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Abstract

Background: For understanding cellular systems and biological networks, it is important to analyze functions and
interactions of proteins and domains. Many methods for predicting protein-protein interactions have been
developed. It is known that mutual information between residues at interacting sites can be higher than that at
non-interacting sites. It is based on the thought that amino acid residues at interacting sites have coevolved with
those at the corresponding residues in the partner proteins. Several studies have shown that such mutual
information is useful for identifying contact residues in interacting proteins.

Results: We propose novel methods using conditional random fields for predicting protein-protein interactions.
We focus on the mutual information between residues, and combine it with conditional random fields. In the
methods, protein-protein interactions are modeled using domain-domain interactions. We perform computational
experiments using protein-protein interaction datasets for several organisms, and calculate AUC (Area Under ROC
Curve) score. The results suggest that our proposed methods with and without mutual information outperform EM
(Expectation Maximization) method proposed by Deng et al., which is one of the best predictors based on
domain-domain interactions.

Conclusions: We propose novel methods using conditional random fields with and without mutual information
between domains. Our methods based on domain-domain interactions are useful for predicting protein-protein
interactions.

Background
Understanding of protein functions and protein-protein
interactions is one of important topics in the field of
molecular biology and bioinformatics. Recently, many
researchers have focused on the investigation of amino
acid residues of proteins to reveal interactions and con-
tacts between residues [1-4]. If residues at important sites
for interactions between proteins are substituted in one
protein, the corresponding residues in interacting partner
proteins are expected to be also substituted by selection
pressure. Otherwise, such mutated proteins may lose the

interactions. Fraser et al. confirmed that interacting pro-
teins evolve at similar evolutionary rates by comparing
putatively orthologous protein sequences between S. cere-
visiae and C. elegans[5]. It means that substitutions for
contact residues occur in both interacting proteins as
long as the proteins keep interacting with each other.
Therefore, mutual information (MI) between residues is
useful for predicting protein-protein interactions for pro-
teins of unknown function. MI is calculated from multi-
ple sequence alignments for homologous protein
sequences. Weigt et al. identified direct residue contacts
between sensor kinase and response regulator proteins
by message passing, which is an improvement of MI [4].
Burger and van Nimwegen used a dependence tree where
a node corresponds to a position of amino acid
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sequences, and predicted interactions using a Bayesian
network method [2]. On the other hand, Markov random
field and conditional random field models have been well
studied in fields of natural language processing [6,7].
Also in bioinformatics, protein function prediction meth-
ods from protein-protein interaction network and other
biological networks were developed using Markov ran-
dom fields [8,9]. On the other hand, several prediction
methods have been developed based on domain-domain
interactions. Deng et al. proposed a domain-based prob-
abilistic model of protein-protein interactions, and devel-
oped EM (Expectation Maximization) method [10].
Based on this probabilistic model, LP (Linear Program-
ming)-based methods were developed [11], and Chen et
al. improved the accuracy of interaction strength predic-
tion by APM (Association Probabilistic Method) [12]. In
this paper, we propose prediction methods based on
domain-domain interactions using conditional random
fields with and without mutual information. Further-
more, we perform computational experiments for several
protein-protein interaction datasets, compare the meth-
ods with the EM method proposed by Deng et al. [10],
which is one of the best predictors based on domain-
domain interactions, and the association method pro-
posed by Sprinzak and Margalit [13] (the APM method
for binary interaction data is equivalent to the association
method), and show that our methods outperform the EM
method and the association method.

Mutual information between domains
In order to investigate the relationship between two
positions of proteins, MI for distributions of amino
acids at the positions is used. Such distributions can be
obtained from multiple alignments of protein sequences
and domain sequences. In this section, we briefly review
MI for distributions of amino acids, and explain MI
between domains.

We assume that multiple sequence alignments for
domains Dm and Dn are obtained, respectively (see Fig-
ure 1). In order to calculate MI, we need joint appear-
ance frequencies. However, we cannot see which
sequence in the multiple alignment of domain Dm corre-
sponds to a specified sequence in that of Dn. Therefore,
we assume that sequences contained in the same organ-
ism can be paired. In the example of Figure 1, the sec-
ond sequence of Dm is paired with the first one of Dn,
the third one of Dm is paired with the second one of Dn,
and so on. The first sequence of Dm is not counted into
the appearance frequencies because it is not paired with
any sequence of Dn although it may be paired with
sequences of other domains than Dn.
Let A be a set of amino acids, fi(A) be the appearance

frequency of amino acid A at position i in domains Dm

and Dn, and fij(A, B) be the joint appearance frequency
of a pair of amino acids A at position i in Dm and B at
position j in Dn, where each frequency is divided by the
number of paired sequences M in the multiple align-
ments such that ∑AÎAfi(A) = ∑A,BÎAfij(A,B) = 1.
Multiple alignments often include some gaps. Weigt et

al. counted the frequencies of gaps as well as amino
acids [4]. Therefore, we also consider gaps to be a kind
of amino acids, that is, the number of distinct amino
acids is |A| = 21. Then, mutual information for posi-
tions i in Dm and j in Dn is defined as the Kullback-Lei-
bler divergence between the multiplication of
appearance frequencies, fi(A)fj(B), and the joint appear-
ance frequencies, fij(A,B), as follows.

MI f A B
f A B

f A f Bij ij
ij

i jA B

=
∈

∑ ( , ) log
( , )

( ) ( )
.

, A

(1)

If frequency distributions of amino acids at positions i
and j are independent from each other, fij(A,B) ≈ fi(A)fj
(B), and MIij approaches to zero. This means that the
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Figure 1 Illustration on the calculation of mutual information from multiple alignments of domains Domains Dm and Dn have multiple
alignments of sequences from several organisms, respectively. Mutual information is calculated for each pair of positions i and j.

Hayashida et al. BMC Systems Biology 2011, 5(Suppl 1):S8
http://www.biomedcentral.com/1752-0509/5/S1/S8

Page 2 of 9



two positions are not related with each other in the evo-
lutionary process. If domains Dm and Dn interact at the
positions, it is considered that MIij becomes high
because the positions have coevolved through the evolu-
tionary process in order to keep the interaction. It
should be noted that two positions i and j do not always
directly interact even if MIij is high [4]. However, such
proteins with high values of MI have a possibility to
directly interact with each other at other positions in
the proteins.
However, we need to reduce MIij because it can be

unnecessarily high depending on distributions of fi(A)
and fj(B). For that purpose, we make use of MIij

random( ) ,
which is the mutual information MIij from the joint
frequency, fij(A, B), obtained by shuffling at random
the combinations of sequences in multiple alignments.
In this paper, we repeat the procedure 400 times
according to [4], and take the average. For practical
uses of MI, fi(A), fj(B) and fij(A,B) should be positive
values. Otherwise, we cannot calculate MIij by using
computers. Therefore, we use the following pseudo-
count as in [4],

f A
f A M

Mi
pseudo i( )( )

( )= +
+

h
hA

(2)

f A B
f A B M

Mij
pseudo ij( )( , )

/ ( , )
,=

+
+

h

h

A

A
(3)

where h is a constant value, in this paper we use h =
1. It should be noted that the sum over all amino acids
A, f Ai

pseudo

A

( )( ) =
∈∑ 1
A

and f A Bij
pseudo

A B

( )

,
( , ) =

∈∑ 1
A

because
∑AÎAfi(A) = ∑A,BÎAfij(A,B) = 1.
In order to investigate interactions between proteins,

we need MI between domains included in the proteins.
Thus, we define MI between domains Dm and Dn, Mmn,

to be the maximum of MI over all positions i and j as
follows.

M MI MImn
i j

ij ij
random= −max( ),

,

( )
(4)

where 〈v〉 means the average of v, i and j are positions of
Dm and Dn, respectively. Since MIij is calculated to be high
for the positions i and j that include many gaps, we exclude
positions that include more than 20% gaps as in [14].

Conditional random field model for PPI
In this section, we propose a probabilistic model for
protein-protein and domain-domain interactions using
conditional random fields [6,7] because it can be consid-
ered that two domains Dm and Dn do not always inter-
act even if the mutual information Mmn is large. For
example, Weigt et al. improved MI and proposed direct
information (DI) because residues do not always contact
with each other even if the MI is large [4]. Most pro-
teins contain domains as is well known. If two proteins
do not interact with each other, any two domains con-
tained in the proteins must not interact with each other.
In the left example of Figure 2, protein Pi consists of
domains D1 and D2 and protein Pj consists of domain
D3 respectively. If Pi and Pj do not interact, any pair of
(D1, D3) and (D3, D3) does not interact. Deng et al. pro-
posed a probabilistic model for a pair of proteins as fol-
lows [10]. By assuming that proteins Pi and Pj interact if
and only if at least a pair of domains included in the
proteins interacts, and events that domains interact are
independent from each other, they defined

Pr P Dij mn

D Pmn ij

( ) ( ( )),= = − − =
∈

∏1 1 1 1Pr (5)

where Pij = 1 means that proteins Pi and Pj interact,
Dmn = 1 means that domains Dm and Dn interact, Dmn

Pij

Pi
Pj

D1

D2

D3

D23D13

Random variables on protein pairs

Random variables on domain pairs

U

V

Figure 2 Markov random field model for protein-protein interactions Left: Example of proteins Pi and Pj. Pi consists of domains D1 and D2,
and Pj consists of domain D3, respectively. Right: Factor graph G(U,V,E). There exists an edge between Pij Î U and Dmn Î V if and only if Dmn Î Pij.
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Î Pij means that domain Dm is included in protein Pi
and Dn is included in Pj and the product in the right
hand side is calculated for all domain pairs (Dm, Dn)
included in the protein pair (Pi, Pj). By transforming
equation (5), we have

1 1 1 1− = = − =
∈

∏Pr P Pr Dij mn

D Pmn ij

( ) ( ( )) (6)

=
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∈

∑exp ,( )l mn

D Pmn ij

(7)

where l(mn) = log(1 – Pr(Dmn = 1)).
From this equation, we can consider the following

Markov random field model for protein pair (Pi, Pj) (see
Figure 2).
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( , )
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, ,
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ij
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s t
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= =
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d
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l
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, (8)

where pij Î {0, 1}, d means a set of events on domain-
domain interactions, Dmn = dmn (dmn Î {0, 1}),
f p ds t

ij mn
ij mn,

( , )( , ) denotes a local feature, l s t
ij mn
,

( , ) is the
corresponding weight parameter and related to the joint
probability Pr(Pij = s, Dmn = t), and Zij denotes the nor-
malization constant. For instance, equation (8) for pij =
0 is equivalent to equation (7) in the case that
l ls t

ij mn
s t
mn

,
( , )

,
( )= for all protein pairs (Pi, Pj) and

f p ds t
ij mn

ij mn,
( , )( , ) = 1 if s = t = 0, otherwise 0.
In Markov random fields, random variables have Mar-

kov properties represented as an undirected graph [15].
The factor graph for our model is represented to be a
bipartite graph G(U, V, E) with a set of vertices U corre-
sponding to protein-protein interactions Pij, a set of ver-
tices V corresponding to domain-domain interactions
Dmn, and a set of edges E between U and V as the right
figure of Figure 2. There exists an edge between Pij Î U
and Dmn Î V if and only if Dmn Î Pij. For the left exam-
ple of Figure 2, protein pair (Pi, Pj) includes domain
pairs (D1, D3) and (D2, D3). Then, in the factor graph,
the vertex of Pij is connected with vertices of D13 and
D23, respectively. Although the vertex of Pij does not
have other adjacent vertices than the vertices of D13 and
D23, those of D13 and D23 can be connected with other
vertices than that of Pij
Since Pr(Pij = 0|Dmn =t) = 1 – Pr(Pij = 1|Dmn = t), it is

redundant to consider both s = 0, 1, and it is sufficient to
consider only s = 1. Therefore, in order to simplify the
model, we substitute l ls t

ij mn
t
mn

,
( , ) ( )= , f ft

ij mn
t
mn

1,
( , ) ( )= ,

and f t
ij mn

0 0,
( , ) = for all protein pairs (Pi, Pj). Then, we

have the following joint probability,
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,
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where p means a set of events on protein-protein
interactions, Pij = pij.
We here introduce mutual information between

domains M = {Mmn} as given conditional data in order
to combine it with the probabilistic model. Then, equa-
tion (9) can be written as
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s(x) = 1/(1 + e–x) is an increasing function, and c is a
positive constant. It should be noted that a negative
value, –1, is given to ft

mn( ) because it is undesired that
a pair of domains interact although proteins having the
pair do not interact. In this way, the local feature ft

mn( )

correlates protein-protein interactions Pij with domain-
domain interactions Dmn (see Figure 2).
For a conditional random field model without MI, we

use the following local feature instead of
f pt

mn
ij mn

( )( , )M .

f p d
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p t
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. (13)

Parameter estimation
In this section, we discuss how to estimate the para-
meters ll = { }( )lt

mn . We assume that protein-protein
interaction data p = {pij} are given. Then, the likelihood
function is represented by

P P p
Z

f pij
p

t
mn

t
mn

ij mn
tDij

( ) ( )
( )
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,

p M M
M
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= =
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l
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∑∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟p

, (14)

where Z(M) = ∏pijÎpZij(M). By taking the logarithm,
we have

l P f p Zt
mn

t
mn

ij mn ij

tD Pmn
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,
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∑p M M Ml
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We estimate the parameters by maximizing the log-like-
lihood function, l(l). Since log(ex + ey) is a convex function
for variables x and y, that is, l(l) is a concave function, we
are able to obtain a global maximum. For maximizing
such functions, various methods such as the steepest des-
cent method, Newton’s method, and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [16] method have been
developed. Newton’s method calculates the inverse of the
Hessian matrix for the objective function. However, the
computational cost is high. Therefore, the quasi-Newton
method approximates the matrix by some efficient method
using the first derivatives, the gradient. In this paper, we
use the BFGS method, which is one of the quasi-Newton
methods. By differentiating equation (15) partially with
respect to each parameter lt

mn( ) , we have

∂
∂

= −
∈

l
f p P p f p

t
mn t

mn
ij mn ij t

mn
ij mn

pij

( )
( , ) ( ) ( , )( )

( ) ( )

,

ll
l

M M M
0 1{{ }∈

∑∑
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟p D Pij mn ij:

. (16)

In the BFGS method, this equation is repeatedly
applied for updating a solution.

Computational experiments
Data and implementation
We used protein-protein interaction data of H. sapiens,
D. melanogaster, and C. elegans from the DIP database
[17], the file name is ’dip20091230.txt’. We used the
UniProt Knowledgebase database (version 15.4) [18] as
protein domain inclusion data. We deleted proteins that

did not have any domain, and obtained 294 interacting
protein pairs as positive data that included 300 distinct
proteins and 320 domains for H. sapiens, 449 interacting
pairs that included 562 proteins and 449 domains for D.
melanogaster, and 250 interacting pairs that included
602 proteins and 476 domains for C. elegans.
We used the Pfam database (version 24.0) [19] to

obtain multiple sequence alignments for domains, and
calculated MI, Mmn, for each pair of domains. Figure 3
shows the distributions of domain MI Mmn for H.
sapiens, D. melanogaster, and C. elegans. We can see
from the figure that most domain MIs are distributed in
the part of less than about 0.8 for all organisms. It is
considered that domains Dm and Dn with Mmn less than
0.8 may not interact, and domains with Mmn more than
0.8 have more possibilities to interact with each other.
Therefore, we set the constant c in equation (12) to be
0.8. Although we tried several values from 0.6 to 1.0 for
c, the results were similar to the case of c = 0.8.
We selected non-interacting protein pairs as negative

data uniformly at random such that negative data did
not overlap with the positive data. The number of nega-
tive data was the same as that of positive data for each
organism.
We used libLBFGS (version 1.9) with default para-

meters to estimate the parameters lt
mn( ) , which is a C

implementation of the limited memory BFGS method
[20], and is available on the web page, http://www.chok-
kan.org/software/liblbfgs/.

Figure 3 Distributions of domain MIs for H. sapiens, D. melanogaster, and C. elegans
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Result
In order to evaluate our method, we compared the pro-
posed CRF method with MI and that without MI with
the EM method by Deng et al. [10] and the association
method proposed by Sprinzak and Margalit [13]. The
association method and the APM method [12] estimate
probabilities lmn that domains Dm and Dn interact as

lmn
mn

mn

I

N
= and l

r

mn

ij
P

P D P

mn

ij

ij mn ij

N
=

− −
∈∑ ( ( ) )

/

{ }
1 1

1

,

respectively, where Nmn (Imn) denotes the number of
(interacting) protein pairs that include domain pair (Dm,
Dn), and rij denotes the interaction strength of protein
pair (Pi, Pj), 0 ≤ rij ≤ 1. However, our input interaction
data are binary, that is, rij takes only 0 or 1. Then, the
numerator of the APM method becomes Imn. It means
that the APM method for binary interaction data is
equivalent to the association method. In the EM
method, probabilities lmn that domains Dm and Dn

interact are estimated by the recursive formula,

l
l

l
mn
t mn

t

mn

o o

ij mn
tP DN

fn fn

o

ij ij

ij mn

( )
( ) ( )

( ){

( )

( )
= −− −

−

1 1

1

1

Pr∈∈∑ Pij}
, where oij

= 1 denotes that it was observed that proteins Pi and Pj
interact with each other, and fn = 0.8. In this paper, the
solution of the association method was given as the

initial value lmn
( )0 of the EM method.

We performed five-fold cross-validation, that is, split
the data into 5 datasets (4 for training and 1 for test),
estimated lt

mn( ) from the training datasets, and calcu-
lated Pr(Pij = 1|M) of equation (10) for each protein
pair in the test dataset and AUC (Area Under ROC
Curve) score, where among the test dataset only protein
pairs that included at least a parameter estimated from
the corresponding training dataset were always used.
We repeated 5 times, and took the average. Tables 1, 2,
and 3 show the results on AUC for training and test
datasets by the CRF method with MI, that without MI,
the EM method, and the association method for H.
sapiens, D. melanogaster, and C. elegans, respectively.
An AUC score is the area under an ROC (Receiver
Operating Characteristic) curve, and takes a value
between 0 and 1. The ROC curve of a random classifier
lies on the diagonal line, and the AUC score is 0.5. The
ROC curve of a perfect classifier goes through the point
(0 (false positive rate), 1 (true positive rate)), and the
AUC score is 1. A classifier with the AUC score closer
to 1 has better performance. We can see from these
tables that the results by the CRF method with MI are
better than those by the CRF method without MI, and
that the results by the CRF method without MI are bet-
ter than those by the EM method and the association
method. It is also seen that the results by the EM
method are almost the same as those by the association
method. It might be because the parameters of the EM
method were estimated from the solution of the

Table 1 The AUC results for training and test datasets of H. sapiens by the CRF method with MI, that without MI, the
EM method, and the association method

iteration CRF with MI CRF without MI EM Assoc

training test training test training test training test

1st 0.999366 0.989247 0.999366 0.881720 0.999819 0.709677 0.999602 0.709677

2nd 0.998787 0.919355 0.999312 0.923387 0.999909 0.875000 0.999330 0.854839

3rd 1.000000 0.847222 1.000000 0.833333 1.000000 0.861111 1.000000 0.861111

4th 0.999351 0.989583 0.999369 1.000000 0.999856 0.989583 0.999351 0.989583

5th 0.999333 0.842365 0.999369 0.827586 0.999982 0.798030 0.999802 0.798030

average 0.999367 0.917554 0.999483 0.893205 0.999913 0.846680 0.999617 0.842648

Table 2 The AUC results for training and test datasets of D. melanogaster by the CRF method with MI, that without
MI, the EM method, and the association method

iteration CRF with MI CRF without MI EM Assoc

training test training test training test training test

1st 0.999255 0.707692 0.999977 0.738462 0.999961 0.769231 0.999938 0.769231

2nd 0.997928 0.818182 0.997905 0.848485 0.999938 0.727273 0.999736 0.727273

3rd 0.997920 0.708333 0.997920 0.562500 0.999922 0.645833 0.999884 0.625000

4th 0.998660 0.863636 0.999318 0.886364 0.999814 0.840909 0.999853 0.840909

5th 0.999234 0.819444 0.999954 0.833333 0.999861 0.527778 0.999923 0.527778

average 0.998599 0.783458 0.999015 0.773829 0.999899 0.702205 0.999867 0.698038
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association method and the solution of the EM method
already reached a local optimum. Figures 4, 5, and 6
show the average ROC curves for training and test data-
sets by the CRF method with MI, that without MI, the
EM method, and the association method. For training
datasets, the results by all of the methods were almost
perfect. For test datasets, the CRF method with MI out-
performed that without MI, the EM method, and the
association method. It should be noted that the ROC
curves of the EM method are almost the same as those
of the association method for the same reason discussed
above.

Conclusions
We proposed novel methods which combine conditional
random fields with the domain-based model of protein-

protein interactions. In order to give better performance,
we introduced mutual information to the probabilistic
model. In the improved model, mutual information
between domains is given as conditions, where MI
between domains is defined as the maximum of MIs
between residues in the domains. This method was
developed based on the fact that amino acid residues at
important sites for interactions have coevolved with
each other, and MI has been used for identifying contact
residues in interactions. We performed five-fold cross-
validation experiments, and calculated AUC for prob-
abilities that two proteins interact. The results suggested
that our proposed methods, especially the CRF method
with mutual information, are useful. However, the
results of AUC for training datasets implied that esti-
mated parameters were overfitting to training datasets.

Table 3 The AUC results for training and test datasets of C. elegans by the CRF method with MI, that without MI, the
EM method, and the association method

iteration CRF with MI CRF without MI EM Assoc

training test training test training test training test

1st 0.999975 0.657143 0.999975 0.514286 1.000000 0.542857 1.000000 0.542857

2nd 0.997899 0.923077 0.996873 0.948718 0.999875 0.743590 0.999825 0.743590

3rd 0.998775 0.900000 0.998825 0.933333 0.999875 0.866667 0.999825 0.866667

4th 0.998950 0.966667 0.999850 0.966667 0.999850 0.633333 0.999850 0.633333

5th 0.998900 1.000000 0.998875 1.000000 0.999675 1.000000 0.999700 1.000000

average 0.998900 0.889377 0.998879 0.872601 0.999855 0.757289 0.999840 0.757289
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Figure 4 Average ROC curves for test datasets of H. sapiens by the CRF method with MI, that without MI, the EM method, and the
association method
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Figure 5 Average ROC curves for test datasets of D. melanogaster by the CRF method with MI, that without MI, the EM method, and
the association method
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Figure 6 Average ROC curves for test datasets of C. elegans by the CRF method with MI, that without MI, the EM method, and the
association method
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For avoiding that problem, we can improve the meth-
ods, for instance, by adding regularization terms, l1-
norm of parameters to the log-likelihood function. Since
CRF has an advantage to be able to incorporate large
number of features, it remains as a future work to
improve the model itself to obtain better accuracy by,
for instance, modifying the local feature and adding new
features.
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