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Abstract

Background: Mathematical/computational models are needed to understand cell signaling networks, which are
complex. Signaling proteins contain multiple functional components and multiple sites of post-translational
modification. The multiplicity of components and sites of modification ensures that interactions among signaling
proteins have the potential to generate myriad protein complexes and post-translational modification states. As a
result, the number of chemical species that can be populated in a cell signaling network, and hence the number of
equations in an ordinary differential equation model required to capture the dynamics of these species, is
prohibitively large. To overcome this problem, the rule-based modeling approach has been developed for
representing interactions within signaling networks efficiently and compactly through coarse-graining of the
chemical kinetics of molecular interactions.

Results: Here, we provide a demonstration that the rule-based modeling approach can be used to specify and
simulate a large model for ERBB receptor signaling that accounts for site-specific details of protein-protein
interactions. The model is considered large because it corresponds to a reaction network containing more reactions
than can be practically enumerated. The model encompasses activation of ERK and Akt, and it can be simulated
using a network-free simulator, such as NFsim, to generate time courses of phosphorylation for 55 individual serine,
threonine, and tyrosine residues. The model is annotated and visualized in the form of an extended contact map.

Conclusions: With the development of software that implements novel computational methods for calculating the
dynamics of large-scale rule-based representations of cellular signaling networks, it is now possible to build and
analyze models that include a significant fraction of the protein interactions that comprise a signaling network, with
incorporation of the site-specific details of the interactions. Modeling at this level of detail is important for
understanding cellular signaling.
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Background
Modeling is an essential component of systems biology
[1]. An important class of models is the class based on
mass-action chemical kinetics. Models have the potential
to elucidate the behaviors that logically follow from
mechanistic knowledge and assumptions, which can
often be reduced to a collection of reactions and the
parameters that characterize the mass-action kinetics of
these reactions [2,3]. The parameters of models for the
chemical kinetics of molecular interactions can be mea-
sured independently, at least in principle, and must take
on values consistent with physicochemical constraints.
Models capturing mass-action chemical kinetics can be
specified in various traditional forms, such as that of or-
dinary differential equations (ODEs). This approach has
been quite useful for studying small modules at bio-
chemical reaction resolution [4]. Coarser resolution
models of larger networks have also been useful for
studying systemic properties, for example, how processes
such as feedback and internalization may influence re-
ceptor tyrosine kinase signaling [5,6].
Signaling proteins contain multiple functional compo-

nents and multiple sites of post-translational modifica-
tion. As a result the interactions among signaling
proteins have the potential to generate myriad protein
complexes and post-translational modification states
[7,8]. This feature of cell signaling networks has been
called combinatorial complexity. Because of combinator-
ial complexity, ODE models are poorly suited for repre-
senting the molecular interactions within a cell signaling
network. The number of chemical species that can be
populated in a cell signaling network, and hence the
number of equations in an ODE model required to cap-
ture the dynamics of these species, is prohibitively large.
In part to deal with the issue of combinatorial com-

plexity, the rule-based modeling approach was developed
as a method for efficiently and compactly specifying the
reactions that can arise from molecular interactions in
signaling networks [9,10]. In a rule-based model, the
structure of a reaction network is implicitly defined by
rules that represent molecular interactions, whereas in a
traditional model, network structure must be explicitly
specified. A rule represents a class of reactions involving
reactants with common components and component
properties. An important simplification of the rule-based
modeling approach is that all reactions within a class are
assigned the same rate law. Thus, a key assumption
underlying the rule-based modeling approach is that mo-
lecular interactions are modular, meaning that network
dynamics are largely determined by local properties of
protein components responsible for interactions. This
coarse graining approach allows for more compact model
specification than traditional modeling approaches. The
rate law associated with a rule provides only a coarse-
grained description of the kinetics of the reactions within
the rule-defined reaction class. However, the coarseness
of a rule can be adjusted by tuning the contextual ele-
ments of the rule. At the finest level, the contextual ele-
ments required for a reaction are highly specific and a
rule defines a single unique chemical reaction. At the
coarsest level, a rule indicates that a reaction center can
undergo a reaction regardless of the molecular context in
which that reaction center is found, and a single rule
defines a set of reactions, one for each unique context in
which the transformation of the rule can take place.
Simulation of a rule-based model yields results consistent
with principles of chemical reaction kinetics.
Although rules can be used to define large-scale bio-

chemical reaction networks in a compact efficient man-
ner, the shear size of such networks, has posed a
formidable barrier to the development and analysis of
models for signal-transduction systems that account for
site-specific details of protein interactions (in terms of
rules). To address this problem, we and others have
developed software for simulating large-scale rule-based
models. The key feature of these tools is that the com-
putational cost is independent of the size of the reaction
network implied by a set of rules [11-13]. Thus, it is
now possible to consider building and analyzing rule-
based models that include site-specific details about
protein-protein interactions.
Here, we use the rule-based modeling approach to

build a model for ERBB receptor signaling. The model
includes the four members of the ERBB family of recep-
tor tyrosine kinases, Ras, phosphoinositide 3-kinase
(PI3K), and other signaling proteins that play a role in
activation of extracellular signal-regulated kinase (ERK)
and Akt. The model encompasses essentially the same
proteins considered in the ODE model of Chen et al.
[14] and it is related to a number of other ODE models
reported in the literature, such as the model of Birtwistle
et al. [15]. The model presented here accounts for site-
specific details of molecular interactions, which would
be impossible to simulate using an ODE model. A large
number of models, of different types, have been reported
in the literature for various aspects of ERBB receptor
signaling [16-19], but the consideration of site-specific
mechanistic details by modelers has so far been limited
[20,21].
We apply the conventions of Chylek et al. [22] to

visualize and annotate our model, and we demonstrate
that the model can be simulated using recently developed
software implementing a network-free simulation ap-
proach that enables the simulation of interactions marked
by combinatorial complexity [13]. A key advance of the
model presented here is avoidance of arbitrary simplifying
assumptions about the molecular mechanisms of signaling
that have the sole purpose of facilitating ODE model
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specification and/or simulation. The model accounts for
over 50 sites of phosphorylation, which is far more than
have been included in previous models of ERBB signaling.
The ability to incorporate individual phosphorylation sites
in a model enables mechanism-based interpretation of
temporal phosphoproteomic data and provides an oppor-
tunity to use such data to identify parameter values.
We note that our report is intended as a demonstra-

tion of recently developed methodology, and does not
represent an effort to gain insights into ERBB receptor
signaling. Our hope is that integrated modeling and
experimental efforts, focused on understanding how
site-specific details impact network function, will be
stimulated by the demonstrated specification, annota-
tion, visualization and simulation capabilities. The nov-
elty of this study lies in the demonstration of these
capabilities at the scale considered. We note that dem-
onstrating the usefulness of rule-based modeling is not a
goal of the study reported here; the usefulness of this
modeling approach is already established by numerous
applications of the approach [23-32].

Results
We specified a rule-based model for molecular interactions
in the ERBB receptor signaling network (see Methods).
The model specification, including nominal parameter
values, is provided in the form of a BioNetGen input file
[28], which is a plain-text file. The file comprises the “Full
Model Specification” Tiddler of our TiddlyWiki, which is
available online (https://modeling.tgen.org). The BioNet-
Gen input file, which is named “ERBB_model.bngl,” is also
provided separately (Additional file 1). The collection of
online materials is included in the Supplementary Material
as an archive file (Additional file 2). The model is com-
posed of 544 rules. It accounts for 18 proteins, over 30
protein domains, several linear motifs, and 56 sites of
lipid and protein phosphorylation. The rules of the
model represent interactions of ligands with ERBB recep-
tors, receptor dimerization, phosphorylation-dependent
interactions of adapter proteins with receptors, the MAPK
cascade downstream of Ras, PI3K signaling events that
regulate phosphorylation of Akt, multiple feedback loops,
and phosphorylation events that regulate the above pro-
cesses. Dephosphorylation reactions are included in the
model, but the phosphatases that mediate these reactions
(e.g., PTEN and SHP-2) are not explicitly considered.
The model accounts implicitly for more chemical spe-

cies (»10100) than there are molecules available to popu-
late these species (Figure 1). The model is able to
provide this description because of simplifying assump-
tions embedded in its rules [10], which derive from
assumptions of modularity. We view such assumptions
as reasonable because proteins are composed of modular
parts [33]. The trade-off for concise model specification
is coarse-graining of chemical kinetics, meaning that all
reaction events implied by a rule are taken to have the
kinetic rate law associated with the rule. This coarse
graining is controllable, as rules can be refined as needed
to capture empirical data. Indeed, the only essential dif-
ference between a rule-based model and an ODE model
lies in the means of model specification; both types of
models provide representations of chemical kinetics [34].
To specify an ODE model, a modeler must state which
chemical species in a system are populated and how
these species are connected and influence each other. In
contrast, to specify a rule-based model, a modeler must
state which interactions are occuring in a system and
the contextual dependencies of these interactions. The
latter approach is more convenient when interactions
depend mostly on local properties of proteins, such as
whether a site is phosphorylated and free. Rules for
interactions, together with rate laws and parameter esti-
mates, can be used to predict which of the potentially
populated chemical species are populated, regardless of
the number of potentially populated chemical species
[11-13]. The main point of Figure 1 is to illustrate that
known interactions and post-translational modifications
of EGFR imply a number of potentially populated chem-
ical species that is so large as to confound intuition and
the ODE modeling approach, because the subset of
populated chemical species, which is the information
required to specify a mechanistic ODE model incorpor-
ating site-specific details about EGFR interactions, is im-
possible to identify through measurement or inference
based on simple reasoning.
A challenge of developing a large model is communi-

cating the substance of the model in such a way that it
can be understood. In Figure 2, we present an extended
contact map [22], which shows the proteins, protein
components, and sites of phosphorylation as well as the
direct interactions and enzyme-substrate relationships
considered in the model. Proteins are represented as
boxes and arranged in layers to suggest the causality of
signaling events, with the top layer corresponding to
ligands, the layer below corresponding to ERBB recep-
tors, etc. Most of the 544 rules of the model can be
mapped to one of the 31 interactions represented by
arrows in Figure 2. The rules corresponding to a given
arrow represent a common interaction but in different
contexts. The correspondence between rules and arrows
is indicated in a model guide [22], which is described
below.
Making a large model reusable and extensible requires

not only a means to understandably visualize the model
but also annotation so that the basis of the model can be
evaluated and updated as new knowledge is generated.
To annotate our model, we prepared a model guide [22]
(see Methods and Additional Materials). The guide links

https://modeling.tgen.org
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Figure 1 Combinatorial complexity is a feature of ERBB receptor signaling. (A) Diagram depicting a selected subset of interactions of
epidermal growth factor (EGF), EGF receptor (EGFR), heregulin (HRG), ERBB3, GRB2, SOS1, GAB1, SHC1, and PI3K considered in the model. These
binding partners of EGFR and ERBB3 are documented in NetPath [50] and HPRD [51]. This diagram also depicts substrates of the EGFR kinase
domain (six tyrosine residues in EGFR and seven tyrosine residues in ERBB3). These sites of phosphorylation in EGFR and ERBB3 are documented
in HPRD [51] and Phospho. ELM [52]. Next to each component of EGFR and ERBB3, the number of possible component states is indicated. These
counts are based only on the proteins, sites of phosphorylation, and interactions depicted in this diagram. Note that additional interactions are
considered in the model (cf. Figure 2). For example, in this diagram, we do not consider phosphorylation of SOS1 and GAB1. Ligand binding sites
have two possible states (see below). Docking sites for SHC1 (blue rectangles) have eight possible states (see below). Docking sites for GRB2
(green rectangles) have six possible states. In the model, Y1114 in EGFR (white rectangle) is a docking site for both GRB2 and SHC1. Thus, this
docking site has 12 possible states. Docking sites for PI3K (cyan rectangles) have three possible states. Based on these counts of possible
component states, the number of possible states for an EGFR monomer is 2•8•6•8•12•6•6 = 331,776, and the number of possible states for an ERBB3
monomer is 2•36•8 = 11,664. An EGFR: ERBB3 heterodimer has more than 3.8 × 109 states, and an EGFR homodimer has more than 5.5 × 1010 states.
When we consider the additional interactions included in the model but not shown here, we find that the number of possible states for an EGFR
homodimer is much greater than a googol (10100). (B) As illustrated in this panel, the ectodomain of EGFR has two possible ligand-bound states:
free or bound to EGF. (C) As illustrated in this panel, a docking site in EGFR for SHC1 has eight possible states: unphosphorylated, phosphorylated,
bound to unphosphorylated SHC1, bound to phosphorylated SHC1, bound to SHC1 in complex with GRB2, bound to SHC1 in complex with
GRB2: SOS1, bound to SHC1 in complex with GRB2: GAB1, and bound to SHC1 in complex with a ternary complex of GRB2, SOS1, and GAB1.
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formal elements of the model (viz. graphs used to repre-
sent proteins and their component parts) to information
about these components available in online resources,
such as UniProt [35], OMIM (http://omim.org), and
Pfam [36]. This ability to easily connect formal model
elements to information available in online resources, in-
cluding sequences, is one of the advantageous and in-
novative features of rule-based modeling. For each
protein included in the model, the guide includes a brief
summary of available knowledge that was considered in
the formulation of the model. Finally, as mentioned
above, the guide links the arrows of Figure 2 to specific
rules.
The parameters of our model, rate constants and pro-

tein copy numbers, are largely unknown. Identifying the
values of these parameters to obtain a validated, predict-
ive model would be a formidable challenge. Here, our
intention is simply to demonstrate the feasibility of spe-
cifying, visualizing, annotating and simulating a model
that captures the site-specific details of protein-protein
interactions in a signaling network. Such a model can
make predictions about time courses of phosphorylation
for individual serine, threonine, and tyrosine (S/T/Y)
residues, which is essential for mechanism-based inter-
pretation of multiplex temporal phosphoproteomic data
[37]. For the purpose of demonstrating that the model
can be simulated, we divided the model parameters into
several classes and estimated a range of feasible values
for each class (Table 1). We then sampled within these
ranges to randomly specify nominal parameter values
(see Methods).
As stated above, the sheer size of the network cap-

tured (implicitly) in our model (in excess of 10100 reach-
able chemical species) has posed a barrier to simulation
using conventional methods. Obviously if the cost of
simulation scales with network size, then simulation of
such large-scale reaction networks becomes impractical.
On-the-fly stochastic simulations algorithms are an al-
ternative to numerical integration of ODEs [38,39] but
on-the-fly simulation also becomes prohibitively slow as
the number of populated states increases and the num-
ber of reachable states explodes [40]. The CPU time
required for simulation of the model using such a
method increases exponentially as the number of reac-
tions in a network grows (exponentially). In contrast,
network-free simulation methods [11,12,40,41] have a
constant cost of simulation per reaction event and hence
the CPU time increases linearly with the number of re-
action events in a system (Figure 3A).
Figure 3B illustrates that in our model a large number

of chemical species quickly become populated after initi-
ation of ERBB receptor signaling. Within 1 second after
initiation of signaling, over 1,500 chemical species are
populated. This number of species exceeds the number
that can be practically considered in a manually specified
ODE model in which one equation would be required
for each reachable species. The results of Figure 3B sug-
gest that dispersion of mass into a large number of
chemically distinct states is an inherent feature of cell
signaling networks and explains why the on-the-fly
method becomes impractical (Figure 3A). It should be
noted that the simulations of Figure 3 are not physio-
logical, as the initial condition is artificial. The point of
these simulations is simply to demonstrate that interac-
tions of signaling proteins can be expected to lead to the
population of more chemical species that can be practic-
ally tracked in an ODE model.
To simulate the model we use NFsim [13], which

implements a network-free simulation algorithm [40].
The simulation results are shown in Figure 4. The heat
map of Figure 4 reports time courses of phosphorylation
for the 55 S/T/Y residues considered in the model. The

http://omim.org
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Creamer et al. BMC Systems Biology 2012, 6:107 Page 6 of 14
http://www.biomedcentral.com/1752-0509/6/107
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Figure 2 A rule-based model for ERBB receptor signaling. Boxes and nested boxes represent proteins and (sub)components of proteins. Only
(sub)components considered in the model are shown. Boxes are decorated with post-translational modification flags, which are each labeled at
one end and connected to a small box at the other. The prefix of the label indicates the modification (i.e., ‘p’ represents addition of a phosphate
group), and the rest of the label indicates the site of modification. Compartmental locations of proteins are indicated in tabs at the lower left
corners of boxes: M, membrane; C, cytoplasmic; Ex, extracellular; and En, endosomal. A line that begins and ends with an arrowhead represents a
direct binding interaction. A line with a circle at one end identifies an enzyme-substrate relationship; the circle identifies the substrate. A line that
ends with an open, triangular arrowhead represents activation. Numbers next to arrows refer to sets of rules, which are identified in an
accompanying model guide. See Methods for additional details.
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time courses, which are clustered by similarity, are rep-
resentative of results obtained with other parameter
values, in that the model consistently predicts distinct
kinetics for different sites of phosphorylation. Thus,
multiple sites of phosphorylation can be lumped to-
gether only with careful consideration, because in gen-
eral, the kinetics of phosphorylation can be site specific.
It is possible to generate the results of Figure 4 because
the cost of network-free simulation, which was applied
to obtain these results, depends on the number of rules
in a model, not the number of reactions or chemical
species implied by the rules.

Discussion
Here, we have presented a dynamical model for ERBB re-
ceptor signaling that captures site-specific mechanistic
details and demonstrated that the model can be visualized,
annotated, and simulated. Many dynamical models have
been formulated for ERBB receptor signaling through the
traditional approach for modeling chemical kinetics, i.e.,
ODE modeling. In general, ODE models for cellular regu-
latory systems track the populations of only 10’s to 100’s
of chemical species [42]. Our model accounts implicitly
for many more species (Additional file 1). The discrepancy
in size is attributable to omission of site-specific details
about protein-protein interactions in ODE models and the
simplifying assumptions of ODE models that are intro-
duced for the sake of making model specification feasible.
The simplifying assumptions typical of ODE models often
conflict with our knowledge of cellular biochemistry (for
further discussion, see [43]). An example of such an as-
sumption is the use of a ‘virtual phosphorylation site’ to
represent all sites of phosphorylation within a protein
Table 1 Ranges considered for six classes of model paramete

Parameter class

Rate constant for a bimolecular association reaction

Rate constant for a unimolecular dissociation reaction

Rate constant for a phosphatase-catalyzed reaction*

Rate constant for a receptor trafficking step (internalization or recycling)*

Rate constant for endocytic degradation*

Protein copy number

Processes characterized by parameter classes marked by asterisks are taken to be fi
[15]. Such an assumption can be problematic or undesir-
able for a number of reasons. For example, for adaptor
proteins that interact with different sites on a receptor, the
virtual phosphorylation site assumption introduces a false
competition.
Although our model is large when measured in terms

of potentially populated chemical species, the number of
parameters in the model is comparable to the number of
parameters in an ODE model for ERBB receptor signaling
[42]. For example, the model of Chen et al. [14], which
tracks 499 chemical species, has 229 parameters. The
number of parameters in a rule-based model depends on
the number of rules comprising the model rather than the
number of chemical species or reactions implied by the
rules [10]. The model presented here has 543 parameters.
How should we view the increase in number of para-

meters from 299 to 543? Model selection criteria used in
statistics, such as the Akaike information criterion, incorp-
orate penalties for the number of parameters in a model.
Thus, one might view our model as inferior to the model
of Chen et al. [14]. However, this perspective ignores the
fact that our model, like the model of Chen et al. [14], was
formulated not to serve as a fitting function but rather to
serve as a “vehicle of understanding” [44]. If only a fitting
function is desired, neither of these models is likely to be a
good choice given any typical collection of data. However,
if one desires a model that can be used to reason about
mechanism, then the model presented here better cap-
tures the site-specific details that are known from experi-
mental studies of ERBB receptor signaling, and it is better
able to connect to multiplex temporal phosphoproteomic
data, which can be generated in principle. Moreover, a
rule-based model that captures site-specific details may
rs

Estimated range Units

10-7 – 10-5 (molecules/cell)-1�s-1
10-2 – 100 s-1

10-3 – 10-1 s-1

10-3 – 10-1 s-1

10-3 – 10-1 s-1

104 – 106 molecules/cell

rst-order processes.
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Figure 3 System size and simulation performance. (A) Cost of
network-free simulation vs. cost of on-the-fly simulation. The CPU
time required to perform the simulation specified in the BioNetGen
input file of Supplemental Archive File 1, but without equilibration,
was determined for the on-the-fly stochastic simulation algorithm
(SSA) implemented in BioNetGen and also for the network-free
stochastic simulation algorithm implemented in NFsim. Equilibration
was not performed so that the initial condition would encompass a
minimal number of populated species. Thus, in these simulations, all
proteins were free and unphosphorylated at time t= 0. As can be
seen, the computational cost for on-the-fly simulation increases
exponentially as a function of time, whereas the computational cost
of network-free simulation increases linearly as a function of time.
There are no data points for t≥ 1.5 s for the on-the-fly algorithm
because the cost of network generation made simulating the model
beyond this time impractical. (B) On-the-fly stochastic simulation of
the model with BioNetGen (see Methods). The simulation results
demonstrate that a large number of chemical species are populated
in the ERBB receptor signaling network.
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actually be a better fitting function than an ODE model.
For example, consider a protein with multiple sites of
phosphorylation. If we wish to model the phosphory-
lation dynamics of this protein, and we can only meas-
ure phosphorylation using a pan antibody, then a virtual
phosphorylation site assumption and ODE model may be
justified. However, if phosphospecific antibodies are avail-
able, and the different sites in the protein have different
phosphorylation kinetics, then a (rule-based) model that
treats the sites individually may be superior according to a
model selection criterion, despite the introduction of add-
itional parameters, because the best that a model that
lumps sites together can do is reproduce the average
phosphorylation dynamics, which may not represent the
dynamics of any individual site. In the simple example
considered, a rule-based model may be unnecessary, but
the size of an ODE model tends to increase exponentially
as components are added if the model incorporates site-
specific details [7,8,10] and eventually a rule-based ap-
proach would be required.
An important aspect of the model presented here is its

ability to make predictions about specific sites of phos-
phorylation. Phosphorylation of individual sites can be
experimentally detected and monitored as a function of
time after a perturbation of a cell signaling network using
various multiplex techniques, such as reverse phase pro-
tein array (RPPA), high-throughput microwestern blot-
ting, and quantitative mass spectrometry (MS). Time
courses for many of the sites considered in the model
have been measured using these techniques [45-47]
(Table 2). Table 2 indicates which sites considered in the
model were assayed in each of three proteomic studies.
Although no single study has generated time courses for
all 55 sites of phosphorylation (or a significant fraction of
these sites with fine time resolution), it seems that, in
principle, multiplex temporal phosphoproteomic data
can be generated that would be useful for identifying the
parameters of the model presented here, or other such
models. ODE models cannot connect to multiplex phos-
phoproteomic data because of the limited ability of these
models to track individual sites of phosphorylation.
Generation of data needed to begin validation of a large

rule-based model would be a resource-intensive undertak-
ing and one that ideally would involve not only use of
multiplex data to estimate model parameter values but
also carefully designed experimental tests of model predic-
tions. It is unlikely that such an undertaking would ever
start without a demonstration that modeling aspects of a
study focused on site-specific mechanistic details are feas-
ible. Providing a demonstration of key modeling capabil-
ities needed for this type of study was the rationale behind
this report. Models reported in the literature that are clos-
est in character to that reported here are perhaps the mod-
els of Thomson et al. [28] and Tiger et al. [48], which are
large rule-based models for cell signaling systems in yeast.

Conclusion
In conclusion, with the development of network-free
simulation tools, it is now possible to build and analyze
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Figure 4 Simulation of ERBB receptor signaling in response to addition of epidermal growth factor and heregulin. Network-free
stochastic simulation of the rule-based model illustrated in Figure 2 with NFsim (see Methods). The simulation results demonstrate the capability
of the rule-based modeling approach to represent site-specific phosphorylation kinetics. For each time course, phosphorylation level is
normalized to the maximum level. Time courses are clustered by similarity (see Methods).
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rule-based models that capture a significant fraction of
the proteins and protein-protein interactions in a cell
signaling network with consideration of site-specific
mechanistic details. The next challenge is to apply this
type of modeling to gain new biological insights. The
ERBB receptor signaling network is important in cancer,
so it may be especially interesting to study how best to
target the network when it is affected by known muta-
tions. For an example of such a study, see Stites et al.
[4]. In the future, we anticipate that rule-based model-
ing will become a tool routinely used in proteomic and
systems biology studies, enabling the development of
more mechanistic, validated, and predictive models for
cell signaling networks.



Table 2 Summary of selected temporal phosphoproteomic data

Protein Residue Wolf-Yadlin et al. (2007) VanMeter et al. (2009) Ciaccio et al. (2010)

ERBB1 (EGFR)

Y845 X

Y992 X

Y998 X

Y1045 X

Y1068 X X

Y1086 X

Y1148 X X

Y1173 X X X

ERBB2 (HER2)

Y1221/1222 X

Y1248 X X

ERBB3 (HER3)

Y1289 X

Y1328

ERBB4

Y1284 X

Shc1

Y239/240 X X

Y317 X X X

Raf-1

S289/296/301 X

S338 X

MEK1/2

S217/T221 X

ERK1/2

T202/Y204 X X X

Gab1

Y373 X

Y406 X

Y627 X X X

Y659 X

Akt1

T308 X X

S473 X X

Time courses have been measured for many of the serine, threonine and tyrosine (S/T/Y) residues considered in the model presented here. Here, we focus on
three studies that applied distinct experimental techniques to measure time courses of phosphorylation for specific S/T/Y sites. In the study of Wolf-Yadlin et al.
[45], the technique of selected reaction monitoring and quantitative mass spectrometry was applied. In the study of VanMeter et al. [46], the technique of reverse
phase protein array was applied. In the study of Ciaccio et al. [47], the technique of microwestern array was applied. An ‘X’ entry in this table signifies that a time
course of phosphorylation for the indicated residue was measured in the indicated study.
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Methods
Specification of the model structure
Our model was specified with the intention of extending
the model of Chen et al. [14] by adding consideration of
the site-specific details of protein interactions. Thus, the
proteins considered in the model of Chen et al. [14]
defined the scope of our modeling effort. Our model
was specified on the basis of an extensive literature
search. Electronic repositories of biological knowledge
[35,36,49-55] and expert knowledge of the modeling
team were also helpful. Mechanistic knowledge was for-
malized using the BioNetGen language (BNGL) [56]. We
defined molecule type graphs (19 total graphs) to repre-
sent molecules (18 proteins and phosphatidylinositol)
and rules (544) to represent molecular interactions and
other processes (viz. transport and degradation). We also
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defined observables for the purpose of reporting time
courses of phosphorylation for specific S/T/Y residues
included in the model. The model accounts for several
compartments of a single cell: surrounding extracellular
fluid, the plasma membrane, the cytoplasm, and endo-
somes, where internalized ligands are degraded. A
complete specification of the model is provided in the
supplemental material (see ERBB_model.bngl, Additional
file 1). The model specification is given in the form of a
BioNetGen input file, which is a plain-text file [56]. The
model specification includes a list of the 544 rules of the
model as well as a list of nominal parameter values (see
below). A BioNetGen input file can be processed by a
number of software tools, including BioNetGen [9,56]
and NFsim [13], which were used in this study.

Model visualization
The extended contact map of Figure 2 is drawn accord-
ing to the conventions of Chylek et al. [22]. The map
was created manually using the OmniGraffle drawing
tool (The Omni Group, Seattle, WA). An OmniGraffle
stencil is available for drawing extended contact maps
[22]. The stencil can be obtained from the BioNetGen
wiki site (http://bionetgen.org). A tool for automatic
visualization of a rule-based model specification, rxncon,
has recently become available [48]; this tool produces
maps that have similarities with an extended contact
map. The purpose of an extended contact map is to pro-
vide a high-level understandable illustration of the ma-
terial components, post-translational modifications, and
interactions included in a model. Only material compo-
nents, post-translational modifications, and interactions
explicitly included in our model are represented in
Figure 2. Material components are represented by boxes,
and nesting of boxes is used to illustrate structural rela-
tionships. Post-translational modifications are repre-
sented by flags (i.e., small square boxes connected to
text labels). Interactions are represented by arrows,
which are each linked to a set of rules (see below). In an
extended contact map, for simplicity, no attempt is made
to illustrate the contextual dependencies of interactions;
instead, contextual dependencies are captured in the
rules linked to arrows. Two types of arrows are used in
Figure 2. Lines with two arrowheads are used to connect
material components responsible for protein-protein and
protein-lipid interactions. Lines that end with a circle
are used to connect enzymes and substrates. The con-
ventions of extended contact maps are further described,
in great detail, elsewhere [22].

Model annotation
As recommended by Chylek et al. [22], a model guide
was prepared for the purpose of linking rules in the
model to arrows of the extended contact map of Figure 2
and for the purpose of annotating the model. The guide
is provided in the form of a TiddlyWiki (http://tiddlywiki.
com/), which is a single-page wiki application. The
guide is available online (https://modeling.tgen.org/). It
can also be inspected by using a web browser to open
the HTML document included in the supplementary
archive file (Additional file 2). The guide includes car-
toon illustrations of proteins, which were prepared using
the DOG software tool [57]. The guide also includes
links to a variety of information available in online
resources, including UniProt [35], OMIM (http://omim.
org/), PubMed (www.ncbi.nlm.nih.gov/pubmed), Pfam
[36], and KEGG [49]. Additional resources used in
model development and annotation included NetPath
[50], HPRD [51], Phospho. ELM [52], PTMScout [53],
ChEBI [54], and ELM [55]. The elements (pages) of a
TiddlyWiki are called Tiddlers. Tiddlers are available
within our TiddlyWiki that identify the compartments,
proteins, domains, linear motifs, phosphorylation sites,
metabolites, and interactions considered in the model.
The formal elements of the model include molecule type
definitions and rules, for which Tiddlers are also pro-
vided. Tiddlers for rules are cross-referenced with
arrows in the extended contact map of Figure 2. For a
full discussion of the concept of a model guide, as well
as a different example of a guide, see Chylek et al. [22].

Parameter values
In general, to simulate a rule-based model, one must as-
sign copy numbers to molecules and rate constants to rate
laws. In a rule-based model, a rate law is associated with
every rule. For our model, each rate law has a form con-
sistent with mass-action chemical reaction kinetics. The
parameters of the model (543) were divided into six
classes and a feasible range was estimated for each class
(Table 1). It is possible to specify feasible ranges for par-
ameter values because the types of interactions considered
in our model have been systematically and quantitatively
studied. For example, interactions of SH2 domain-
containing proteins with phosphotyrosine binding part-
ners in ERBB receptors have been characterized using a
protein microarray-based approach [58]. Care was taken
to respect physicochemical constraints on parameter
values. For example, rate constants for bimolecular associ-
ation reactions were not allowed to exceed the upper limit
set by diffusion [59]. An ensemble of 1000 sets of param-
eter values was generated by sampling values from the
estimated feasible ranges. Care was also taken to ensure
satisfaction of detailed balance [60,61]. The nominal par-
ameter values specified in the BioNetGen input file of
Supplementary Archive File 1 were chosen arbitrarily
from among the ensemble of parameter values considered,
because with these parameter values, the model produces
time courses of phosphorylation for ERK (T185 in ERK2)

http://bionetgen.org
http://tiddlywiki.com/
http://tiddlywiki.com/
https://modeling.tgen.org/
http://omim.org/
http://omim.org/
http://www.ncbi.nlm.nih.gov/pubmed
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and Akt (S473 in Akt1) that are deemed to be reasonable.
We caution that the nominal parameter values have not
been validated; parameter estimation on the basis of em-
pirical data is beyond the intended scope of our study.
Parameter values in the BioNetGen input file of Supple-
mentary Archive File 1 are specified using the unit system
recommended by Faeder et al. [56].

Simulation
Network-free simulation is a particle-based, or agent-
based, approach that involves tracking individual mole-
cules and molecular components; the cost of simulation
depends on the number of molecules, molecular compo-
nents, and rules considered but not the number of
chemical species or reactions implied by rules [40,41].
Software that implements network-free simulation meth-
ods, such as RuleMonkey [12], NFsim [13], and KaSim
(http://kappalanguage.org), can be used for simulating
large-scale reaction networks. The results of Figure 4
were generated using NFsim v1.09, which is an efficient
implementation of the network-free simulation algo-
rithm of Yang et al. [40]. In the simulations performed
to produce the results of Figure 4, compartment sizes
were scaled by a factor of 0.2 to decrease the computa-
tional expense of simulation. Before time t= 0, the sys-
tem is in a steady state and no ligand is present. At t= 0,
epidermal growth factor and heregulin are added (at a
concentration of 5 nM each), as indicated in the BioNet-
Gen input file that defines the model (Additional file 1).
A single simulation run does not require special compu-
tational resources; a laptop can be used to reproduce the
simulations performed with NFsim.
The results of Figure 3A were generated using the on-

the-fly stochastic simulation algorithm implemented in
BioNetGen [39,56]. On-the-fly simulation is a population-
based simulation approach that involves lazy evaluation of
rules to generate a partial list of possible reactions. We
considered full compartment sizes for these simulations,
which were expensive, requiring several days of computa-
tion and significant memory usage. For these simulations,
we used an Altix 4700 machine with 576 GB of shared
memory (SGI, Fremont, CA). Because the number of
populated species and the size of the reaction network
encompassing the populated species grow exponentially
as a function of time, it quickly becomes impossible to
simulate the model using on-the-fly simulation, even
with a supercomputer. Figure 3A shows how the cost of
on-the-fly simulation increases exponentially as simu-
lated time and network size increase. In contrast, the
cost of simulation via the network-free approach
increases only linearly (Figure 3A). NB: for the simula-
tions of Figure 3B, equilibration (i.e., simulation for suf-
ficient time to reach steady state before addition of
ligands) was not performed so that the initial condition
would encompass a minimal number of populated
chemical species. In these simulations, at time t=0, all
proteins were free and unphosphorylated.

Clustering
Time courses reported in Figure 4 were normalized by
dividing each simulated phosphorylation level by the
corresponding maximum phosphorylation level recorded
over the course of simulation. Normalized time courses
were then ordered using hierarchical clustering, average
linkage, and the Pearson correlation metric. The heat
map of Figure 4 was constructed using the GenePattern
software tool [62].

Additional files

Additional file 1: ErbB_model.bngl. This plain-text file is a BioNetGen
input file. It contains a specification of the model structure as well as
nominal parameter values.

Additional file 2: ModelGuideWiki.zip. This archive file provides a
copy of the files available online (https://modeling.tgen.org). These files
serve to annotate the model.
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