1B), with
the majority being related to alternate carbon metabo-
lism (56%, associated with 4-hydroxyphenylacetate and
propanediol metabolism) and oxidative phosphorylation
(9%). Other added OCGs resulted in addition of iso-
zymes associated with 14 metabolic subsystems, with
the most abundant being alternate carbon metabolism
(18%), cell envelope biosynthesis (11%), oxidative phos-
phorylation (11%), nitrogen metabolism (8%), glutamate
metabolism (6%), and the remaining 9 subsystems con-
sisted of a single reaction addition (Additional file 4).

Generation of an E. coli core metabolic model

E. coli strains are thought to have diverged from a com-
mon ancestor ~10 million years ago (mya) [76] and it is
of interest in understanding how strain-specific metabo-
lism has evolved over time to have an estimate of the
metabolic capabilities of an ancestral core for the species
E. coli. We assume that genes conserved across the
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genomes of all strains represents a conservative estimate
of the core genome of the ancestor of modern E. coli
strains and used this collection of 2,894 conserved genes
to construct an ancestral core GEM named iEcol053_-
core (Additional file 8). There are 1,053 of these genes
in the E. coli K-12 MG1655 GEM (iEco1339_MG1655).
The GEM for the E. coli ancestral core was made by
removing OCGs and their associated reactions from the
iEco1339_MG1655 GEM if one or more of the sixteen
E. coli genomes did not have a gene assigned to the
OCG (Additional file 3). If removing a reaction pre-
vented biomass production for anaerobic growth on glu-
cose (predicted using FBA) then the reaction was added
back to the metabolic reconstruction without a gene
associated with it and this occurred 24 times (Additional
file 9). Using this approach 286 ORFS associated with
184 reactions and 177 isozymes were removed from
iEco1339_MG1655 resulting in an E. coli ancestral core
GEM (iEco1053_core) consisting of a total of 1,053
ORFs and 2,244 reactions (Table 4), and these 184 reac-
tions we removed were classified based on metabolic
subsystem (Figure 1C).

Characteristics of five new E. coli strain specific models

The pan-GEM was used to expedite the process of gen-
erating five new strain-specific E. coli GEMs, since the
pangenome has reactions connected to cluster groups, a
given strains genome contents were analyzed to identify
what cluster groups its genes belong to and those asso-
ciated reactions were included (Additional file 3). The E.
coli strains we selected include an additional E. coli K-
12 strain (W3110), two enterohemmoraghic E. coli
0O157:H7 strains (EDL933 and Sakai), and two uropatho-
genic strains (CFT073 and UTI89). Comparisons to
iEc01339_MG1655, including the total number of
strain-specific gene additions and deletions and the cor-
responding metabolic reactions are shown in Table 4.
The two K-12 strains are laboratory strains derived from
the same isolate and not surprisingly their GEMs, were
very similar with the sole difference being removal of a
few isozymes and a gene associated with galactitol trans-
port from the W3110 GEM named iEco1335_W3110
(Additional file 10) due to a W3110-specific IS insertion
in the gatA gene [77]. We built the five new E. coli
GEMs named iEco1335_W3110 (Additional file 10),
iEco1344_EDL933 (Additional file 11), iEco1345_Sakai
(Additional file 12), iEco1288_CFT073 (Additional file
13), and iEco1301_UTI89 (Additional file 14) by deleting
genes and reactions from the pan-GEM when missing
from the genome under consideration (Additional file
15). If removing a reaction prevented biomass produc-
tion for anaerobic growth on glucose (predicted using
FBA) then the reaction was added back to the metabolic
reconstruction without a gene associated with it. The
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Table 4 E. coli strain-specific metabolic model information.
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Strain Additions Deletions Necessary reactions® Total in model
ORFs Reactions Isozymes ORFs Reactions ORFs Reactions
K-12 MG1655 - - - - - - 1,339 2428
K-12 W3110 0 0 0 4 0 0 1,335 2428
EDL933 38 8 20 51 60 10 1,344 2,376
Sakai 36 8 24 52 61 10 1,345 2,375
CFT073 2 25 85 66 9 1,288 2,362
uTig9 8 2 26 71 63 5 1,302 2,367
E. coli pangenome 79 32 255 - - - 1,712 2452
E. coli core 286 184 24 1,053 2,244

“Necessary reactions without an associated gene for in silico models

number of these reactions without associated genes var-
ied from 5 to 10 for each of the pathogenic E. coli strains
(Table 4). Five of these reactions without associated
genes were required in all four pathogenic E. coli GEMs
(Additional file 9). Of the remaining five reactions, two
were required for strains EDL933 and Sakai, one was
required for strains EDL933, Sakai, and UTI89, and the
remaining three are specific to E. coli strain CFT073.

Even though the genomes of the four pathogenic E.
coli strains contain between 700-1,000 genes not present
in the genome of E. coli K-12 MG1655, relatively few
pathogen-specific metabolic genes were added to each
GEM (Table 4). Eight new reaction additions were
unique to the GEMs of the EHEC strains
(iEco1344_EDL933 and iEco1345_Sakai) and consisted
of urease, UDP-N-acetylglucosamine 4-epimerase, salicy-
late hydroxylase, gentisate 1,2,-dioxygenase, sucrose
transport, tellurite reduction, fucose synthetase, and per-
osamine synthetase reactions. The two UPEC strain
GEMs (iEco1288_CFT073, and iEco1301_UTI89) shared
only one lineage-specific reaction addition for propio-
nate CoA-transferase and each has a single strain-speci-
fic reaction addition unique to each strain; galactose
isomerase activity for iEco1288_CFT073 and hydroxy-
pyruvate reductase activity for iEco1301_UTI89.

In contrast to the relatively small number of gene and
reaction additions there were a large number of reaction
deletions for the pathogenic strain GEMs compared to
iEco1339_MG1655 (Figure 3, Additional file 15). For
EHEC strain GEMs, iEco1344_EDL933 and iEco1345_-
Sakai, there were 52 genes found in the E. coli K-12
MG1655 GEM (iEco1339_MG1655) that had no ortho-
logous gene in the genomes of the two EHEC strains.
These missing genes resulted in 60 reaction deletions in
both iEco1344_EDL933 and iEco1345_ Sakai, and these
were classified based on metabolic subsystem (Figure
1D). There was only one additional reaction deletion
unique to iEco1345_Sakai for D-cysteine desulfhydrase,
whereas the ORF encoding this enzyme was still intact

in the EDL933 strain. For each of the two UPEC strains
there were 55 reactions that were missing in both
iEco1288_CFT073 and iEco1301_UTI89 compared to
iEco1339_MG1655, and these were further classified
into metabolic subsystems (Figure 1E). Each of the two
UPEC strains also contained numerous reaction dele-
tions unique to each strain (Additional file 5).

When GEMs for all four pathogens (iEco1344_EDL933,
iEco1345 Sakai, iEcol1288 CFT073, and iEcol3
01_UTI89) were compared to those of the two K-12
strains (iEco1339_M@G1655 and iEco1335_W3110), 21
shared reaction deletions were common to all four patho-
genic E. coli strains, and they were categorized into the
metabolic subsystems of alternate carbon metabolism,
cell envelope biosynthesis, inorganic ion transport and
metabolism, lipopolysaccharide biosynthesis, methionine
metabolism, nitrogen metabolism, inner membrane
transport, and outer membrane transport (Figure 1F).

Assessment and validation of models for carbon source
utilization

To evaluate the accuracy of the GEMs for all six E. coli
strains, we examined each strain’s ability to use different

E. coli 0157:H7 (EHEC) strains

Eco1344_EDL933
2,376 reactions

8 RXN additions
39 RXN deletions

E. coli K12 strains
(Eco1339_MG1655

& Eco1335_W3110) 21 RxN deletion:
2,428 reactions - 7

[1 RXN deletion _ Ec01345_Sakai

2,375 reactions

@

E. coli (UPEC) strains

TR oo™ Eco1288_CFTO73

» 2,362 reactions
1 RXN additions

34 RXN deletions{

8 RXN deletions

LLRXN addiion . £41301_UTI89

2,367 reactions

Figure 3 A summary of lineage-specific reaction additions and
deletions in comparison to the E. coli K-12 GEMs.
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carbon sources under aerobic and anaerobic conditions
using Biolog phenotypic arrays. There were numerous
strain-specific differences in carbon source utilization in
both aerobic (Figure 4A) and anaerobic conditions (Fig-
ure 4B). These experimental results were then compared
to FBA predictions of growth using different carbon
sources. For those compounds included in the Biolog
plates that have transporters in the model, FBA was
used to predict if they could be used for growth as sole
carbon source. This included 76 potential carbon
sources for the six E. coli strains and 54 potential car-
bon sources for Salmonella LT2. If FBA calculated a
zero growth rate then the compound was predicted not
to be usable as a sole carbon source, while positive cal-
culated growth rates indicated that the model predicted
the compound could be used as the sole carbon source.
Of the 76 compounds, there were 59 (aerobic) and 56
(anaerobic) carbon sources where model predictions and
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experiments agreed for all six E. coli models (Additional
file 7). The 16 and 19 carbon sources with discrepancies
between in silico and experimental results in at least
one model (shown in Figure 5) fall into two categories i)
when strains did not grow and the model predicted
growth (false positive), and ii) instances where strains
grew and the model predicted no growth (false
negative).

For aerobic carbon source utilization, the number of
false positives varied from one to four, and the most
accurate models (one false positive each) were for E. coli
K-12  W3110 (iEco1335_W3110) and UTI89
(iEco1301_UTI89) (Figure 5). The number of aerobic
false negatives was greater than false positives and ran-
ged from three to seven with the least observed for
iEco1339_MG1655 and the most observed for
iEco1288_CFT073. Of these model-data discrepancies,
there were some carbon sources that led to inaccurate

1,2-Propanediol, Sucrose,
M-Tartaric acid,

Ael"ObiC Phenylethylamine (-) E coliK12 MG1655
Phenyl Acetic acid (-) E. coli K12 W31 1 0
Lipxose () [ipceticacd () E. coli EDL933 (EHEC)
D-Aspartic Acid (-)

D-Glucosaminic acid, L-Lyxose,

Tricarballylic acid, D-Threonine (-) E. co li CFTO73 (UPEC)
D-Cellobiose,
Phenylethylamine (-)

E. coli Sakai (EHEC)

*15 carbon sources (-)

E. coli UTI89 (UPEC)

Aminoethanol (-)

B

Anaerobic

*15 carbon sources =1,2-Propanediol, D-Lactose, Lactulose, Sucrose, Glutaric Acid-Lactone, Adonitol, Glycolic Acid, D-
Cellobiose, Acetoacetic Acid, D-Malic Acid, D-Psicose, L-Galactonic Acid-?-Lactone, D-Galacturonic Acid, Phenylethylamine, 2-

Salmonella LT2

Adonitol, D-Threonine,
D-Cellobiose, D-Psicose,
Glucuronamide,
Phenylethylamine,
2-Aminoethanol (-)

E. coli K12 MG1655

Tween 80 (-)

E. coliK12 W3110

L-Lyxose (-)

Tween 40 (-)

D-Aspartic acid, Glyoxylic acid (-) E. coli EDL933 (E H EC)

Tween 20, Tween 80 (-)

E. coli Sakai (EHEC)

2-Aminoethanol (-)

Tween 80, Adonitol, D-Psicose,
Phenylethylamine (-)

E. coli CFTO73 (UPEC)

E. coli UTI89 (UPEC)

D-Psicose, Glucuronamide, Phenylethylamine (-) Salmonella LT2

Figure 4 Carbon source utilization results based on phylogeny of E. coli and S. typhimurium strains used in this study. Experimental
carbon source utilization results for both aerobic (A) and anaerobic conditions (B).
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coli or Salmonella strain
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MG1655
W3110

™
~
(o]
|—
(18
O

EDL933

Sakai
UTI89
LT2

MG1655
W3110
EDL933
Sakai
CFTO73
UTI89

Carbon source

Formic acid
L-Fucose
D-Melibiose
D-Aspartic acid
1,2-Propanediol
o-Keto-Butyric acid
Sucrose
M-Tartaric acid
M-Inositol
D-Threonine
Glycolic acid
Acetoacetic acid
Tyramine
L-Lyxose
D-Galacturonic acid
Phenylethylamine

Anaerobic

HHEH

Succinic acid
L-Proline
Formic acid
L-Fucose
Acetic acid
D-Melibiose
D-Aspartic acid
1,2-Propanediol
o-Keto-Butyric acid
M-Inositol
D-Threonine
Propionic acid
Glycolic acid
L-Threonine
Acetoacetic acid
Tyramine
L-Lyxose
D-Galacturonic acid
Phenylethylamine

Max Z=

VBiomass

VRESP1 + vRESP2

[] = False negative (in silico =N experimental =Y)
B = False positive (in silico =Y experimental =N)

= In agreement

[ ] = Metabolite not included in metabolic model

Figure 5 Resolution of in silico and experimental carbon source discrepancies. Carbon source utilization discrepancies for comparison of
experimental and in silico data and the respective objective function (2) used for flux balance analysis.

J

predictions by all six E. coli strain specific models such
as the utilization of D-aspartic acid (false positive) and
M-inositol and tyramine (false negative). The two patho-
genic lineages (EHEC or UPEC) exhibited some lineage-

specific false negatives for alpha-keto-butyric acid and
acetoacetic acid utilization (iEcol1344_EDL933 and
iEco1345_Sakai) or D-melibiose (iEco1288_CFT073 and
iEco1301_UTI89). FBA predictions using a mixture of
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L- and R- isomers of 1,2 propanediol (a racemic mixture
of 1,2 propanediol is used as the sole carbon source in
Biolog PM1 plates) resolved aerobic false negative dis-
crepancies for 1,2 propanediol for five E. coli strains,
without introducing any new false positives (data not
shown).

For anaerobic carbon source utilization, there were no
false positives observed for three E. coli strains
(iEco1335_W3110, iEco1288_CFT073, and iEco1301_UT
189) and either one or two false positives observed for
carbon sources such as D-Threonine (iEco1339_MG
1655), D-Aspartic acid (iEco1344_EDL933), and L-Lyx-
ose (iEco1344. EDL933 and iEco1345_Sakai). In contrast
to the aerobic results, there were generally more false
negative than false positive predictions, with the number
of false negatives ranging from 10 (for iEco1339_MG
1655) to 14 (for iEco1288_CFT073) for the six E. coli
strains (Figure 5). Of these compounds associated with
anaerobic false negatives, there were 10 that led to inac-
curate growth predictions for all six E. coli strains (suc-
cinic acid, formic acid, acetic acid, 1,2-propanediol,
alpha-keto-butyric acid, M-inositol, propionic acid, gly-
colic acid, acetoacetic acid, and tyramine) (Figure 5).

The Biolog phenotype assay uses reduction of a colori-
metric tetrazolium dye to measure microbial respiration.
Our initial FBA predictions used an objective function
that relates to the ability of the bacterium to convert a
particular carbon source into biomass. There may be
carbon compounds that the bacteria are able to metabo-
lize but which do not result in measurable growth, thus
leading to false negatives. To see if changing the objec-
tive function from biomass production to indicator dye
reduction improves the FBA predictions under both
aerobic and anaerobic conditions, two additional reac-
tions were added to each of the models representing the
movement of electrons from reduced quinones to the
indicator dye used in Biolog plates (RESP1: mql8 => 2H
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" + mqn8; and RESP2: q8h2 => 2H" + ¢8). FBA was
used again but a new objective function, equal to the
sum of flux through these two new reactions, was maxi-
mized. If the maximum sum of fluxes was zero then the
model predicted the carbon source could not be meta-
bolized, while a positive sum of fluxes indicated a car-
bon source could be metabolized. These new FBA
predictions (using respiration instead of growth as an
objective) significantly reduced the number of anaerobic
false negatives to between two (iEco1339_MG1655) and
eight (iEco1288_CFT073) (Figure 5 and Table 5), while
not affecting the number of false positives.

Overall, once the FBA objective was changed from
biomass to respiration, all E. coli models exhibited a sta-
tistically significant relationship between model predic-
tions and experimental growth phenotypes (chi-squared
test statistic yields p < 0.05) for both aerobic (>88%
accurate) and anaerobic (>89% accurate) conditions
(Table 5). The carbon sources M-Inositol and tyramine
still led to false negative predictions for all E. coli mod-
els examined under both aerobic and anaerobic condi-
tions, which may indicate that missing reactions or gaps
may exist in pathways for utilization of these carbon
compounds. When considering both the aerobic and
anaerobic conditions the overall accuracy for individual
strain-specific models was iEco1301_UTI89 (95.3%),
iEc01335_W3110 (94.7%), iEco1339_MG1655 (93.4%),
iEco1345_Sakai (91.4%), iEco1344._EDL933 (90.8%), and
iEco1288_CFT073 (88.8%).

Batch growth predictions

To further evaluate model predictions, dynamic FBA was
used to predict time-courses (for substrate, product and
cell concentrations), exponential growth rates (1/hr) and
biomass yields (gDW cells/g glucose) for aerobic and
anaerobic batch cultures in MOPS minimal media with
the addition of glucose as the sole carbon and energy

Table 5 Carbon source utilization with respiration as FBA objective function.

E. coli K-12 E. coli 0157:H7 (EHEC)®  E. coli (UPEC)® S. typhimurium
Strain MG1655 W3110 EDL933 Sakai CFT073 uTigo LT2
Condition 0O, NoO, O, NoO, O, NoO, O, NoO, O, NoO, O, NoO, O, No O,
Tested compounds included in models 76 76 76 76 76 76 76 76 76 76 76 76 54 54
True positive® 71 67 74 74 73 72 74 72 71 75 73 70 39 51
True negatived 5 9 2 2 3 4 2 4 5 1 3 6 15 3
False positive® 4 1 1 0 2 2 2 1 3 0 1 0 2 0
False negativef 3 2 2 3 5 5 5 5 6 8 3 3 0 0

“Enterohemorrhagic E. coli (EHEC)
PUropathogenic E. coli (UPEC)
“Experimental = Y

9Experimental = N

®Experimental = N and in silico = Y
fExperimental = Y and in silico = N
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source. Batch culture experiments were conducted for
each strain, and conversion factors for optical density to
biomass, optical density to viable cell concentration, and
biomass per viable cell values (Table 3) were determined
for each strain in both anaerobic and aerobic conditions.
These conversion values were then used to approximate
starting biomass values used in the dynamic FBA simula-
tions. For each E. coli strain, the maximum glucose uptake
rates used for dynamic FBA were those reported for E. coli
K-12 strain W3110 [73] (10 and 18.5 mmol glucose/gDW/
h for aerobic and anaerobic conditions, respectively). The
predicted growth rates and biomass yields from the model
were then compared to experimental results of batch cul-
ture of each strain under anaerobic or aerobic conditions.
For both aerobic or anaerobic growth conditions, the cal-
culated growth rate (1/hr) for each E. coli strain was com-
pared to the experimentally determined values (Table 6)
and the agreement between in silico and experimental
values was strong and significant (Pearson correlation test
statistic yields p < 0.0002 for both aerobic and anaerobic
conditions), yet when viewed separately for aerobic or
anaerobic conditions, the correlation was not as strong
and was not significant (Pearson correlation test statistic
yields p < 0.37 for aerobic, and p < 0.45 for anaerobic con-
ditions). In addition, the growth yields were calculated
under aerobic or anaerobic growth conditions in MOPS
minimal media for both aerobic and anaerobic growth
conditions, and the in silico growth yields for each strain
were compared to those determined experimentally (Fig-
ure 6) and the agreement between in silico and experimen-
tal values was strong and significant (Pearson correlation
test statistic yields p < 0.0001 for both aerobic and anaero-
bic conditions).

The maximum glucose uptake rate from one E. coli
strain from each lineage K-12 (MG1655), EHEC
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(EDL933), UPEC (UTI89) was determined from experi-
mental data for both aerobic and anaerobic conditions.
These results revealed that the uptake rates for E. coli
K-12 MG1655 were not similar to previously published
values for E. coli K-12 W3110 (Table 6). When com-
pared to the two pathogenic lineages, the two E. coli K-
12 strains appear to have significantly higher glucose
uptake rates in aerobic conditions but significantly lower
glucose uptake rates in anaerobic conditions. The
dynamic FBA simulations were repeated using the mea-
sured lineage-specific glucose uptake rates as para-
meters. The recalculated growth rates (Table 6), still
showed a moderately strong correlation overall between
in silico and experimental values (p < 0.0006), yet when
viewed separately, resulted in a decreased correlation for
aerobic conditions, and a increased correlation between
in silico and experimental values for anaerobic condi-
tions (Pearson correlation test statistic yields p <
0.00003). Figure 7 shows a phylogenetic tree of the
strain relationships plotted along with the growth rate
data, displaying the aerobic and anaerobic growth rates
calculated without the uptake rate correction. Addition-
ally we determined the amount of time needed to reach
stationary phase experimentally and computationally
using dynamic FBA for each strain in each condition.
Evaluation of these results reveal that some of the
pathogenic lineages attain final biomass in less time
compared to the E. coli K-12 strains (Table 7).

Analysis of reaction essentiality

To further explore the metabolic differences and simila-
rities between all six E. coli strain-specific GEMs, we
compared reaction essentiality predictions for in silico
conditions simulating aerobic and anaerobic growth in
glucose minimal media. The number of predicted

Table 6 Comparison of experimental and in silico net specific growth rates (h™).

Aerobic Anaerobic
Hexp Min silico” Hin silicollb Hexp Min silico” Hin silicollb

E. coli MG1655 0.56 + 0.03 0.74 £ 0.00 0.82 + 0.05 0.39 £+ 0.01 0.52 £ 0.00 0.19 £ 0.00
E. coli W3110 0.54 + 0.01 0.74 £ 0.00 0.82 £ 0.00 0.33 £ 0.01 0.52 £ 0.00 0.19 £ 0.00
E. coli EDL933 0.79 + 0.08 0.74 £ 0.00 0.63 £ 0.00 0.56 + 0.04 0.53 £ 0.00 0.56 + 0.01
E. coli Sakai 0.80 + 0.01 0.74 £ 0.00 0.63 £ 0.00 0.68 + 0.01 0.53 £ 0.00 0.56 + 0.00
E. coli CFT073 0.76 + 0.01 0.71 £ 0.00 0.60 £ 0.00 040 + 0.01 045 £ 0.00 042 + 0.00
E. coli UTI89 0.55 + 002 0.72 £ 0.01 061 £ 001 0.64 + 0.01 045 + 001 042 + 001
E. coli core - 071 0.71 045 0.37

E. coli pangenome - 0.74 0.73 0.53 042

S. typhimurium LT2 0.86 + 0.05 0.73 £ 0.00 - 0.54 + 0.01 044 + 0.00

“Maximum oxygen uptake rates (15 mmol/gDW/h) and glucose uptake rates for aerobic (10 mmol/gDW/h) and anaerobic (18.5 mmol/gDW/h) conditions were
used for in silico batch simulations in this work were those previously determined for E. coli W3110 from batch culture in M9 minimal media [73]
PExperimentally determined glucose uptake rate values from this work used for in silico batch simulations for E. coli K-12 (15.5 for aerobic and 8.1 for anaerobic),
EHEC (7.9 for aerobic and 19.2 for anaerobic) or UPEC (7.7 for aerobic and 17.5 for anaerobic). For the core and pangenome models the average experimentally
determined glucose uptake rate values from this work was used (10.3 for aerobic and 14.9 for anaerobic).
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A

Aerobic

Value

B = Vi, siico growth yield (gDW/g)

M- Yexperimental growth yield (gDW/g)
= Win silico growth rate (1/h)

M= Hexperimental growth rate (1/h)

Figure 6 Comparison of in silico and experimentally determined growth characteristics. Strain specific batch growth values determined
using MOPS minimal media with the addition of 0.2% glucose for (A) aerobic and (B) anaerobic growth conditions.

0.8

Anaerobic

Value

essential reactions shared in common for all six E. coli
strains and also the E. coli ancestral core in both aerobic
and anaerobic growth conditions was determined (n =
280) (additional file 16), and their corresponding reac-
tions were further classified by metabolic subsystem
(Table 8). Additionally for all six E. coli strains and the
E. coli ancestral core, there were 15 additional conserved
essential reactions predicted to be required under anae-
robic conditions and these involve reactions assigned to
subsystems for anaplerotic reactions (1), citric acid cycle
(1), cofactor and prosthetic group biosynthesis (5), gly-
colysis/gluconeogenesis (2), purine and pyrimidine bio-
synthesis (1), inner membrane transport (2), and outer
membrane transport (1). In addition to the shared pre-
dicted essential reactions for all E. coli strains examined,
there were two lineage-specific reactions predicted as
essential under both aerobic and anaerobic conditions
for both EHEC strains (iEco1344_EDL933, iEco1345_Sa-
kai), and the corresponding reactions were for fumarate
reductase and glycolate oxidase. For the E. coli ancestral

core (iEcol053_core), there were five additional reac-
tions predicted as essential that were not predicted for
any of the six E. coli strains (additional file 16), and
these involve reactions assigned to subsystems for ala-
nine and aspartate metabolism, glutamate metabolism,
inner membrane transport, glycolate exchange, and
outer membrane porin transport.

Discussion

This study describes the generation of GEMs represent-
ing the union (pangenome) and also the intersection
(core) of all identifiable metabolic reactions contained in
sixteen genomes of E. coli. We used the E. coli pan-
GEM to rapidly construct six E. coli strain-specific
GEMs. A comparison between model growth predic-
tions and Biolog phenotypes measured in the laboratory
demonstrated an accuracy of more than 88%, including
those under anaerobic conditions Additional quantita-
tive data was generated for each strain and used to vali-
date the correlation between model predictions and
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Figure 7 Maximum likelihood phylogeny of E. coli and S. typhimurium strains used in this study constructed using the concatenated
nucleotide sequence for 7 housekeeping genes. In silico E. coli core and strain-specific experimentally determined growth rates (blue), growth
yield (green), and time to attain final biomass during batch growth (red) during aerobic (A) or anaerobic conditions (B).

0.44/0.13/8.8 Salmonella LT2
| (in silico) |

experimental physiology of the strains in the laboratory.
These new E. coli GEMs serve as a framework to exam-
ine genome-scale metabolic similarities and differences
between strains in an evolutionary context with respect
to the commensal, EHEC, and UPEC lineages.

The two E. coli K-12 strains (MG1655 and W3110)
are widely used laboratory strains that are believed to

have diverged from the same parental strain (strain
EMG2 or WG1) approximately 50 years ago [77]. The
sole identified metabolic differences between the two E.
coli K-12 strains based on genome comparison include
the gatA gene that is involved in galactitol transport,
dcuA and dcuC involved in C4-dicarboxylate transport
metabolism, and also tnaB thought to be involved in the



Baumler et al. BMC Systems Biology 2011, 5:182
http://www.biomedcentral.com/1752-0509/5/182

Page 15 of 21

Table 7 Time (h) to reach final biomass values in batch growth under both aerobic and anaerobic conditions.

Strain Aerobic Anaerobic
In silico Experimental In silico Experimental
E. coli K-12 MG1655 103 £ 0.3 90+£00 7.0 £ 0.1 9.0+ 00
E. coli K-12 W3110 90+ 03 100 £ 0.0 7.0 £ 0.1 100 + 0.0
E. coli EDL933 95+ 0.1 80 £00 64 + 0.1 80+ 00
E. coli Sakai 9.0+ 00 80£00 6.6 £ 0.1 80+ 00
E. coli CFTO73 96 + 0.1 70+ 00 74 £ 0.1 80+ 00
E. coli UTI89 91 +02 70+ 00 72 £ 0.1 70+ 00
E. coli core 9.7+ 00 - 75+ 00 -
Salmonella LT2 105+ 00 70 £ 00 88 £ 0.2 80+ 00

utilization of tryptophan as a carbon and/or nitrogen
source [77]. Of these four metabolic gene differences,
only inactivation of gatA leads to a loss of a reaction in
iEco1335_W3110, compared to iEco1339_MG1655 since
dcuA, dcuC and tnaB have other isozymes. The gatA
gene contains an insertion sequence (IS) element in E.
coli W3110, which suggests a phenotypic loss for galac-
titol utilization as a carbon source, yet experimental
data (Figure 5) reveals that the strain can still use this
substrate as sole carbon source, indicating that other
transporters may permit galactitol transport for E. coli
W3110. Although the two E. coli K-12 strains (MG1655
and W3110) exhibited no differences in their GEMs,
quantitative and strain-specific differences were
observed during batch growth in minimal media with
glucose as the sole carbon source. While in silico predic-
tions for growth yield were similar for

iEc01339_MG1655 and iEco1335_W3110, experimental
data reveal that in both aerobic and anaerobic condi-
tions, strain MG1655 had higher growth yields, higher
growth rate, and attained the final biomass value in less
time than strain W3110 (Figure 7). Therefore, although
the in silico models for these two strains are nearly
indistinguishable, strain specific differences in complex
traits such as biomass composition [78], ATP require-
ments, PO ratios, and glucose uptake rates may account
for these experimental differences. Previous studies have
shown that despite their nearly identical genomes and
very similar growth patterns in a bioreactor, W3110 and
MG1655 have many significant differences in their tran-
scriptomes and proteomes. These include differential
expression of pathways affecting central metabolism and
the generation of precursor metabolites and energy [79]
suggesting that future models for even these very similar

Table 8 Subsystem classification for essential reactions predicted for all six E. coli strains under aerobic conditions

(n = 282).

Subsystem Number of essential genes Percentage(%)
Alternate Carbon Metabolism 3 1.1
Amino Acid Metabolism 151 535
Cell Envelope Biosynthesis 41 14.5
Citric Acid Cycle 4 14
Cofactor and Prosthetic Group Biosynthesis 72 255
Folate Metabolism 3 1.1
Glycerophospholipid Metabolism 12 43
Inorganic lon Transport and Metabolism 7 25
Lipopolysaccharide Biosynthesis/Recycling 11 39
Membrane Lipid Metabolism 2 0.7
Murein Biosynthesis 2 0.7
Nucleotide Salvage Pathway 8 28
Purine and Pyrimidine Biosynthesis 19 6.7
Transport, Inner Membrane 3 1.1
Transport, Outer Membrane 13 47
Unassigned 1 04
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strains will need to account for subtle genetic differ-
ences between strains to accurately predict phenotypic
traits in simulated culture conditions.

Previous analyses of the E. coli pangenome estimated
that on average each new E. coli genome sequence
added about 176 unique genes to the pangenome [8,9],
and among these unique genes, we found each addi-
tional E. coli genome resulted in 27 metabolic gene
additions corresponding to about 2 new metabolic reac-
tions and 20 isozymes suitable for inclusion in the pan-
GEM (Figure 2). Clearly some of the metabolic differ-
ences between E. coli strains are due to the addition of
genes with new metabolic activity. However, our ability
to add new reactions to the metabolic reconstructions is
severely limited by the paucity of experimental charac-
terization of the metabolic genes, proteins, and reactions
unique to pathogenic strains. Since the strain-specific
portions of the genomes remain largely uncharacterized,
our current understanding of the metabolic functions
they encode is dominated by the presence and absence
of genes encoding functions represented in the
iEco1339_MG1655 GEM. Many of the genes included in
this model are not universally conserved among the gen-
omes we examined; resulting in strain-specific GEMs
with an average of 70 fewer genes than
iEco1339_MG1655 (Table 9). This observation is also
consistent with draft GEMs generated using the Model
SEED [80] where the GEM for E. coli MG1655 con-
tained more genes (>60) and reactions (>460) than the

Table 9 Number of strain-specific orthologous genes in
common with those contained in iEco1339_MG1655

Strain ORFs
E. coli K-12 MG1655 1,339
E. coli EDL933 (EHEC) 1,260
E. coli 53638 (EIEC) 1,226
E. coli CFT073 (UPEC) 1,234
E. coli E2348/69 (EPEC) 1,221
E. coli EC4115 (EHEQ) 1,247
E. coli UTI89 (UPEC) 1,242
E. coli E24377A (ETEC) 1,292
E. coli Sakai (EHEC) 1,257
E. coli SE11 1,319
E. coli APEC O1 (APEC) 1,245
E. coli SMS-3-5 1,292
E. coli 536 (UPEC) 1,229
E. coli HS 1,289
E. coli ATCC 8739 1,312
E. coli K-12 W3110 1,335
E. coli core 1,053
Salmonella enterica typhimurium LT2 1,135

Page 16 of 21

draft GEMs for all four pathogenic E. coli strains exam-
ined in this work (data not shown).

Although carbon source utilization has become a stan-
dard method to assess the validity of computational
metabolic model predictions, this study was the first to
examine this procedure under anaerobic conditions.
Initially, the accuracy of predictions for carbon source
utilization during anaerobic conditions was less than
those determined during aerobic conditions. We
account this difference to comparisons between Biolog
carbon source assays, which examine the ability of a
microbial strain to generate energy from each sole car-
bon source, to in silico analysis that determines growth
as a positive flux value for the biomass reaction. One
possible explanation for experimental and in silico data
discrepancies may be that a microbial strain may be able
to generate energy from a given carbon source, but that
the carbon source is not suitable to sustain growth (i.e.
generate a positive biomass value). Therefore, rather
than maximize the objective value for the biomass equa-
tion, we added two reactions to monitor the ability to
generate energy through electron transfer to quinones,
and in many cases this analysis resolved discrepancies
between in silico predictions and experimental data,
especially for anaerobic conditions. Although this meth-
odology of examining carbon source utilization seems
trivial, validation for accurate carbon source utilization
is important for modeling complex environments such
as those encountered in a host, as 31 of the 76 carbon
sources tested here were used to simulate the conditions
reflecting invasion of a human cell to study S. typhimur-
ium LT2 infection [69]. Therefore, the validation of
these strain-specific metabolic models for carbon source
utilization will prove useful for future computational
modeling of pathogenic E. coli strains in conditions
encountered in the gastrointestinal tract or in other
locations such as the urinary tract in mammalian hosts.

With the generation of the first GEMs for pathogenic
E. coli strains, two EHEC strains and two UPEC strains,
properties of these genome-scale metabolic networks
were investigated to identify differences that may play a
role in human disease. We analyzed two E. coli O157:
H7 strains associated with foodborne outbreaks, strain
EDL933 isolated from ground beef in the U.S in 1982
and strain Sakai isolated from contaminated radish
sprouts that sickened thousands in Japan in 1996.
Strains CFT073 and UTI89, which cause human disease
outside of the intestine, were isolated from patients with
acute urinary tract infections. A comparison of reaction
deletions between the EHEC and UPEC metabolic net-
works reveals that the EHEC strains have more missing
genes corresponding to reactions for inner membrane
transport in comparison to the UPEC strains. In addi-
tion, the reaction deletions that occur in both
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pathogenic lineages relative to E. coli K-12 strains are
mainly associated with genes involved in lipopolysac-
charide biosynthesis/recycling and alternate carbon utili-
zation. It seems likely that some of these missing
reactions are the result of acquisition of genes during
the evolution of the K-12 lineage. Perhaps some of the
reactions missing from both pathogen lineages arise
from parallel deletions arising from selective pressures
common to both pathogens.

Batch growth experiments were conducted to compare
growth yields, growth rates, and the amount of time to
attain final biomass among strains. We were surprised
that EDL933, Sakai and CFT073 have significantly
higher growth rates than MG1655 during aerobic
growth conditions yet the in silico predictions reveal lit-
tle to no differences. We sought to determine if strain-
specific glucose uptake rates may improve in silico
growth rate predictions. Experimentally determined glu-
cose uptake rates were actually lower for EDL933 and
CFT073 than for MG1655, and did not improve in silico
predictions. The growth yield values we measured in the
laboratory also showed significantly (student’s t-test sta-
tistic yields p < 0.05) higher yields for EDL933 and
CFTO073 than the two K-12 strains, but in silico predic-
tions showed only minor strain-to-strain variations.
Dynamic FBA using the strain specific E. coli GEMs pre-
dicts a similar growth rate from all models including the
model for the ancestral core of E. coli. Yet the actual
growth rates determined experimentally vary signifi-
cantly between strains suggesting that our models are
not accounting for some strain-specific factors such as
oxygen uptake rates, biomass composition, ATP require-
ment parameters, or additional uncharacterized reac-
tions. The length of time required to attain final
biomass was significantly (student’s t-test statistic yields
p < 0.05) shorter for the four pathogens suggesting that
they may be more efficient at biomass production dur-
ing glucose catabolism, and dynamic FBA analysis accu-
rately predicted this phenotypic difference among the
strains.

In anaerobic batch growth conditions there were also
differences between strains. All pathogenic strains have
higher growth rates than the K-12 strains. The FBA pre-
dictions for EHEC strains both reflect this phenotype,
but the in silico growth rate predictions for the UPEC
strains did not reflect this trend. The experimentally
determined glucose uptake rates are higher for both
pathogenic lineages than K-12, and these organism-spe-
cific parameters improved the FBA predictions. The
growth yields determined experimentally are signifi-
cantly (student’s t-test statistic yields p < 0.005) higher
for the four pathogens than the K-12 strains. The length
of time required to attain final biomass predicted by
FBA and determined experimentally was significantly
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(student’s t-test statistic yields p < 0.05) shorter for the
EHEC strains than the K-12 strains. Overall, for anaero-
bic glucose catabolism, all four pathogens appear to
grow better than both E. coli K-12 strains.

Even though the metabolic networks of each E. coli
strain differ, there were relatively few strain-to-strain
differences in reactions predicted as essential for the
two growth conditions examined. While there were
some identified for all strains that were unique for anae-
robic growth in comparison to aerobic, there were rela-
tively few differences between all strains. The two
reactions (fumarate reductase and glycolate oxidase)
predicted as essential for the E. coli O157:H7 strains,
play essential metabolic roles for glycolate recycling and
the reoxidation of menaquinol, and represent new tar-
gets for control strategies that may help to prevent and
treat human EHEC illness.

The comparison of the pan- and core-GEMs reveals
that a substantial fraction of the reactions in our current
pan-GEM are also in the ancestral core-GEM (92%).
However, our knowledge of the detailed biochemistry of
the pangenome is likely incomplete since many of the
genes in other E. coli strains have unknown functions.
One reason why the number of reactions in the core-
and pan-GEMs are so similar is because the genes that
have been well-characterized biochemically in E. coli
tend to be the genes that are conserved and likely ances-
tral. While the pathogenic E. coli strains are of great
interest medically, they are not typically the focus of
intense biochemical study to uncover the functions of
their novel metabolic genes.

Overall, when data for aerobic conditions is viewed
phylogenetically (Figure 7A), there is no clear trend spe-
cific to the two pathogenic lineages, yet it appears that
E. coli CFT073 has evolved with a similar growth rate in
comparison to the E. coli ancestral core predictions,
where as all other strains have evolved with higher
growth rates and yields (Figure 7A).

In contrast, in anaerobic conditions (Figure 7B),
higher growth yields and faster batch growth perfor-
mance were observed for both EHEC E. coli strains
(EDL933 and Sakai), and the insight derived from E. coli
ancestral core in silico predictions suggest that the
UPEC and K-12 lineages have evolved with less efficient
anaerobic glucose catabolism then the EHEC lineage.
One possible explanation for this behavior may be that
the K-12 and UPEC strains do not routinely encounter
the selective pressure from anaerobic conditions,
whereas the EHEC strains may have evolved for
improved growth in anaerobic conditions enabling their
growth in both bovine and mammalian GI tracts, thus
suggesting that many EHEC strains may have a better-
suited anaerobic metabolism for glucose utilization.
These findings suggest that E. coli K-12 strains could be
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engineered to be more efficient for anaerobic batch
growth and that other E. coli strains not examined in
this work may yield similar results, yet additional studies
are warranted to examine more E. coli strain-specific
GEMSs, quantitative parameters, and catabolism of addi-
tional substrates other than glucose.

Conclusions

Here we have presented an update to the E. coli K-12
MG1655 GEM and an extensive new collection of
GEMs for five E. coli strains including the first for two
pathogenic lineages. These models have been validated
through experimental data for aerobic and anaerobic
conditions. This work demonstrated a new approach for
validation of carbon source utilization, yielding accura-
cies of >88% for aerobic and anaerobic conditions for all
six E. coli strains examined. In addition new lineage-spe-
cific quantitative data were generated and led to valida-
tion of the correlation between in silico predictions and
experimental batch culture data for glucose catabolism
during aerobic and anaerobic growth conditions. Thus,
the iEco1339_MG1655, iEcol1335_W3110, iEcol3
44_EDL933, iEco1345_Sakai, iEco1288_CFT073, and
iEc01301_UTI89 GEMs provide new suitable platforms
for computing cellular phenotypes in conditions reflect-
ing those encountered in mammalian hosts such as the
intestine or urinary tracts and for further integration of
high throughput data generated from these bacterial
strains during the course of infection in animal models.

Distinctive lineage-specific differences in the GEMs
were identified and reveal that the main delineating
metabolic factors between pathogenic and commensal E.
coli strains are due to numerous gene/reaction deletions
and not additions, and this observation was consistent
with the number of genes and reactions contained in
draft GEMs for all six E. coli strains generated using
Model SEED. Historically many researchers have noticed
that some pathogenic E. coli strains grow faster in com-
parison to commensal strains such as K-12, yet this phe-
notype has remained unexplained. These strain-specific
models offer new tools for further investigation to deter-
mine precisely what combination of gene/reaction dele-
tions account for the faster and more efficient biomass
production observed experimentally for some of the
pathogenic strains, thus providing new insight for bioen-
gineering of industrial E. coli strains.

The generation of an E. coli pan-GEM (iEco1712_pan)
consisting of all metabolic genes and reactions from 16
E. coli genomes, represents a new framework to rapidly
generate additional E. coli strain/lineage-specific GEMs
consisting of > 1,200 genes and >2,000 metabolic reac-
tions. Finally, this study is the first to use a “paleo sys-
tems biology” approach to generate a GEM for an
ancestral core of E. coli (iEco1053_core) providing the
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first insight to metabolic traits of an E. coli relative that
may have existed ~10 mya, and demonstrated the use of
an ancestral model to examine a closely related phyloge-
netic group of E. coli strains in the context of evolution.

Additional material

Additional file 1: Genome-scale metabolic model for E. coli K-12
strain MG1655. SBML format of iEco1339_MG1655 for distribution and
use in other modeling environments.

Additional file 2: Gene to protein to reaction (GPR) updates for E.
coli K-12 MG1655 in the final version of the reconstruction. This file
contains two tables, the first contains all new GPR information added to
the previous E. coli K-12 MG1655 GEM (iAF1260), and the second
contains the final GPR information for iEco1339_MG1655.

Additional file 3: Orthologous gene cluster groupings for all ORFs
in 16 E. coli genomes and one Salmonella genome. This file contains
the mapping of orthologous cluster group identifiers to each ASAP
feature identifier and locus tag for all ORFs contained in the genomes of
16 strains of £. coli and one Salmonella genome.

Additional file 4: E. coli pangenome orthologous cluster group
identifier (OCG) to protein to reaction information for the E. coli
pan-GEM. This file contains four tables, the first contains all gene
additions, the second contains all metabolite additions, and the third
contains all reaction additions to iEco1339_MG1655 to construct the E.
coli pan-GEM (Eco1712_pan). The fourth table contains the final OCG to
protein to reaction information for Eco1712_pan.

Additional file 5: Pangenome-scale metabolic model representing
the E. coli pangenome. SBML format of iEco1712_pan for distribution
and use in other modeling environments.

Additional file 6: Quantitative experimental batch growth data for
six E. coli and one Salmonella strain for aerobic and anaerobic
conditions. This file contains 3 tables, the first contains the biomass data
(g/L), the second contains glucose data (g/L), and the third contains the
optical density data (600 nm and 1 cm cuvette path length) for
experimental batch growth of six E. coli and one Salmonella strain for
aerobic or anaerobic conditions. Values highlighted in yellow reflect the
timepoints used to determine lineage-specific glucose uptake rates and
strain-specific growth rates.

Additional file 7: Experimental and in silico carbon source
utilization data. This file contains two tables, the first contains
experimental and in silico carbon source utilization data during aerobic
conditions, and the second contains experimental and in silico carbon
source utilization data during anaerobic conditions for six E. coli and a
Salmonella strain. Values highlighted in blue represent false negatives
and those highlighted in magenta represent false positives.

Additional file 8: Genome-scale metabolic model representing the
ancestral core of E. coli. SBML format of iEco1053_core for distribution
and use in other modeling environments.

Additional file 9: Necessary orphan reactions required for biomass
production. List of metabolic reactions without corresponding genes
necessary for each E. coli strain-specific GEM for biomass production in
minimal media with glucose added as the sole carbon source.

Additional file 10: Genome-scale metabolic model for E. coli K-12
strain W3110. SBML format of iEco1335_W3110 for distribution and use
in other modeling environments.

Additional file 11: Genome-scale metabolic model for
enterohemorrhagic E. coli 0157:H7 strain EDL933. SBML format of
iEco1344_EDL933 for distribution and use in other modeling
environments.

Additional file 12: Genome-scale metabolic model for
enterohemorrhagic E. coli 0157:H7 strain Sakai. SBML format of
iEco1345_Sakai for distribution and use in other modeling environments.
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Additional file 13: Genome-scale metabolic model for
uropathogenic E. coli strain CFT073. SBML format of iEco1288_CFT073
for distribution and use in other modeling environments.

Additional file 14: Genome-scale metabolic model for
uropathogenic E. coli strain UTI89. SBML format of iEco1301_UTI89 for
distribution and use in other modeling environments.

Additional file 15: Deleted reactions for strain-specific E. coli GEMs
and the E. coli ancestral core GEM. This file contains three tables; the
first contains all gene and corresponding reactions deleted for five E. coli
strains in comparison to Eco1339_MG1655, the second contains all
deleted genes corresponding to isozymes for five E. coli strains in
comparison to Eco1339_MG1655, the third contains all reactions deleted
from Eco1339_MG1655 to generate the E. coli ancestral core GEM
(iEco1053_core).

Additional file 16: Reactions corresponding to essential gene
predictions for all six strain-specific E. coli GEMs and for the E. coli
ancestral core GEM. This file contains three tables, the first contains all
predicted essential reactions during both aerobic and anaerobic
conditions, the second contains all anaerobic-specific predicted essential
reactions, the third contains predicted strain- or core-specific essential
reactions for all six strain-specific £. coli GEMs and for the E. coli ancestral
core E. coli GEM.
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