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Abstract

proteins are involved in the feedback loop.

Background: In this paper the dynamics of the transcription-translation system for XInR regulon in Aspergillus niger
is modeled. The model is based on Hill regulation functions and uses ordinary differential equations. The network
response to a trigger of D-xylose is considered and stability analysis is performed. The activating, repressive
feedback, and the combined effect of the two feedbacks on the network behavior are analyzed.

Results: Simulation and systems analysis showed significant influence of activating and repressing feedback on
metabolite expression profiles. The dynamics of the D-xylose input function has an important effect on the profiles
of the individual metabolite concentrations. Variation of the time delay in the feedback loop has no significant
effect on the pattern of the response. The stability and existence of oscillatory behavior depends on which

Conclusions: The dynamics in the regulation properties of the network are dictated mainly by the transcription
and translation degradation rate parameters, and by the D-xylose consumption profile. This holds true with and
without feedback in the network. Feedback was found to significantly influence the expression dynamics of genes
and proteins. Feedback increases the metabolite abundance, changes the steady state values, alters the time
trajectories and affects the response oscillatory behavior and stability conditions. The modeling approach provides
insight into network behavioral dynamics particularly for small-sized networks. The analysis of the network
dynamics has provided useful information for experimental design for future in vitro experimental work.

Background

The filamentous fungus Aspergillus niger is an important
organism in the production of enzymes and precursors
for the food and chemical industries. Industrial citric
acid production by A. niger represents one of the most
efficient, highest yield bio-processes in use by industry.
The xylanolytic activator gene x/nR is a main controlling
gene in the XInR regulon of A. niger.

The XInR regulon is activated by D-xylose in the cul-
turing media [1]. The current description of this system
is based on static interpretation of the system. Experi-
ments [2] showed, however, that the expression of genes
in the XInR regulon is dynamic. Therefore, to advance
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the application of A. niger by better understanding of
the XInR regulon, the dynamics of the regulon needs to
be quantified. For this purpose time course experiments
are scheduled. However, planning of the experiments is
improved by quantifying the behavior by a simulation
and analysis study prior to the experiments.

For the XInR regulon, literature information on the
network structure was used as a basis for the simula-
tions. To our knowledge, currently very little has been
done on modeling the dynamics of the XInR regulon
and also on time course profiling of the genes that con-
stitute the XInR regulon in A. niger. The challenge with
genetic network modeling lies with determining a speci-
fic equation formalism to represent the network struc-
ture. One of the suggested strategies of modeling using
differential equations is to fix the form of the equation
[3,4]. Prior knowledge on the network structure is
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essential to develop a quantitative model [5]. The
descriptive information on the XInR regulon [1] enables
us to hypothesize models for the interaction between
the different network components.

Generally, in the study of biological networks, positive
feedback (PFB), negative feedback (NFB) [6-9], feedfor-
ward loops and time delay [10] have been shown to be
influential. NFB loops cause oscillatory behavior if the
signal propagation around the feedback loop is low and
PFBs can lead to a bi-stability behavior [11]. Overall,
feedback plays an important part in biological networks
by allowing the cell to adjust to the repertoire of
functional proteins to current needs. Other examples of
biological systems in which the effect of feedback and
time delay were extensively studied can be found in the
developmental regulator HesI, which inhibits its own
transcription [12,13] or in the NFB loops in the p53
response [14,15]. Bliss et al. [16] investigated conditions
on parameters that ensure stability of the unique steady
states in an operon using differential equations model-
ing. These authors then chose parameters that allowed
the model to describe the tryptophan operon of E. coli.
Their investigations focus on network stability in steady
state. They showed that with parameters corresponding
to a mutant with reduced repression, stability conditions
were violated leading to oscillations. The analysis of the
condition on parameters that ensure steady state stabi-
lity also lead to insight into direct repression of a gene
by its own product [16].

In computational systems biology, numerous studies
have been done on genetic network reconstruction using
time course data but little attention has been given to
understanding the network dynamics. It is crucial to
understand or at worst have a fuzzy idea of a biological
network dynamics if one is to gain deeper insight into
the biological network dynamics and functionality.

This paper concerns the analysis of the network
dynamic behavior, the effect of feedback loops and the
conditions under which oscillatory responses in metabo-
lite expression may be exhibited are investigated. Model-
ing of the XInR regulon is explored by using nonlinear
differential equations and Hill functions for the tran-
scription and linear reaction kinetics for the translation
process. To ensure that detailed aspects of the transcrip-
tion-translation model formalism are captured, some
assumptions are incorporated in the modeling. In silico
perturbation experiments were performed by triggering
the genetic network at steady state. The advantages of
using ordinary differential equations (ODEs) are vast
since they are capable of modeling degradation effects
and causal effects in a network [17].

Applications of dynamical systems in modeling tran-
scription regulatory networks can be found in [18-21].
Many of these studies used the continuous-time domain
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to model gene expression as biochemical processes
using in ODEs. The modeling and analysis aims to iden-
tify which factors determine the dynamics to aid and
guide future time course experimental studies. In our
work, we highlight the need to understand the dynamics
of biological networks with the hypothesis that modeling
and experimentation should go hand in hand.

Methods

Regulation mechanism for the XInR regulon

In the model organism Aspergillus niger, transcription
of genes encoding xylanolytic and cellulolytic enzymes
take place [1]. Activation enables the degradation of
the cellulose and hemicellulose from plant cell walls.
XInR is a zinc binuclear cluster protein consisting of
about 875 amino acids. It is suspected that XInR binds
as a monomer [1]. The x/nR gene is induced in the
presence of D-xylose in the culturing media and
repressed in the presence of the carbon catabolic
repressor, CreA [22].

Gene regulation can take place at different stages of
the central dogma of molecular biology (DNA— RNA
— Protein). These stages include among others tran-
scription, translation and post-translational modifica-
tions (PTMs) of the associated protein. In Figure 1 a
scheme of the activities in the XInR regulon is given.
The x/nR gene is induced by D-xylose. At induction
the x/nR gene produces messenger RNA (mRNA)
which is translated in proteins. These proteins then
activate the target genes (TG). For the XInR regulon,
the number of target genes are estimated to be in the
order of 20 to 40. In Figure 1 all target genes are
represented by TG. After transcription and translation
of the target genes, the target proteins (TP) are
obtained. Protein from PTMs can be involved in the
regulation of the x/nR gene trough a feedback loop. At
each step in transcription and translation mRNA and
proteins can be degraded and/or used for other pro-
cesses (D1-D4).

Transcription model

Commonly, hyperbolic functions and the sigmoid class
of functions are used to represent the kinetics of gene
regulation [23]. Such functions mimic the nonlinearity
in gene regulation, by assuming that a critical amount
of protein has to be accumulated before a gene can be
considered regulated or repressed. The most common
form of function used for modeling gene transcription is
the Hill function [24,25].

Let the vector z = [zy,...,2,] " represent the concentra-
tions of the translated proteins corresponding to the
genes 1,...,n; where n is the number of genes involved.
Throughout this work, the notation, e.g. z; is used to
represent the time dependent variable z,(¢) (where ¢ €
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Figure 1 The XInR regulon scheme The XInR regulon induced by D-xylose in the presence or absence of CreA. The representations P1 and TP
are the proteins from the xInR gene and target genes, respectively. The terms mRNAT and TGmRNA represent the transcription products from
the xInR gene and target genes, respectively. FB represents the feedback protein in which post-translational modifications might take place.
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[0, =)). Then the activating and repressing functions are
given by

h
v (z;,0;)= %zh Activator.
‘P(Zilei) = ' Qh ' (1)
v (2,,0;) = h—'zh Repressor.
itz

where v (z;, 6;) = 1 — w'(z;, 05), 0; is the gene specific
half-saturation parameter and the positive number &
represents the Hill coefficient. The regulation mechan-
ism for each target gene i is captured by the function
Y(z;, 0;) in (1).

According to Hasper et al. [26] there is evidence that
although most zinc binuclear cluster proteins bind as a
dimer, it seems that XInR binds as a monomer - there-
fore, a Hill coefficient with # = 1 is used. Given the
availability of structural prior knowledge and that the
master regulator activates the target genes, the nonlinear
system that models the transcription process is given by

Xy = py —kygXy + by

. koz
X, =p,+k 2171 _poox
2= P2 2s 1+ k2, 2d%2
E = : (2)
nls 1
. z
Xy =py Ry —2— —k,x
n Pn ns 1+kn121 nd*n

‘X(O) =Xy

where k;; = 1/60; for h = 1, x; - mRNA concentration
from gene i, p; is the basal (or leaky) transcription

rate for gene i and is associated with very low levels
of mRNA, k;; - effective affinity constant for gene 1
activating gene i (i = 2,...,n), k;; - maximum synthesis
parameter for gene i, k;; - first order degradation rate
(or consumption rate) for gene i, Xo - vector of initial
mRNA concentration, z; - concentration of translated
protein from gene i, b = [by,...,b,]7 is the input
matrix and u = [u1,...,u,,]” is the input vector (gene
triggering compounds). The model formulation with
no feedback later on aids the assessment of the mar-
ginal contribution of a feedback loop in the network
dynamics.

Translation model

A system of linear differential equations to model the
protein abundance (translation process) is then consid-
ered. The linear model representations (3) are used to
capture the dynamics of the translation process with
both the production and degradation terms being lin-
ear.

%1 =X —M?&
Ry =TrX) = 1%y
: (3)
By =TpXy —MpZy
zi(0) =z

where r; - specific translation rate for gene i, n); - degra-
dation rate for protein i. The z;s represent the target
proteins in the scheme in Figure 1. At steady state the
response rate and degradation rate balance, i.e. X; = X5 =
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.. = X, = 0. By setting the transcription rates X; = 0 for all i
in (2), it follows that

1 ~
X =—(p1 +byity)

fr
1 ' @
Fo=—| py+hy —EL >0
kid 1+ kilzl

The steady state values in (4) are based on the
assumption that, for a small time window the change in
concentration of the input stimulus and metabolite con-
centrations remain nearly unchanged. The model speci-
fications for the transcription and translation process
describe the rates of change of concentration of the
genes and proteins. Overall, the system of 2# coupled
differential equations in (2) and (3) describe the network
dynamics.

System stability

The interesting case to analyze is the systems behavior
in the absence of the inhibitor, CreA. Let us denote
the equilibrium concentrations of mRNA and protein
quantities by the vectors %x=[%,,...,%,]" and
z=[%,,...,z,]" respectively. Using (3) the steady
states lead to the relationships z; =rx; /n; for all i.
The stability of each steady state (from (2) and (3))
can be analyzed using Hopf Bifurcation, an analytic
approach that has been widely used in investigating
stability conditions in gene expression networks
[27-30].

Let F: R* — R?" be a set of smooth functions (with
F = (Fy,...,F5,)) that capture the XInR regulon system
dynamics. In this case we have F; = Xy,...,F,, = X,,, and
F,.1 = Z1,...,F3, = Z, in (2) and (3) respectively. By
definition, the Jacobian matrix is given by

JF, | ox, JF, | 3z,

]n() = (5)

oF,, [ 0x, oF,, / oz, ‘

[x 2]

This Jacobian matrix is used to assess the regulon sta-
bility and to identify which parameters dictate the tran-
script abundance. First, consider a case of three genes
and three proteins, n = 3. The Jacobian is given by

oF
Ja()=—2
5() Ax 7] o (6)

where x = [x1, 3, x3]7 and z = [z1, 2, z3]" . The cor-
responding steady states of the vectors x and Zz can be
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computed, accordingly. Using expressions (2) and (3) in
(5) we obtain

~ky, O 0O 0 0 0
0 —kyy 0 ?24(21,) O 0
0 0 —k Zq, 0 0
150) = 3¢ 934(21,7) )
I 0 0 - 0 0
o 1, 0 0 -, O
0 0 T3 0 0 -n;
where
- kiki 1
Pia(21,)=—"— 1- - (8)
! 1+k;24 1+k;z,

for i = 2, 3. A similar generalized expression for
©; 111(Z1,) can be obtained given a regulon with a

known number of transcripts n. The characteristic poly-
nomial obtained from (7) is given by

3
PO) = [+ k)2 + 1) ©)
i=1

In the case of this regulon, the derived characteristic
polynomial turns out to be the same as the determinant,

ie. P()= |]n()| Using the expression (9), conditions

that ensure global stability can be established on the
parameters.

The formulations of the Jacobian matrix and the
eigenvalue spectra can be extended to an #-dimensional
network system. The generalization for the eigenvalue
spectra using a similar analysis as above leads to the
expression

PO =[G +ka)+m) (10)
i=1

for n e Z*, a positive integer. In the network without
feedback, it turns out that the trace of the Jacobian
matrix is equal to the sum of all the eigenvalues (i.e.

Trace(J, )= Z; A; holds true). The above analysis

shows that for the open loop system there is no possibi-
lity for oscillatory behavior to occur, and that the time
constant only depends on the degradation coefficients.
According to Aro et al. [31], van Peij et al. [1] and
Hasper et al. [32], the A. niger genes eglA, eglB, eglC,
cbhA, cbhB, xInB, xInC and xi/nD contain binding
sequences (GGCTAAA) to the XInR protein as well as
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binding sequences to CreA, a repressor protein acting in
the presence of monomeric sugars (i.e., glucose) as an
auto-regulating mechanism. This property ensures that
most target genes have similar expression dynamics in
time.

Feedback in the network

Numerous transcription systems are known to
include genes that regulate their own expression
values [33]. In our analysis, to model the effect of
feedback we hypothesize that the TPs and PTMs in
the feedback loop in the scheme in Figure 1 only act
on the x/nR gene. Therefore, only the equation that
captures the dynamics for the first gene (x;) has to
be modified accordingly. The adapted equation is
given by

k z)(t—7)
5100 = 1 = ks (0 +| b0+ ! DY n (11)
1+ kRLz,zs, Z(t-7) 1+ kMzks’ Z(t-7)

where

H (12)

— 1
T 1+ k,C4(0)
is the repressor Hill function and C,4 - quantitative
activity state for CreA, k4 - inverse of the Hill constant
of CreA. The term 7 > 0 represents a time delay in the
feedback loop. The sets S; = {j | j = 1,...,m} and S, =
{{l|l=m+ 1,.,n - 1} where S; U S, = {1,....n — 1}
i.e. collection of all the target proteins in the regulon.
All the supposed repressing and activating proteins are
lumped in the sets S; and S,, respectively. The effect
of the D-xylose and the feedback loop is modeled as
additive. Equation (11) also specifies the build up of
proteins and repression or activation of the x/nR gene
through the feedback loop. Through the sequence of
PTMs the protein availability in the feedback loop is
delayed. All the other components representative of
the target genes in the network models (2) and (3)
remain unchanged.
xInR gene promoter activity under feedback
Let us define the promoter activities by the expres-
sions (13) and (14). The promoter activity correspond-
ing to the case when an activating protein is involved
in the feedback loop is represented by the term I'y
and that for the case of a repressing feedback effect
denoted by I'g.

LD G
=
Ttky Y 2(t-7)
€95,

r

(13)
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1
I'y =
1+ kRLZ 2t -7)
Jj€S,

The extracts from the denominator functions are
given by (15) and (16), respectively.

(14)

Py = kALzzl(t -7)

(15)
leS,

Py =kpy D 2(t-7) 16)
jes$y

These terms are used in the calculations for the acti-
vating and repressing promoter activity for the XInR
regulon. For the sake of illustrations, two target genes
were considered (i.e. values of j = 1 and / = 2) in the
simulation with one as an activator and the other as a
repressor (the values kz; = k4; = 1 were used). We con-
sider the sets S; and S, of unit elements which index
the proteins that are responsible for regulating the x/nR
gene through a series of mechanisms in the PTM
channel.

Existence of oscillatory behavior

The eigenvalue spectra from the derived Jacobian
matrix can be used for this analysis. The presence of
at least a pair of eigenvalues with complex parts
implies the existence of oscillatory behavior. The
PTMs in the feedback loop may produce oscillatory
behavior depending on the individual attributes of the
target genes and the consequent proteins in the feed-
back loop.

We observed that in the absence of a feedback loop,
the system dynamics is dictated by the degradation para-
meters. Active degradation of proteins or mRNA is a
major part of many metabolic and stress response sys-
tems [11]. This may not necessarily hold true for the
system with a feedback loop because of the structural
change in the Jacobian matrix. The metabolites involved
in this oscillatory dynamics are presumably determined
by the individual biochemical and mechanistic attributes
of the individual molecules. Therefore, no single hard
rule for classifying which metabolites are responsible for
the overall oscillatory behavior of the expression profiles
of the genes and proteins can be stipulated. This might
however be possible for some specific network pathways
for which extensive information is available. Consider
the Jacobian matrix corresponding to three genes and
three proteins (17). We now analyze the effect of having
a protein in the feedback loop. These proteins are con-
sidered to regulate the x/nR gene and their possible
positions in the Jacobian matrix are indicated by ”"x” as
shown in (17).
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~kyy O 0 X X X
0 —ky 0 ¢y(%,) O 0
0 0 —k3g @34(21,)) O 0
J5() = 17
3() no0 0 -, o o |17
0 T, 0 0 -n, O
0 T3 0 0 -n;

Using the adapted model (11), the computed entry in
the (1, n + i)-th cell (i = j, [ for all values of j and /) of
the Jacobian matrix (5) is given by (18) and/or (19)
depending on which proteins in the feedback loop are
involved in the regulation of the x/nR gene. By taking
partial derivatives of the function F; with respect to the
variable of interest within each of the sets S; and S,, we
then have the more compact expression

AF, 1

kRLkALzI s z(t—7)
=~k =2 <
% |, (ke Y, (=) (kY ail=<)

o (18)

This term corresponds to the repressing proteins, and
the terms given by

"o, 1 ks o
B = K
Eps, kY, ) (ka9

for the activating proteins. The parameters k,; and
kgr represent the lumped affinity constants for the acti-
vating and repressing proteins, respectively. Suppose
that the XInR protein (i = 1) is the only metabolite
responsible for auto-regulation in the feedback loop. By
representing the corresponding entry at the (1, 4)-th
position in the matrix (5) by a nonzero parameter w; €
R\ {0}, a parameter that intrinsically represents the
auto-regulation effect of the x/nR gene. The computed
eigenvalue spectrum from (7) using the expression

|J, = A1,| =0 is given by

/1(]3(')) = {—112, LY —k3d, _kzdr /15(')' )'6(')}

where

(20)

1
As() = —E(Th +hyg =N (0 = 2mkyg + kg + 4oyry)) (21)

1
() = _5(771 +hyg— v (7712 =2mbkyg + klzd +4oym)) (22)

are the conjugate roots. The eigenvalues A5(-) and A¢(-)
may take on values from the real space, R or the com-
plex space, C. From (21) and (22) we observe that oscil-
lation can only be obtained if the condition w; < —(1; —
kia4)?/4r, for r; > 0 is satisfied. This condition on w;
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signifies a contribution from a NFB loop in the XInR reg-
ulon network. Notice that the expression (1, — k14)* > 0
for all values of 17; and k. This finding adds to consoli-
date the findings by Tiana et al. [15] from a theoretical
analysis of three eukaryotic genetic regulatory network in
which they attributed the existence of oscillation to a
common design of a NFB with underlying time delay.
Considering the expressions for the eigenvalues in (21)
and (22), we observe that for a PFB effect of the XInR
protein there is no possibility for oscillatory behavior.
This result does not necessarily hold true for the proteins
in the feedback loop corresponding to the cells at posi-
tions (1, n + i) for i = 2,...,n.

The presence or absence of oscillatory behavior is
insufficient for drawing conclusions about stability in
system responses. Stability, using (21) and (22) exists if
the conditions Re(A5(-)) < 0 and Re(A4(*)) < 0 are simul-
taneously fulfilled. Hence, the inequality

1
Re(_z(’h +thygt Vi - 2mkyg + klzd +4wymy)) )< 0 (23)

Solving the inequality (23) for w; leads to the condi-
tion w; <M1k14/r1. A similar analysis for the existence
of oscillatory behavior and stability dynamics can be
done for the other proteins in the feedback loop, for
example at position (1, 5) and (1, 6) or combinations
in the matrix (17). However, although such analysis is
conceptually simple, the analytic expressions are very
complex to work with. Information about the stability
and oscillatory behavior is obtained by numerical solu-
tions. An example is considered to investigate the time
evolution of gene activity and protein abundance in
the XInR regulon.

Bifurcation analysis

Bifurcation analysis relates to stability on the system
parameters. Stability properties for the system without
feedback are given by (10), where it was shown that
the roots of the characteristic polynomial correspond
to the degradation rate constants for the mRNA
expression and protein abundance. As these constants
are positive, the system is always stable. In the case
that one of them equals to zero, then the system is cri-
tically stable.

For the network with feedback loop, consider the con-
jugate roots in (21) and (22) denoted by A,(-) for i = 5,
6. In the event that the conditions |Re(A,(-))| = 0 and |
Im(A;(-))| = 0 are simultaneously fulfilled - then there
exists a Hopf bifurcation for the corresponding genes
and proteins. Such a bifurcation occurs when the root
of the positive discriminant function in (23) equates to
the sum of the degradation parameters for the x/nR
gene and XInR protein, i.e.
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N0 = 2k + ki + doyr) =0y + Ry (24)

or after working out becomes w; = n1ky,4/r;. This
example illustrates the case of a feedback in the cell at
position(1, 4) of the matrix in (17). The analysis for the
other entries of w results in highly complex expressions,
therefore a numerical analysis is preferred.

Results

System specification

The analysis is illustrated by an example case. Consider
a regulon network of three genes given a perturbation of
D-xylose. The pulse perturbation takes place at time ¢ = 0.
During fermentation, the D-xylose is consumed and the
D-xylose concentration follows the expression u(z) = u(0)
(1/(B + %)), where u(t) = [D-xylose] and B > 0, with
K = 0.3 and #(0) = 50 mM as the initial D-xylose con-
centration. The parameters used for the simulation are:
bi=1,p =2 —3,ps=25e—3,p3=le—3, k=05,
Kow = 0.4, ksy = 0.3, kog = 5, ks = 6, kg = 0.1, ks, = 0.1, 1,
=ry=r3=05m1=11n=1and n; = 1.

Stability and response analysis - without feedback

The expression for the characteristic polynomial, P(:) in
(10) is independent of the translation rate parameters r;,
the gene synthesis coefficient k;; and the terms in the
expression (8). From (10) it can be observed that with-
out feedback, the system is globally stable (i.e. the con-
ditions Trace(J,(-)) <0 and |]n()| >0 are satisfied for
all x and z ). The system stability behavior is dictated
by how fast the translation and transcription rates are (i.
e. magnitudes of k;; and 1;).

In Figure 2 both the gene expressions in plot (B) and
protein abundance plot (C) show similar behavioral
dynamics. Moreover, with the chosen input pattern of
D-xylose the target genes show phase plots similar in
patterns but with variations that are dictated by indivi-
dual gene or protein kinetic parameters. A relaxation
time of 7z, = 1/k;; ~ 2 hours is noticed for the master
regulator and for the target genes, tz; <7gs, Tz3. The
relaxation time is an approximation for the time
required for the system to relax into steady state. This
represents the time it takes a system to react to a persis-
tent external input (D-xylose).

Feedback in the network

Since the presence of CreA is a strong repressor that
inhibits the x/nR gene activity by blocking the promoter
binding site, we chose to model this influence by con-
sidering a switch-like function with H € {0, 1}. Here the
assignment of H = 0 and H = 1 means CreA is present
and absent respectively. In the absence of CreA the pro-
tein products from the target genes are involved in
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regulating the activity of the master regulator. These
protein products may either inhibit or activate the x/nR
gene.

A comparison of the metabolite expression dynamics
for the network with and without feedback loops in the
absence of CreA is shown in Figure 3. The same para-
meter values in the section System specification were
used for the simulation with the extra parameters from
(11) being kz; = 1 and k4; = 1 and the lumped synthesis
parameter from (11) chosen as kj; = 1. Figure 3 indicates
the enhanced metabolite expression as a result of incor-
porating a feedback loop with delay (with 7 = 1) in the
model - a result that is similar to what was observed by
Maithreye et al. [34] during a theoretical kinetics analy-
sis of the concentration of green florescent protein
(GFP) in time.

Activating and repressing feedback

The expressions (18) and (19) have the potential to yield
oscillatory behavior in the metabolite response profiles.
The oscillatory behavior (if and when it exists) is purely
governed by the values of the system mechanistic para-
meters. Such oscillatory behavioral patterns of gene
expression may vary from organism to organism, and
can be detected from time series data if enough samples
are taken.

To assess the effect of time delays in the transcription
and translation processes, some cases were simulated.
The results of the expression time-dynamics for both
the genes and proteins are shown in Figure 4. The simu-
lations were performed for specific cases of 7 = 1 hour
and 7 = 5 hours and the subsequent outputs compared.
The metabolite expression patterns from the two cases
are nearly similar with the main difference occurring at
the maximum level. Overall, longer time delays lead to a
small and non significant reduction in expression values.
xInR gene promoter site activity
The competitive effect of the activators and repressors
for the promoter binding sites was also simulated. The
effect of which transcription factor (TF) (either an acti-
vator or a repressor) wins occupancy of a promoter
binding site depends partly on the strength of the synth-
esis parameter kj (Figure 5).

The promoter is most active (activity around 50 —
80%) when the regulon is fully active. This corresponds
with the time window at which the network is fully
responsive to the external perturbation. We observe that
the x/nR gene activator has a tendency of occupying
most of the promoter sites at any given time (Figure 5).
Bifurcation and oscillatory behavior analysis
A range of values of activating and repressing para-
meters wi, w,, @3, respectively on entries (1, 4), (1, 5)
and (1, 6) in expression (17) was considered for analyz-
ing the stability behavior of the network. It was observed
that NFB on w; gives a stable system and values of w,
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and w; below —977 results in an unstable systems, Fig-
ures 6 (A)-(C). The PFB effect of the XInR protein on
the xInR gene leads to unstable system dynamics for w;
> 1. This can be seen from Figure 6 (A). This result also
leads to the conclusion that the XInR regulon is
unstable if the x/nR gene has a PFB from its own
protein.

An analysis of how the various feedback parameters
affect the oscillatory behavior of the gene and protein
expression was also considered. The results show that

there exist threshold values (or a range of parameter
values) for the feedback parameters w;’s for which their
oscillatory behavior may or may not occur (see Figure 7
(A)-(C)). The value w; = 0 corresponds to no feedback
in the system and according to the previous analysis
(under the subsection: stability and response analysis -
without feedback), no oscillation occurs in this case. A
transient oscillatory behavior is observed for values of
the parameter w; ~ 0 for all j, Figure 7 (B)-(C). The
observed stability curve corresponding to the XInR
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protein in the feedback loop (w;) is a near reflection of
the corresponding resultant oscillation curve (Figure 6
(A) and Figure 7 (A)).

Discussion

The model gives a better understanding of the rate lim-
iting steps in the process of activating the XInR regulon
and therefore, helps to define the biological control
points. Similarly this knowledge can be used to obtain
strains that have enhanced xylanolytic enzyme produc-
tion. These enzymes are industrially of importance as
food and feed additives, but are also part of a system
that is used to bleach paper pulp. Given that the tran-
scription rate and degradation rates have been shown to
be the key parameters that dictate the systems dynamics
for the XInR regulon; this information is important for
designing and sampling of time course experiments.
Once the transcripts are unstable, the proteins get
quickly degraded; otherwise they remain stable. This

observation is linked to the D-xylose uptake in fermen-
tation experiments. The consumption of D-xylose also
indirectly controls the regulation of the target genes and
therewith the breakdown of sugars.

Simulations showed that the dynamics of the D-xylose
input function considered in the examples has an
important effect on the profiles of the individual meta-
bolite concentrations. This is particularly dictated by the
value of the parameters in the external input function u
(t). The larger the value of the K, the faster the con-
sumption of D-xylose. This depends on the chemical
reactions taking place in any given cell, or the saturation
levels of the individual compounds in a cell.

Feedback significantly affects the response of the out-
put profiles for the metabolites and changes the final
steady state values (Figure 3). Further simulations
showed that variations of the time delay in the feedback
loop (z = 1, 2,..., 5 hours) have a small effect on the pat-
tern of the response (Figure 4). The stability analysis
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of the expression profiles.

subsection shows that the metabolite response dynamics  the system exhibits oscillatory behavior can be obtained
exhibits no oscillatory behavior for a network without (Figure 7 (A)-(C)). In modeling the feedback loop, time
feedback loop. For a network with feedback loops, the delay was accounted for and included in the model.

results from numerical analysis showed that feedback According to Bliss et al. [16] and Thomas and d’Ari.
conditions for which the system is stable or for which  [35], including time delay in modeling biological
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networks is considered important because many biologi-
cal systems exhibit some delays in their feedback loops.
However, according to our finding (Figure 4), incorpor-
ating the time delay had no strong effect on the overall
dynamics of the metabolite expression profiles.

The analysis shows that the existence or absence of
oscillatory behavior is dictated by the numerical values
of the individual mechanistic parameters. The condi-
tions for oscillatory behavior follow from the eigenvalue
spectra. The eigenvalue spectra analysis like that in (20)
and the corresponding conditions for which all the
eigenvalues are less than zero, gives also indication for

the stability properties for the XInR network with feed-
back loop. If all the eigenvalues satisfy the condition
Re(A(J,())) <0 for all entries, then the system is
stable, otherwise it is unstable.

Two scenarios can be considered: one in which the
proteins involved in the feedback loop are activating and
the other in which the proteins are repressing. The
details of the expected behavioral dynamics from such a
system requires a case by case analysis (like in Figure 6
(A)-(C)) of the effects of the proteins in the feedback
loop. A similar analysis can be extended to study the
stability in case of a combined effect of any two or more
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proteins of interest. When the number of network com-
ponents become large, obtaining explicit analytic solu-
tions and expressions for the eigenvalues and other
quantities of interest increasingly become complex - in
which case the alternative of numerical methods can be
used (see Figure 6 (A)-(C) ). Thomas and d’Adri [36],
and Thomas et al. [35] investigated the properties of
mathematical Boolean net Modeling Genetic Networks
works - investigations that provided significant insight
into genetic network dynamics. In their work they
showed the importance of NFB loops for maintaining
homeostasis in levels of gene products. Our analysis
leads to the observation that having a NFB loop

stabilizes the response of the metabolite expressions
(Figure 6 (A)-(C)). However, there exists certain ranges
of values of the strength of feedback effects that make
the system unstable. This sets constraints to the feasible
parameter for the system if instability is not observed.
In some cases having a PFB loop yields a stable network
response, Figures 6 (B) and (C). This result is in agree-
ment with that found in a study by Maithreye et al.
[34]. In their investigations they found that NFB loops
provide stability and withstand considerable variations
and random perturbations of biochemical parameters.
The effect of time delay on stability can be analyzed

from a transfer function of the model in the ”s” domain,
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or by a transformation to the ”z” domain. In these cases
the delay time is considered as a finite dimensional sys-
tem. Stability analysis can be done by searching for sta-
bility properties in the ”s” domain or ”z” domain.
Examples of other methods that deal with the delay
times are given for state estimation in the work by Liu
et al. [37] and Yu et al. [38].

The adaptive filtering approach developed in [38] is
based on the adaptive synchronization setting, for esti-
mating unknown delayed genetic regulatory networks
with noise disturbance. Using this approach, no exclu-
sive knowledge of system parameters is required, e.g.
those lacking in the XInR regulon and many other bio-
logical networks. Liu et al. [37] proposed an adaptive
feedback control approach for simultaneously identifying
unknown (or uncertain) network topological structure,
unknown parameters of uncertain general complex net-
works with time delay from available mRNA data and
estimation of protein concentration. The effectiveness
and applicability of their approach was shown using in
silico numerical simulations. In contrast to [37] and
[38], we study the XInR regulon dynamics and do not
focus on the system structure identification and para-
meter estimation.

According to Balsa-Canto et al. [39], powerful mathe-
matical analytic tools highlight the value for successful
study of many biological systems. However, such success
can mainly be attributed to the unrelenting endeavors for
an in-depth understanding of both computational meth-
ods and the biological problems of interest. For the case of
the XInR regulon, our analysis provides a basis for under-
standing the behavioral dynamics of genes and proteins
after network perturbation. This will form a basis for
future wet-lab experiments, particularly with the genes
from the XInR regulon. Given that the metabolite expres-
sion dynamics are known, this study provides a basis for
strategic thinking in line with experimental design. The
modeling approach used in this paper provides good infor-
mation for understanding network behavioral dynamics
particularly for small-sized networks. This is illustrated by
the XInR regulon in which even the simplest of structures
can yield interestingly complex dynamics. Therefore, a rea-
sons for having limited our focus to the regulon dynamics.
Having detailed information regarding the basal para-
meters and the other mechanistic parameters might
further improve the analysis and investigations into the
network dynamics. Nevertheless, with informed parameter
guesses, simulation studies provide good information into
the systems behavior.

Conclusions

The investigations in this paper considers the XInR reg-
ulon as a dynamic system instead of a static system.
Our study provides insight into the dynamic properties
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of the XInR regulon. By studying this system, it has
become more clear that the transcription and translation
degradation rate parameters and the D-xylose consump-
tion profile dictate most of the dynamics in the regula-
tion properties of the network. The existence of
oscillatory behavior depends on the conditions of the
mechanistic parameters in the feedback loop - condi-
tions that cannot always be generalized analytically and
therefore, must be treated by numerical analysis. The
role played by feedback in the network dynamics was
found to be significant on the expression dynamics of
genes and proteins. This means that the effect of the
feedback should be considered in the model if there is
sufficient supportive biological need or evidence from
data. Just like for most biological systems, this is no
doubt an important piece of information for the accu-
rate modeling of biological network.

The analysis of the network dynamics has provided
useful information for future in vitro experimental work.
Particularly the potential for hypothesis testing basing
on this work and the design of related perturbation
experiments to generate time series data. Once there are
available techniques for the network structural identifi-
cation and parameter estimation for the XInR regulon
can be investigated.
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