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Abstract

Background: Somatic cells can be reprogrammed to induced-pluripotent stem cells (iPSCs) by introducing few
reprogramming factors, which challenges the long held view that cell differentiation is irreversible. However, the
mechanism of induced pluripotency is still unknown.

Methods: Inspired by the phenomenological reprogramming model of Artyomov et al (2010), we proposed a
novel Markov model, stepwise reprogramming Markov (SRM) model, with simpler gene regulation rules and
explored various properties of the model with Monte Carlo simulation. We calculated the reprogramming rate and
showed that it would increase in the condition of knockdown of somatic transcription factors or inhibition of DNA
methylation globally, consistent with the real reprogramming experiments. Furthermore, we demonstrated the
utility of our model by testing it with the real dynamic gene expression data spanning across different
intermediate stages in the iPS reprogramming process.

Results: The gene expression data at several stages in reprogramming and the reprogramming rate under several
typically experiment conditions coincided with our simulation results. The function of reprogramming factors and
gene expression change during reprogramming could be partly explained by our model reasonably well.

Conclusions: This lands further support on our general rules of gene regulation network in iPSC reprogramming.
This model may help uncover the basic mechanism of reprogramming and improve the efficiency of converting
somatic cells to iPSCs.

Background
In embryonic stem cells (ESCs), the promoters of Oct4,
Sox2 and Nanog can be bound by their own products
together or separately and an auto feedback loop forms.
They also can activate other pluripotent genes and inhi-
bit lineage specific genes. In this way, embryonic stem
cell state is reinforced [1]. Differentiated cells are repro-
grammed to induced-pluripotent stem cells (iPSC) by
ectopic expression of factors which induce the

reestablishment of transcription regulation in embryonic
stem cell state.
However, up to now, the reprogramming efficiency is

still low and the mechanism of reprogramming is not
fully understood. In order to enhance the reprogram-
ming rate and reduce the reprogramming latency, the
changes of gene expression and epigenetic modifications
in the reprogramming process [2,3] and their differences
among somatic cells, iPSCs and ESCs [4] are studied
extensively, showing that epigenetic modifications and
gene expression change dramatically during reprogram-
ming. In addition, epigenetic modification (e.g. DNA
methylation and histone modification) plays an impor-
tant role in development. Knockout experiments show
that the deletion of DNA methyltransferase or histone
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modifiers leads to embryonic lethality. Loss of such epi-
genetic modifications in ESCs will affect cell differentia-
tion [5]. As the epigenetic landscape shows dynamic
change during differentiation and reprogramming, we
considered not only the gene expression but also epige-
netic modifications in our model to study the basic prin-
ciples in reprogramming, which may serve as an
important medium for gene expression change in
reprogramming.
Several models have been established to explain the

phenomena in reprogramming, standing to help improve
reprogramming efficiency. For example, MacArthur et
al. (2008) established a set of differential equations
according to the transcription regulatory network in
ESC and found that differentiated cells can achieve the
iPSC state by amplifying the transcription fluctuation
globally [6]. Furusawa et al. proposed that the trajectory
in the gene expression phase space is chaotic in the
stem cell state, while as the cell differentiates, the com-
plexity of the trajectory decreases. They inferred that
the differentiated cells might be reprogrammed by
increasing the diversity of expressed proteins [7,8].
Distinguished from these dynamic equation models,

Waddington depicted that cell differentiation is like a
ball rolling down the hill in the epigenetic energy land-
scape. The reprogramming process is just the opposite
by inducing a set of reprogramming factors (such as
Oct3/4, Sox2, c-Myc and Klf4 [9]) to push the system
going up with positive probability. Although all the cells
have the potency to be reprogrammed, only the cells
having overcome all the epigenetic barriers can be
reprogrammed to the iPSC state, which depends on
some stochastic events with small probability and thus
explains the low efficiency of reprogramming. This is
the “stochastic model” by Yamanaka (2009), opposite to
the “elite model” in which only a small portion of cells
can be reprogrammed [10]. Artyomov et al. (2010)
developed an Ising model taking account of several gen-
eral rules governing the interaction between the cell

type specific genes [11], which can be used to simulate
the rare and stochastic event of successful reprogram-
ming. Most of these rules are crucial and may reveal the
underlying principles of cell differentiation and repro-
gramming; whereas others are redundant and are lack of
experimental support. We developed a stepwise repro-
gramming Markov (SRM) model based on some of the
modified rules, which can partly explain gene expression
changes, morphology changes and the barriers in the
induced pluripotent process.
In this paper, we support the point that cells achieve

the pluripotent state gradually through several ordered
and well-defined stochastic events [2,3] and some of
them happen with small probability, as the epigenetic
state in some regions of genome are always hard to be
converted to an embryonic stem cell like state [4]. By
our model, we also showed that different types of cells
have different potential in reprogramming, as less differ-
entiated cells can achieve the iPSC state easier [12].

Results
Cell lineage tree, module tree and cell state
We assumed that as the cell differentiates, the number
of cell types increases exponentially, forming a binary
tree. Here we selected groups of cell type specific genes,
called modules, for all cell types in the cell lineage tree
and arranged them into a module tree with the same
hierarchical structure as the cell lineage tree. We
denoted neighbors of module A as Na , a set including
its sibling, children and parent module; descendents of
module A in set Pa and progenitors of module A in set
Qa (a set of all progenitor modules up to ESC) (Fig 1).
We identified the cell type with its corresponding gene
module as genes in a module only highly express in the
corresponding cell type and have similar behavior in
reprogramming. For example, ESC can be represented
by a module including Oct4, Nanog. They highly express
in ESC but express low in other cell types (see Addi-
tional file 1).

Figure 1 Module Tree. Standing at the green module, we see that modules having blue color are descendents of it; modules having yellow
color are neighbors of it and modules having red color are progenitors of it.
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The cell experiences dramatic change of gene expres-
sion and epigenetic patterning during reprogramming.
As the expression of the modules sequentially turn on
and their epigenetic states temporarily change from
“closed” to “open”, we assumed that the cell gradually
transits from a more to a less differentiated level in the
reprogramming process [3,13]. We defined that a cell is
in state k (or cell in level k) if the cell assumes one of
the cell types in the Kth level of the cell lineage tree.
The embryonic stem cell state is staten, while the initial
differentiated cell is in state 1. When the cell transits
from state1 to staten after many steps, the cell will stay
at state n in the suitable culture condition since endo-
genously expressed pluripotency genes can reinforce
their expression [1]. However, specific genes of different
cell types may express together; in this case, we cannot
say which cell type on the cell lineage tree the cell is in.
We denoted this state as partially reprogrammed state,
ε(detailed definition see below). On the other hand,
expression of modules in different lineage may be in
conflict with each other, disrupt cell’s transcriptional
regulatory network and finally leads to cell death,

denoted by state 0. Then we considered a Markov chain
transit among the states 0, 1, 2… n and ε in which state
0 and n are two absorbing states (Fig 2).
Each cell type or state is characterized by a particular

combination of the genetic and epigenetic state of all
modules. Since the genetic and epigenetic state of all the
genes in a module change in the similar manner in repro-
gramming, we defined the genetic state and epigenetic

state of a module by a single value respectively:
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pluripotency genes in ESC module enrich for H3K4me
and are depleted of DNA methylation, inferring the
open epigenetic state [5] (Fig S1(a), (b)); while other
modules are not open (Fig S1(c)). We defined cell death
(state 0) as all of the modules in a cell does not express
and defined partially reprogrammed state (state ε) if
more than one module is in open epigenetic state.

Rules of modules’ states transition
In order to determine the transition probabilities
between states in the Markov chain above, we first con-
sidered the state transition of modules in reprogram-
ming. We focused on two general phenomenological
gene regulation rules deduced in the light of Artyomov
et al. (2010) where six rules governing transcriptional
regulation in cell differentiation and reprogramming
were summarized: (a) the epigenetic state of a gene
affects its expression (b) gene expression auto-regulates
its epigenetic state (c) expression of sibling modules
repress each other (d) expression of a module puts inac-
tive epigenetic marks on its progenitor and sibling mod-
ules (e) expression of a module puts bivalent epigenetic
marks on its progeny (f) expression of a module put
negative epigenetic marks on modules on other lineage
and upper levels [11]. However, rule (d) and rule (e)
may be deduced by the others. Instead, rule (a), (b), (c),
(f) are relatively fundamental and supported by a lot of
experiments. Based on these four rules, we established
our SRM model with two simplified rules:
RULE1: effect on epigenetic state by gene expression.

Expression of a module makes its epigenetic state open
(for example, the auto-activation loop of Oct4, Nanog
and Sox2 mentioned above) [1] (shown as ④ in Fig 3).
It also makes its neighbors or non-descendent modules
close (shown as ③ in Fig 3), which maintains the iden-
tity of the cell and prevents cell differentiation. Besides,
the repression dominates the auto-activation when they

coexist [14]. Since the repression strength gets weaker
as the distance in the module tree gets shorter, the
repression by neighbor modules will be cancelled out by
auto-activation. One can compute the state of module
at the next time point, k+1, as follows:
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RULE2: effect on gene expression by epigenetic
state. When the epigenetic state of a module is open,
the module express otherwise the module doesn ’t
express (shown as ① in Fig 3). If more than one mod-
ule is in open epigenetic state, they will express low as
they repress each other and the cell gets to the par-
tially reprogrammed state (shown as ② in Fig 3). It
also shows that sometimes some genes in different
lineages express together in reprogramming [3], which
can be represented by state ε. Thus, one could com-
pute the state of module at the next time point, k+1,
as follows:
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Noticing that in the update by (1) for epigenetic states
all genetic states never change, one can see that the
update process does not depend on the order of selec-
tion for i. After doing (1) for all i, do (2) for all i, called
a round, in phase with one cell cycle, and repeat until
the cell gets to the equilibrium state when all the mod-
ules are invariant under RULE1 and RULE2. In equili-
brium state, the cell will be in one of the cell types,
death or partially reprogrammed state (see Additional
file 1).

Figure 3 Transcriptional regulatory Network (a) RULE1 (b) RULE2. Green rectangle: expressed gene; Red rectangle: repressed gene; Green
circle: active chromatin state; Red circle: repressed chromatin state; Triangle: protein. Dash Triangle: little mount of protein. The black curve
indicates repression with dash line indicating the effect is not strong. The green arrow indicates activation. RULE1 and RULE2 are represented by
①~④.
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The role of the reprogramming factors and procedure in
SRM model
The reprogramming factors can bind to genes associated
with differentiation or pluripotency, repressing or acti-
vating gene transcription respectively. In ESC, the
repression effect of the reprogramming factors is related
with the recruitment of repressive chromatin remodeling
complexes such as NuRD and Polycomb, resulting in
histone deacetylation and H3K27 trimethylation [12].
On the other hand, downregulation of somatic markers
is related with c-Myc mostly, which has significant effect
in the early reprogramming and seems more likely to
bind genes with accessible chromatin state [15]. Taking
into account these phenomena, we simulated the repro-
gramming factors repression as choosing a module with
open or bivalent epigenetic state (not 0) randomly and
making it close.
To simulate the activation of the reprogramming fac-

tors, as most of genes chosen in modules are regulated
by the reprogramming factors, a module is chosen ran-
domly with equal probability regardless of which epige-
netic state it is in (many reprogramming factor binding
targets in ESCs, iPSCs or partially reprogrammed cells
have repressive histone modification markers [15]),
made express and made its chromatin state open. How-
ever, in reality, the reprogramming factors are more
likely to activate some specific genes, which is similar
with knockdown of some specific transcription factors
and thus the reprogramming factors can’t induce them.
The consequence is shown below.
Further, transcriptional repression is always associated

with a single reprogramming factor binding. In contrast,
when bound by multiple reprogramming factors, gene
will be actively transcribed since basal transcriptional
machinery is recruited [12]. When the module chosen
to be repressed happens to be the same as the one to be
activated, the module will express and the epigenetic
state of the module will be open.
In sum, if the reprogramming factors repress module
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. In particular, if the cell is in stateε, the

reprogramming factors will activate a module randomly
and the cell leaves stateε. The cell can get out of the
partially reprogrammed state when cultured for longer
time [3].

In the reprogramming process, the reprogramming
factors will change the epigenetic state and/or expres-
sion of the module. Then, in one round, the epigenetic
state of each module will be further changed by the pro-
tein content in the cell according to RULE1 and the new
epigenetic state will change the module expression fol-
lowing RULE2. After two rounds, the cell gets to the
equilibrium state (see Method). Then, the reprogram-
ming factors take its effect again unless the cell is in the
absorbing state. Thus, the induction of the reprogram-
ming factors will take place every other round. The pro-
cedure is shown below:
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ii. The effect of the reprogramming factors is to acti-
vate a module and repress one.
iii. In one round:

∀i Î {1, 2...2n – 1}, Si is changed according to the
rule (1).
∀i Î {1, 2...2n – 1}, Gi is changed according to the
rule (2).

iv. Repeat iii once. Then, the cell would reach an equi-
librium state. Record the cell state transition.
v. Stop if cell reaches iPS state or dies, otherwise go to

ii.
Then, we could estimate all the transition probabilities

every two rounds in the Markov chain (see method and
Fig 2).

Estimating reprogramming rate and average
reprogramming time
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rounds 2k goes to infinity, lim P x
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which pn is the proportion of cells successfully repro-
grammed and dn is the death rate. Suppose there are 4
levels in the cell lineage tree. Then the reprogramming
rate is 0.02% when reprogrammed from the first level
(Table 1), which is consistent with the real experiment
where the reprogramming rate is about 0.001%~1% [12].
We estimated the reprogramming rates in the case of
other number of levels, which are roughly in the range
above when there are not too many levels between the
initial cell type and ESC (see Table S1). Our simulation
also showed that the reprogramming rate for cells from
different differentiated level is different. Further, we cal-
culated the average time needed for reprogramming by
computing the expectation of time arriving in state n
(n=4) on the condition that the cell is still alive: Expec-
tation (cell cycles needed for reprogramming |can be
reprogrammed) = 8.72 cell cycles.
From pn(k), the portion of cells reprogrammed after

2k rounds (cell cycles), it shows that the number of suc-
cessfully reprogrammed cells increase in the sigmoid
pattern (Fig 4). It takes 6 cell cycles to reach the half of
the maximum (response time). As the reprogramming is
achieved for some time, the epigenetic states of more
modules are not closed, since the module in the upper
level is already open. Thus, the repression effect of the
reprogramming factors is diminishing, as also observed
experimentally that withdrawal of c-Myc after day 5
would not affect reprogramming rate [15].

Simulating reprogramming in the condition of somatic
transcription factors knockdown or DNA methylation
inhibition
In the condition of knocking-down somatic transcrip-
tion factors, the reprogramming rate would be a little
higher, about 0.03%. The cell can get to the iPS state
faster with the average time 7.16 cell cycles and the
response time 5 cell cycles (see Additional file 1 and Fig
S2(a)). Also, it has been shown that knock down of
Pax5 will improve the reprogramming efficiency of B

cell [12]. Moreover, when treating the cells with DNA
methyltransferase inhibitor which attenuates the global
repression of DNA methylation, reprogramming effi-
ciency accelerates a lot, about 1.1% in 20 cell cycles (see
Additional file 1 and Fig S2(b)). Previous experiments
demonstrate that inhibition of Dnmt1 can improve
reprogramming efficiency [3].

Simulating gene expression changes in reprogramming
Suppose all of the cells are in state 1 initially, namely
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in different level in terms of cell cycles (or approxi-
mately reprogramming days). We defined the total
expression of all modules in Kth level at time t as the
portion of living cells arrived at state k at time t:

S t P arrived at state K at time t still alive at timek ( ) = ( | t P x P xt
k

t
n) [ ( )] / ( [ ( )] )= − +0 1 0 2 (3)

Figure 4 Number of Cells successfully reprogrammed increases in
the sigmoid Pattern

Table 1 Reprogramming rate and average reprogramming time of cells from different levels

Initial cell type First level Second level Third level Fourth level

Reprogramming rate (SRM model) 0.024% 0.26% 3.13% 100%

Death rate 99.98% 99.74% 96.87% 0%

Average reprogramming time (cell cycles) 8.72 6.00 3.42 0

When knockdown of somatic transcription factors, reprogramming rate from first level is 0.027% and average reprogramming time is 7.16 cell cycles. In
reprogramming Ising model, reprogramming rate from first level is 0.025%.
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[ ( )] ( ), ( )P x is the kth component of P x x  is the initit
k

t0 0 0 aal vector

The gene expression of modules in level 1 decreases
dramatically at the beginning of the reprogramming, as
the reprogramming factors inhibit the expression of
somatic genes. Next, some genes from upper level
express transiently but the cell can’t stay at the de-dif-
ferentiated state, so it drops back to state 1, leading to
a period when the gene expression in level 1 does not
change much. Finally, more and more living cells get to
the ESC state and stay there stably, so expression of
somatic genes drops rapidly again and decreases to
zero. The expression of ESC’s specific genes increases at
last, after the dramatic drop of somatic cell gene expres-
sion and the peak time of genes from other levels,
which agrees with the real experiment that the endo-
genously expression of ESC specific genes is the last
step in reprogramming. In the early time point, even if
pluripotency genes are activated by the reprogramming
factors, their chromatin state may close again when
inhibited by other modules. The auto-regulation loop
cannot form, so pluripotency genes express transiently
and their expression doesn’t show any increase in our
equilibrium state curve. Moreover, the reprogramming
factors only bind transiently and show weak binding

strength in intermediate reprogramming cells than ESCs
or iPSCs, as observed in [15]. Only in the late period
when repression by other modules attenuates can the
ESC specific genes continuously express, which may
explain the expression curve of ESC specific genes and
the long latency of reprogramming. The expression of
genes in all other levels first rise then drop although
their peak times are different. The genes in level 2 get
to peak earlier than level 3 (at cell cycle 7 and 12,
respectively). Only genes in these two levels express in
a large amount in reprogramming although total num-
ber of cell levels are different. As cell levels increases,
gene expression changes more dramatically as all the
curves become steeper (Fig 5). The tendency of gene
expression change in our model mimics the real data
roughly (Fig 7(b)).
Although some stochastic events will affect cell repro-

gramming, reprogramming follows a series of defined
steps [12]. In our model, the somatic cell de-differenti-
ates level by level and gene expression change follows
the same steps as observed in experiment. After ESC
specific genes express, still some adjustments of epige-
netic state of other modules are needed to get to the
equilibrium state, leading to a state more similar to ESC
state, as observed that there are some differences in

Figure 5 Change of gene expression is independent of how many Levels in the module tree. Assuming n=4~9, the expression of genes
in level1, level2, level3 and ESC is depicted in blue, green, red, light blue respectively, while the expression of genes in other levels are nearly
zero all the time.
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DNA methylation in early cultured and late cultured
iPSCs [12].
From the simulated gene expression, our model can

track cell type transition in reprogramming. For exam-
ple, in reprogramming of MEF, fibroblast will change to
tightly arranged round cells, inferring that mesenchymal
to epithelial transition (MET) takes place [13]. The
reprogramming model can simulate MET in reprogram-
ming process (the results are omitted due to space lim-
itation, see Additional file 1). These results may verify
the existence of MET and a series of cell type transfor-
mations toward less differentiated cell types during
reprogramming.

Reprogramming Ising Model
In order to simulate the fluctuations in reprogramming,
we computed the cell “energy” according to the epige-
netic and genetic interactions between different modules
based on a related model similar to Artyomov’s model
in [11], so that module state is changed approximately
by (1) and (2) when the perturbation is small. Construct
the four level cell lineage binary tree, but ESC in the
first level and initial somatic cell in the fourth level. The
state of each node in the corresponding module tree
contains the genetic and epigenetic state of specific
genes of such cell type. G=0,1 representing the
expressed and silenced genetic state respectively; while
S=-1, 0, 1 representing the closed, bivalent and open
epigenetic state respectively. Then the cell “energy” is
defined based on the interaction between genetic state
and epigenetic state of the nodes (see Method). At every
other cell cycle, the reprogramming factors, following
the same rule as in SRM model, will activate a node to
make its epigenetic state open [11] while repress a node
with open epigenetic state to make its epigenetic state
close randomly. Then the cell reaches equilibrium state
which can be found by Monte Carlo simulations and
cell type may change. There are much more varieties of
cell states than that in the SRM model. However, the
SRM model captures major cell states in reprogramming
[12].
We simulated 20000 cells for 25 cell cycles with 5

cells successfully reprogrammed. The reprogramming
rate is 0.025%, consistent with rare reprogramming
event. The successfully reprogrammed cells reach the
ESC state in 8~12 cell cycles (Fig S9), much shorter
than the time we can detect them, since it takes some
time for the total expression of pluripotent genes
increasing to reach the detection threshold as success-
fully reprogrammed cells divide faster and others die.
We averaged the epigenetic and genetic state of each
node in each cell cycle of the 20000 cells (shown as Fig
6, 7(a)). The epigenetic state of initial cell type node
changes from open to closed and arrives at bivalent

state finally (an example in Fig S10). The epigenetic
state of ESC node changes from closed to open, during
which change occurs rapidly from the 11th cell cycle
and on (some examples in Fig S11). From 13th cell cycle
and on, the epigenetic state of other nodes begins to
change rapidly from closed to bivalent state. In ESC,
many genes related to differentiation are in bivalent
state [16]. The time point of these three situations
agrees with the observation that initial epigenetic change
confines within genes with open epigenetic mark in
somatic cell and the repression markers are lost later on
[2]. We also found that the cell “energy” increases dur-
ing the reprogramming process, because of less repres-
sive histone markers and thus repression potential H3

(see Method) is less. In vivo, it is also known that pluri-
potent cells have the lowest DNA methylation level [5].
The expression of initial cell type node decreases

rapidly in the first several cell cycles; the expression of
ESC node increases rapidly from 11th cell cycle on; the
expression of upper level neighbor and sibling node first
increases and then decreases; the expression of nodes in
lineages other than that of the initial cell type remain
near zero. However, some nodes in other lineages may
be weakly expressed during late reprogramming and
may represent the partially reprogrammed state.
Then, we did Kmeans clustering of the real gene

expression data in reprogramming (see method). The
gene can be divided into 4 groups. The average profile
of each cluster matches the gene expression curve pre-
dicted in the reprogramming Ising model (Fig 7(b)). The
expression change of the first cluster resembles the
nodes in other lineages. We found that the cluster is
enriched in RNA processing and RNA splicing (Fold
enrichment>2, Benjamini<10-4). Besides, the genes
related with other lineage (e.g. nuclear protein Ldb1a
related to hemopoietic stem cell maintenance and ery-
throcyte formation, endoderm transcription factor

Figure 6 The epigenetic State of each Node in each Cell Cycle.
Same lineage in level 2, other lineage and neighbor are relative to
the initial somatic cell.
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Figure 7 The average Profiles of real Data match Gene Expression simulated by the reprogramming Ising Model (a) The genetic state of
each node at each cell cycle in reprogramming Ising model. Neighbor in the same level, other lineage in level 4 and upper neighbor are relative
to the initial somatic cell. (b) The standardized average profiles of gene expression in each cluster at each time point or in partially
reprogrammed cells. Genes in each node can be assigned to a cluster by similar gene expression pattern. Upper left, first cluster. Upper right,
second cluster. Lower left, third cluster. Lower right, fourth cluster.
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Gata6, glomerular protein Podxl, epidermal protein
Sprr1a, transcription factor Pax7 related with neuron
and skeleton development and transcription factor
Phox2b related with neuron development) are in this
group.
The expression change in the second cluster resembles

nodes of father and sibling. This cluster is enriched in
actin filament-based process and actin cytoskeleton
organization (Fold enrichment>2, Benjamini<0.05).
Besides, the genes that are related to basolateral plasma
membrane, adherens junction, mesoderm development
(such as hand2 which can be regarded as in the father
node) and embryonic skeletal system development (such
as Flnb which can be regarded as in the sibling node)
are in this group.
The average profile of the third cluster is very similar

to the curve of somatic cell node. Both of them arrive at
50% of the initial value at 4th cell cycle. We also did the
simulation without considering the repression of repro-
gramming factor. In that case, the expression of somatic
cell node decreases so slowly that arrives at 50% at 9th

cell cycle. It may mean that the reprogramming factor
has a significant role in repressing somatic specific
genes in the early reprogramming. This cluster is
enriched in appendage development, skeletal system
development and extracellular matrix, such as biglycan
(Fold enrichment>2, Benjamini<10-4), which are specific
genes of fibroblast. Besides, fibroblast marker Thy1 and
fibroblast structure genes Col1a1, Col1a2 are also in
this group.
The average profile of the last cluster resembles the

curve of ESC node. This cluster is extremely enriched in
condensed chromosome, chromosome in centromeric
region and cell division (Fold enrichment>3, Benja-
mini<10-26). This means that chromatin remodeling may
be the major event in late reprogramming and cell
obtains the ability of self-renewal gradually. Besides,
genes maintaining ESC state or related to self renewal
(such as Oct4, Klf5, Socs3, Sox2, Nanog, Fgf4) are in this
group.
In summary, the gene expression change predicted by

our reprogramming Ising model is consistent with the
real time-serial gene expression data in reprogramming.

Conclusions
In this paper, we attempted to explain observed phe-
nomena in reprogramming by a mathematical model.
Based on the model in [11], we simplified the regulation
of epigenetic and genetic network into two rules and
defined the role of reprogramming factors as repressing
and activating specific modules according to papers
studying the binding sites and function of these factors
[12,15]. The module state and cell state transition are
shown more clearly in SRM model than the

reprogramming Ising model and thus we could see that
the epigenetic barriers are created by the expression of
modules in lower levels and other lineage. Therefore, we
may design more efficient way to overcome these bar-
riers. We simulated the trajectory of rare reprogrammed
cell and showed that knockdown of somatic transcrip-
tion factors or inhibition of DNA methylation or other
repressive histone markers can accelerate reprogram-
ming. The SRM model can predict the gene expression
change in MET and Ising model can predict the expres-
sion change of cell type specific genes, which provides
support for these models and the proposed underlying
rules governing epigenetic and genetic regulatory net-
work in the cell. Reprogramming is a battle between the
reprogramming factors and the cell’s intrinsic transcrip-
tional network. Cells can only reprogram gradually in
several ordered and defined steps because of the inhibi-
tion of intrinsic interaction. The probability that the cell
can overcome all the barriers is very small. Thus, the
reprogramming efficiency is often very low. Besides add-
ing specific transcription factors of desired cell type, the
intrinsic network in the original cell must be disrupted
either by global fluctuation or knocking down specific
transcription factors in order to convert itself to the
desired cell type.
The two models construct a blue picture of cell type

conversion and may be used to study the cell type con-
version between different differentiated lineage and
transformation between cancer and normal cells. They
may be used to identify significant factors in cancer
development, for example EMT mentioned in the paper
is related to metastasis of cancer cells.
However, these two models are simple. They can only

simulate the gene expression and epigenetic change qua-
litatively but not quantitatively. We neglected some
degree of heterogeneity between modules. For example,
the expression level of different modules in “on” state is
not the same; the probability distribution of the repro-
gramming factors inducing different modules may be
non-uniform. Although these models can provide some
insight into the effect of adding histone modifiers or
DNA demethylase, knocking out apoptosis factors or
somatic cell specific transcription factors, only by taking
account of particular gene regulation network can these
models help experiment design. Meanwhile, the rules in
the model need further experimental verification. As the
development of single cell RNA-seq [17] and ChIP-seq
advance, the variations between cells can be revealed.
Using new technologies, we can understand the
mechanism underlying reprogramming more clearly.
We believe that reprogramming efficiency and the

safety of iPSC can be further improved by combing
experimental result with modeling. As the mechanism
of induced pluripotency is understood more
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comprehensively, iPSC can be widely used in modern
molecular medicine.

Methods
Markov model development
Upon the reprogramming factors induction, cell will get
to another equilibrium state. We enumerated all possi-
ble cell state transitions as the reprogramming factors
can induce different modules. We calculated the transi-
tion probability between different levels in cell lineage
tree, that is, different states in the Markov chain, by
counting possible reprogramming factor induction sites
leading to such transition and dividing by the total
number of modules, assuming the reprogramming fac-
tors activate each module with equal probability (for
detailed calculation of transition probability, see Addi-
tional file 1).

Reprogramming Ising model development
Cell “energy” contains 4 terms. According to RULE2,
H1=-D•Gi•Si

cell i=1,2…15 (the node is numbered as in
Fig S9) depicts the effect of epigenetic state on genetic
state and H2=E•Gi•Gj, (i, j are neighboring nodes),
depicts the mutual repression. According to RULE1,
H3=M• Gi

cell •Sj, (j is not the descendant of i), depicts
gene expression putting negative histone marks on
nodes in other lineages or upper levels and H4=-N•
Gi

cell •Si depicts the effect of genetic state on epigenetic
state. Thus, the “energy” of the cell is H=H1+H2+H3

+H4, Gi and Si are the genetic and epigenetic state of
node i, respectively, Gi

cell and Si
cell are the average

genetic and epigenetic state of node i in the last step,
respectively. In the simulation, we assumed KT=1, E=50,
D=20, M=8, N=5, F1=4, F2=16, so that the cell type
transition probability in the reprogramming Ising model
is the same as that in the SRM model. The reprogram-
ming factors are like an external field, H5=δ(i,a)•F1•Si-

δ(i,b)•F2•Si,d i a,( ) =
≠
=

⎧
⎨
⎩

0

1

i a

i a
with a and b represent-

ing the repressed and activated nodes, respectively.
After the induction of the reprogramming factors,

using Metropolis algorithm, Si or Gi is adjusted accord-

ing to transition probability P e E

  E

E
KT= >

≤

⎧
⎨
⎪

⎩⎪

− Δ

Δ
Δ

0

1 0
. In one

cell cycle, Si is first adjusted by

ΔE H H H S G S H H H S G Si
new

j j i
old

j j= + + ( ) − + + ( )( ) , , ( ) , ,3 4 5 3 4 5 ;

then, Gi is changed by

ΔE H H G G S H H G G Si
new

j j i
old

j j= + ( ) − + ( )( ) , , ( ) , ,1 2 1 2 .

After two cell cycles, the reprogramming factors act

again. “Temperature” KT sets the average “energy” scale
and represents the base-level transcription rates. If the
sum of all the Gi is smaller than 0.01, which is about
the fluctuation of Gi, cell dies and exits the simulation.
If the genetic state of ESC node is 1 while others are
less than 0.01, the reprogramming factors will be with-
drawn. As observed in the experiment, cell cannot be
reprogrammed unless the reprogramming factors are
withdrawn at the suitable time [12] (for the choice of
parameters and the relation of these two models see
Additional file 1).

Expression data
We collected microarray data from GSE10874 (Mikkel-
sen et al. [3]), GSE26100 (Koche et al. [2]) including
gene expression profiles at 0,1,2,4,8,12,16 days of MEF
reprogramming and cell lines MCV6, MCV8.1. MCV6
are the partially reprogrammed cells and MCV8.1 is a
clone from iPSCs [3]. We used Dchip [18] to normalize
the data and did model-based correction (processed
data is shown in Additional file 2). Before doing Kmeans
clustering, we filtered out 25274 probe sets with Present
calls in more than 20% chips and expression level more
than 20 in more than 50% chips and standardized the
expression data for each gene. Adding the MCV6
expression data between 16 days and MCV8.1, we used
correlation as the distance measure in Kmeans cluster-
ing. Then we picked the probe sets within 0.1 from the
center of each cluster to do gene function enrichment
analyses for the cluster using Bioinformative Resource
6.7 [19,20]. There are about 1500~2000 Entrez genes in
each of the filtered cluster.

Additional material

Additional file 1: Details and application of the model Including 11
figures and 1 table; Simulating MET in reprogramming; Mathematics
details

Additional file 2: Gene expression data This file includes normalized
gene expression data in different days in reprogramming.
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