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Abstract

Background: Integrating gene expression profiles and metabolic pathways under different experimental conditions
is essential for understanding the coherence of these two layers of cellular organization. The network character of
metabolic systems can be instrumental in developing concepts of agreement between expression data and
pathways. A network-driven interpretation of gene expression data has the potential of suggesting novel classifiers for
pathological cellular states and of contributing to a general theoretical understanding of gene regulation.

Results: Here, we analyze the coherence of gene expression patterns and a reconstruction of human metabolism,
using consistency scores obtained from network and constraint-based analysis methods. We find a surprisingly strong
correlation between the two measures, demonstrating that a substantial part of inconsistencies between metabolic
processes and gene expression can be understood from a network perspective alone. Prompted by this finding, we
investigate the topological context of the individual biochemical reactions responsible for the observed
inconsistencies. On this basis, we are able to separate the differential contributions that bear physiological information
about the system, from the unspecific contributions that unravel gaps in the metabolic reconstruction. We
demonstrate the biological potential of our network-driven approach by analyzing transcriptome profiles of
aldosterone producing adenomas that have been obtained from a cohort of Primary Aldosteronism patients. We
unravel systematics in the data that could not have been resolved by conventional microarray data analysis. In
particular, we discover two distinct metabolic states in the adenoma expression patterns.

Conclusions: The methodology presented here can help understand metabolic inconsistencies from a network
perspective. It thus serves as a mediator between the topology of metabolic systems and their dynamical function.
Finally, we demonstrate how physiologically relevant insights into the structure and dynamics of metabolic networks
can be obtained using this novel approach.

Background
Genomic knowledge allows compiling an inventory of an
organism’s enzymes and thus the subsequent reconstruc-
tion [1] and simulation of its metabolic system [2] using
constraint-based modeling (CBM) techniques [3]. Com-
pensating the lack of detailed information on the systems
parameters, e.g., enzyme kinetics, gene regulation etc.,
CBM has proven to be a valuable tool for genome-scale
system analysis. For example, flux balance analysis (FBA)
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[4] has been used to predict with high accuracy the lethal-
ity of gene deletions in unicellular organisms by taking
only the metabolic system’s stoichiometry, the assump-
tion of optimal growth (implicit gene regulation), and a
specified growth medium into account (see e.g. [5], for a
study involving Escherichia coli or [6], for a study involving
Saccharomyces cerevisiae).
Duarte et al. [7], published a genome-scale represen-

tation of human metabolism based on genomic, bibli-
ographic, and biochemical information. In contrast to
metabolic representations of unicellular organisms, the
following caveats play a role in the modeling of multi-
cellular reconstructions, in general, and in particular for
the human system [8]: (i) it is difficult to define environ-
mental conditions for a multicellular system, (ii) usually
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not enough information is available about the cell-type
specificity of human metabolic pathways, and (iii) cel-
lular objectives, a prerequisite for flux balance analysis,
are hard to define and validate. The precision of CBM
predictions increase with the availability and accuracy
of constraints, as they aid narrowing down the poten-
tial solution space to the biologically meaningful system
states. Thus, integrating experimental data can help over-
come the previously mentioned limitations.
In the present work, we will integrate human tran-

scriptome data from a cohort of healthy controls and
aldosterone producing adenomas (APA) of adrenal glands
from primary aldosteronism (PAL) patients [9] with the
metabolic reconstruction Human Recon 1 [7]. Primary
aldosteronism is a common form of hypertension with
hypokalemia and suppressed renin-angiotensin system
caused by autonomous aldosterone production. This data,
among other data sets covered in the supporting infor-
mation, will serve us to demonstrate how the metabolic
contextualization dramatically increases the resolution of
our perception of the data.

Approach
Different approaches to the incorporation of experimen-
tal data into CBM have been proposed [8,10-13] (see
Supporting Information Additional file 1: Text S1 for
a summary). The GIMME (Gene Inactivity Moderated
by Metabolism and Expression) algorithm, proposed by
Becker and Palsson [14], maintains flux through a pro-
posed metabolic objective (similar to FBA) by simulta-
neously punishing flux through unexpressed reactions. A
threshold on the transcriptome data is used for expres-
sion classification purposes (see Figure 1a and c). The
sum of fluxes through unexpressed reactions is termed
inconsistency (I) and is minimized during the GIMME
optimization. Thus, the inconsistency I gives, on the
one hand, an estimate of the quality of the computed
flux distribution, and measures, on the other hand, the
coherence of the objective and the experimental data
(see Materials and Methods and Supporting Information
Additional file 1: Text S1). We chose GIMME over other
methods for our analysis as (i) the threshold parameter
used for determining gene presence-absence patterns is of
particular interest to our study, and (ii) the inconsistency
measure suits our approach of quantifying the discrep-
ancy of the measured transcript levels to a given cellular
objective, e.g., aldosterone or ATP production.
We will compare the inconsistency I to the metabolic

coherence (MC) introduced previously [15], which is a
purely topological quantity that measures the fragmenta-
tion of effective metabolic gene networks (see Figure 1b).
The coherence of metabolic gene network topology and
expression patterns is quantified as follows (see also
Materials and Methods): in order to extract effective

subnetworks, we map genes with expression values above
threshold directly onto a metabolic gene network of
human metabolism. Then, we compute the ratio of con-
nected nodes and overall nodes in the effective subnet-
work. This ratio is then converted into a z-score, by using a
random distribution of expression changes as a null model
(effectively choosing the same amount of affected nodes).
This z-score is ourmetabolic coherence (MC), which mea-
sures the amount of network coherence between gene
expression profiles and metabolic pathways.
The comparison between these two indices is interest-

ing, as they highlight different properties of the network
dynamics. The inconsistency index I, on the one hand,
measures the level of disagreement between expression
data and anticipated network dynamics. The MC index,
on the other hand, measures the amount of coordinated
(connected) expressed reaction structure, which can only
be observed after contextualization of the expression data.
Figure 1d shows a flow diagram that describes the struc-

ture and necessary steps of our comparative analysis.
Based on this quantitative comparison, we will conduct
a topological characterization of the individual contri-
butions to I and show that valuable information can be
extracted from them.

Results
Inconsistency andmetabolic coherence uncover two types
of metabolic behavior
Using the GIMME approach, can physiological insights be
obtained from the adenoma transcriptome data? Figure 2a
shows the distribution of inconsistency values for the con-
trol and the adenoma transcriptome profiles. Maximal
aldosterone production was used as the cellular objective
function vobj and a minimal medium composition con-
taining glucose and glycerol, as well as a collection of
amino acids and fatty acids, was implemented using the
appropriate boundaries on the their respective exchange
reactions (for further details see Materials and Methods
and Supporting Information Additional file 1: Text S1).
The histogram in Figure 2a uncovers a bimodal distri-
bution of adenoma inconsistency values: it consists of a
group of adenomas exhibiting lower(higher) inconsisten-
cies than the average 〈I〉 of the control group. We term
them high and low inconsistency group respectively (HIG
and LIG). It is important to note that these two cate-
gories (HIG and LIG) could not have been uncovered by
conventional cluster analysis (see Figure 2b).
How does the purely topological metabolic coher-

ence method compare to the previously applied GIMME
approach? Measuring the metabolic coherence for the
adenoma transcript data reveals a similar pattern (see
Figure 2c). Although not quite as distinct as for the incon-
sistency measure (compare to Figure 2a), two groups of
high and low coherence are visible, which leads us to
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Figure 1 A schematic figure explaining the metabolic coherence (MC), inconsistency I, and methodological approach behind the
comparison ofMC and I. (a) A threshold t is applied onto the data x, depicted here as an overlay histogram of the raw log-signal intensities of the
adenoma data, in order to obtain a binary gene/reaction (nodes) presence (green) and absence (red) pattern p. (b) Effective gene subnetworks are
constructed from the present genes in p and the overall static gene-network representation of human metabolism (step 1). The ratio (coherence C)
of connected genes (gray nodes) to isolated genes (light gray nodes) is determined (step 2). Sampling the overall static network with randomly
generated presence patterns provides a distribution of null hypothesis coherence values C’ (step 3). The coherence C is transformed into the z-score
MC (metabolic coherence) using C’ (step 4). (c) GIMME (Gene Inactivity Moderated by Metabolism and Expression) computes suitable flux
distributions by simultaneously asserting flux through a specified objective (vobj ; in fact a certain level l of the theoretically achievable maximum

vobjmax determined by FBA) and minimizing flux through absent reactions. (d) The flow chart depicts the necessary steps in setting up a comparative
analysis ofMC and I.

the following comparison of inconsistency and metabolic
coherence.

Comparison of metabolic coherence and inconsistency
We have shown above, that GIMME, as well as the
metabolic coherence, permit an interrogation of the tran-
scriptome data in a metabolic context. Both provide bio-
logical meaningful insights, which could not have been
obtained by classical means of microarray data analysis.
But how does GIMME compare to the metabolic coher-
ence in detail, which is a purely topological score that
inquires far less parameters and assumptions?
Figure 3a shows a scatterplot of themetabolic coherence

and inconsistency values for all 69 expression profiles (58
adenomas + 11 controls), using the reference medium and

the threshold t = 1.9, revealing a strong anticorrelation
between both measures (Pearson’s product correlation
coefficient r = −0.65, with p ≤ 7 × 10−10 determined
by one-tailed t statistic; Spearman’s rank correlation coef-
ficient ρ = −0.72). The dependence of the correlation
on the threshold parameter t, applied to the data in
order to distinguish between expressed and not expressed
metabolic genes, is checked in Figure 3b. The strongest
negative correlation appears for parameter ranges that fit
our statistical understanding of the raw signal distribution
(see Figure 1a). No significant dependence on the level
parameter l was found (see Figure 3c; l is used to enforce
a certain flux through the stated objective vobj).
In Figure 3d the dependence of the correlation between

inconsistency and theMC on the chosen growth medium
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Figure 2 Two types of metabolic behaviors in adenoma tumors. Distributions of (a) inconsistency (I) and (c)metabolic coherence (MC) scores
for the adenoma and control samples. (b) A hierarchical cluster-analysis of the data does not reveal a clear separation of the low (LIG) and high (HIG)
inconsistency groups.

is shown. The distribution of correlation coefficients is
narrow (between −0.75 to −0.4 for r and −0.73 to −0.35
for ρ), regardless of which correlation measure is con-
sidered. This indicates that both inconsistency and MC
and their correlation seem not be strongly dependent on
the environmental conditions provided. Furthermore, the
correlation values obtained for the reference medium (i.e.
r = −0.64 and ρ = −0.68, see also above) seem to origi-
nate in the left tail of the distributions, suggesting a rather
high correspondence with the in vivo situation.
We confirmed that the observed anticorrelation

between both measures is not a feature of the adenoma
data, but holds true for other transcriptome data as well
[16] (see Figure S1 and S2 in Supporting Information
Additional file 1: Text S1).

Inconsistency contributions in central humanmetabolism
Figure 4 displays inconsistency contributions and flux
patterns for control, HIG and LIG on the carbohy-
drate metabolism pathways of Homo sapiens. Striking
differences between the control group and the ade-
noma groups become visible in this overview, e.g., the
pentose-phosphate pathway seems to be activated only
in the HIG and LIG. Furthermore, the control path-
way map lays out a rather consistent pattern of flux

activities. Though, a few exceptions arise: pyruvate
dehydrogenase (PDHm), the major entry point to the
TCA cycle, and to lesser extent hexokinase (HEX1)
and the pyruvate transport from cytosol to mitochon-
drium (PYRt2m), exhibit high contribution strengths. It
is intriguing that the contribution strengths for these
particular reactions is diminishingly small in the LIG
case, which indicates an elevated energy metabolism
for those adenomas. The HIG, on the other hand,
shows a large number of reactions with elevated con-
tribution strengths homogeneously distributed over the
whole map, which indicates a significantly reduced energy
metabolism.

Individual contributions to the inconsistency
The correlation between metabolic coherence and incon-
sistency suggests a connection between both measures,
and thus the possibility of interpreting the inconsistency
values from the perspective of network topology. In order
to investigate this point, we will decompose the inconsis-
tency value into a vector of individual contributions, i.e.,
reactions that have been reinserted during the optimiza-
tion procedure in order to achieve the targeted flux-level
of the objective function. We further define the contribu-
tion strength of a reaction as the number of contributions
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Figure 3 Comparison of metabolic coherence and inconsistency measures for the adenoma data set. (a) The aldosterone-production
inconsistency values are plotted against theMC of 69 tumor and control data sets. A clear negative correlation is visible (Pearson’s product-moment
correlation coefficient r = −0.65, with p ≤ 7 × 10−10 determined by one-tailed t statistic, and Spearman’s rank correlation coefficient ρ = −0.72;
t = 1.9; l = 0.95). (b) Dependency of the correlation on the threshold parameter (l = 0.95). (c)Medium dependency of the negative correlation
strength. Both Spearman’s rank correlation coefficient as well as Pearson’s correlation where computed for theMC and the inconsistency for 100
random growth media (t = 1.9; l = 0.95). The dashed line in (b) indicates the threshold parameter used in (a). Arrows in (c) indicate the correlation
values found in (a).

it makes to the inconsistencies of a data set divided by the
size of the respective data set.
Comparing the contribution strengths of reactions in

central metabolism reveals interesting changes in the
physiology of LIG and HIG (see Figure 4). But how do
the contribution strengths vary between control, LIG
and HIG on a global metabolic scale? The contribution
strengths for a subset of all contributing reactions is
shown in Figure 5 (see Additional file 1: Text S1 Figure S3
for the complete set of contributions). The contributing
reactions have been sorted according to their contribution
strengths in the control group and at equal strength by the
overall contributions. Having already seen a few examples
for differentially contributing reactions in the carbohy-
drate pathways, it becomes evident that there are many
more to discover.
On the other hand, a group of reactions with very

high contribution strengths seems to contribute non-
specifically and independently from the gene expression
data. In the following, we want to elaborate on this set of
reactions, and will use certain categories and topological
markers to characterize them.
The following circumstances can lead to non-specific

contributions to the inconsistency vector:

1. A reaction is expressed in vivo but the measured
gene expression intensity falls below the threshold t

under most or all experimental conditions (just
below threshold ). This is a consequence of the rigid
application of a universal threshold. Topologically,
these contributions often disrupt a chain of
otherwise expressed reactions (chain disruptor).

2. A reaction is expressed in vivo but, e.g., wrong GPR
associations, missing isozymes, wrong gene
annotations, erroneous data etc., make it invisible for
the analysis. Again, these artifacts are often
characterized by an interrupted chain of expressed
reactions (chain disruptor).

3. The reaction is not expressed, but it has to be utilized
by GIMME due to the following reasons:

(a) The stated objective function does not reflect
the situation present in the cell. Defining the
objective functions as the output of the
system, these reactions contributions should
often lie close to it (close to output layer).

(b) The chosen media composition does not
reflect the in vivo environment in which the
experimental data has been obtained. The
preliminary FBA step in GIMME is naive
about the in vivo medium composition and
uses everything provided and suitable for the
maximization of the objective function. As
GIMME enforces a certain achievement of
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Figure 5 Inconsistency contributions from adenoma tumor samples showing lower (LIG) and higher (HIG) inconsistencies (top and
middle panel) in comparison to the control group (bottom panel). The gray box highlights the group of unspecific reaction contributions.
These contributions are covered together with a selection differentially contributing (bold reaction labels) in Table 1 and Supporting Additional
file 1: Text S1 Table S2. Only a subset of all contributing reactions is shown due to space limitations (the complete diagram is available in Additional
file 1: Text S1 Figure S3).

the objective flux predicted by FBA, many of
the transport reactions used by FBA will also
be used by GIMME. Topologically, these
reaction contributions are characterized by
lying close to the provided medium
components (close to input layer).

(c) Too many missing gene-protein-reaction
associations (GPR), either due to
non-enzymatic reaction steps or knowledge
gaps, before and after the contributing
reaction can lead to wrongly activated paths,
as missing GPR information is not punished
by GIMME (invisible path ).

(d) Alternative expressed routes to the objective
function are available in vivo, but are not
covered by the metabolic reconstruction.
This leads to reaction contributions that are
characterized by producing essential
precursors for the objective function, and
thus constitute bottlenecks in the system
(bottleneck).

Table 1 lists topological and biological classifications for
a selection of the 11 unspecific contributions as well as 8
selected differentially contributing reactions (see Figure 5;
the full listing is provided in Supporting Additional file 1:

Text S1 Table S1). Pathway visualizations of the contribut-
ing reactions can be found in Supporting Additional files
2, 3, 4, and 5. The topological characterization from the
enumeration above have also been applied to the specific
contributions.
Our network-based approach is capable of identifying

similar patterns as the more sophisticated methods based
on flux-balance analysis. In this way, our approach can
facilitate an understanding of metabolic inconsistencies
from a network perspective. It thus serves as a media-
tor between the topology of metabolic systems and their
dynamical function. In the following we will discuss two
representative sets of contributions to the inconsistency
in greater detail.

�1-pyrroline-5-carboxylate-proline cycle
Proline dehydrogenase (PROD2) emerges as one of the
major unspecific inconsistency contributors (see Table 1).
Together with �1-pyrroline-5-carboxylate reductase
(P5CRx), it is involved in a cycle that interconverts
NADH into FADH2 (see Figure 6), a necessary redox
factor for the biosynthesis of cholesterol biosynthesis,
the ultimate precursor for all steroid pathways and con-
comitantly aldosterone production. The cycle involves
synthesis and degradation of L-proline, where �1-
pyrroline-5-carboxylate (1pyr5c) acts as precursor as well
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Table 1 Classification of contributions to the inconsistency vector (bottleneck; BN, invisible path; IP, chain disruptor; CD, close to input layer; CIL, close to output
layer; COL, SIaa; Additional file 2, SIcarb; Additional file 3, SIlip; Additional file 4, SIvit; Additional file 5)

Contributor Category Topological
class

Biological interpretation Reference

AATAi** unspecific BN; IP 2-Aminoadipate transaminase;one out of two 2-oxoadipate producing reactions; missing GPR assoc.

in all precursors. SIaa, B1

PROD2* unspecific CD; CIL Proline dehydrogenase; participates in a cycle that converts nadh to fadh2 (Figure 6); not expressed (Figure S5b). SIaa, D3

DPMVDx unspecific CD Diphosphomevalonate decarboxylase; essential step in the cholesterol biosynthesis pathway;

not expressed; wrong or missing GPR assoc. (Figure S5c). SIlip, B5

GLYK unspecific CIL Glycerol kinase; not expressed in control and LIG, indicating that glycerol (provided in the in silicomedium)

might not be available as a in vivomedium component; slightly elevated expression levels in LIG (see Figure S5i). SIlip, E5

PHETHPTOX2 unspecific CIL Phenylalanine 4-monooxygenase; converts phenylalanine (provided in the in silicomedium) into tyrosine

(not provided in the in silicomedium); the high unspecific contribution strength indicates that tyrosine might be

available as an in vivomedium component. SIaa, A5

34HPPOR*** unspecific CD; CIL 4-Hydroxyphenylpyruvate dioxygenase; involed in tryosine to fumarate and acetoacetate conversion;

not expressed (see Figure S5m). SIaa, B5

FUMtm unspecific — Fumarate transport (cytosol/mitochondria); expression just below threshold (see Figure S5o). no map

GLUTCOADHm** specific CD Glutaryl-CoA dehydrogenase; involved in the 2-oxoadipate pathway (see Figure S5); elevated expression levels in LIG (see Figure S6a). SIaa, A2

PDHm specific BN Pyruvate dehydrogenase; entry point to the TCA cycle; elevated expression levels in LIG (see Figure S6c). SIcarb, C3

MMEm specific CD Methylmalonyl-CoA epimerase; involved in isoleucine degradation; slightly elevated expression levels in LIG (see Figure S6d). SIaa, D1–E1

MEVK1x specific CD Mevalonate kinase; an essential step in cholesterol biosynthesis; decreased expression levels in LIG and HIG (see Figure S6e). SIlip, B5

G6PDH(1,2)rer specific – Glucose-6-phosphate dehydrogenase; slightly elevated expression levels in LIG (see Figure S6f). SIcarb, C4–D4

DHCR71r specific CD; COL 7-Dehydrocholesterol reductase; involved in cholesterol biosynthesis; slightly elevated expression levels in LIG (see Figure S6g). SIlip, A4

HEX1 specific CD; CIL Hexokinase; first step in glycolysis; slightly elevated expression levels in LIG (see Figure S6h). SIcarb, C4–C5

SQLEr specific CD Squalene epoxidase; decreased expression levels in LIG and HIG (see Figure S6i). SIlip, A5
*Proline cycle issue; see Figure 6.
**2-Oxoadipate issue; see Figure 7.
***Tyrosine path to fumarate and acetoacetate issue; see Figure S4 and Text S1.
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Figure 6 �1-pyrroline-5-carboxylate-proline cycle. The NADH to FADH2 interconverting cycle composed of pyrroline-5-carboxylate reductase
and pyrroline-5-carboxylate reductase is depicted together with the distributions of expression values for the cytosolic (PROD2 and P5CRx) and
mitochondrial (PROD2m and P5CRxm) versions of pyrroline-5-carboxylate reductase and proline dehydrogenase. The control is depicted in purple, the
LIG and HIG in green and red, respectively, and the dashed lines indicate the threshold used for the GIMME computations (see Figure 7 for a
detailed legend).

as degradative product. In the cytosol, P5CRx seems to
be expressed in most of the samples, whereas expression
levels for PROD2 fall all below the GIMME threshold. It
is intriguing that the gene expression profiles are almost
reversed in the mitochondrion, where PROD2m (a mito-
chondrial version of PROD2) is expressed (at least in the
control) and P5CRxm (a mitochondrial version of P5CRx)
is not expressed. It is known that the distinct reaction
steps of the �1-pyrroline-5-carboxylate-proline cycle are
localized over different subcellular locations [18]: (i) the
dehydrogenation of proline to 1pyr5c takes place in the
mitochondrion (i.e. by PROD2m), (ii) 1pyr5c emerges
from the mitochondrion and (iii) is converted back to
proline in the cytosol, (iv) which is then transported back
into the mitochondrion, closing the cycle. In fact, these
are also the steps suggested by the observed expression

patterns. So why does GIMME predict the cycle to
take place exclusively in the cytosol, although PROD2
expression is clearly absent in all samples? Checking the
model revealed missing mitochondrial transporters for
1pyr5c (a transporter for proline is available), prohibiting
its correct physiological operation and suggesting neces-
sary amendments to the human model. Furthermore, the
reduced expression of PROD2m in LIG and HIG consti-
tutes an interesting deviation to metabolic signature of
the control group.

2-Oxoadipate pathways
2-Oxoadipate (2oxoadp) is one of the precursors for
acetyl-CoA (see Figure 7a), which is heavily utilized
in cholesterol biosynthesis. Only two paths lead to 2-
oxoadipate, i.e., L-tryptophan (Figure 7a) and L-lysine
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Figure 7 (a) 2-Oxoadipate production pathway starting from lysine and involving the unspecific contributor AATAi (see Table 1 and
Supporting Additional file 1: Text S1 Table S2). Dashed lines indicate the threshold used for the GIMME computations. (b) 2-Oxoadipate
production pathway starting from tryptophan and involving the unspecific contributor 2OXOADPTm (see Table 1 and Supporting Additional file 1:
Text S1 Table S2) among other more specific contributions. Dashed lines indicate the threshold used for the GIMME computations.

degradation (Figure 7b). The many missing GPR associa-
tions (Invisible pathway) on the path leading from lysine to
2-oxoadipate (Figure 7b), surely promote the usage of this
specific pathway versus the alternative pathway leading
from tryptophan to 2-oxoadipate (Figure 7a), explaining
the high contribution strength of AATAi (see Figure 5

and Table 1). The expression data suggests the absence
of both catabolic pathways. However, it is intriguing
to see that all subsequent steps from 2-oxoadipate to
acetyl-CoA seem to be expressed in the control and LIG
(Figure 7a), implying that 2-oxiadipate might still be
metabolized in the samples. Further investigations in this
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direction might be promising, especially in the light of
the elevated expression levels (LIG vs. control) found for
glutaryl-CoA dehydrogenase (GLUTCOADHm) and
acetyl-CoA C-acetyltransferase (ACACT1rm).

Discussion
There is an ongoing interest in the generic [19] and
network-based [20] properties of metabolic systems,
though discussions of metabolic systems from a network
perspective have frequently been criticized and are prone
to artifacts, when one attempts to biologically interpret
the observed topological properties. Table 1 on the other
hand shows, how a topological perspective can help guide
the biological interpretation of experimental data and
constraint-based analysis results. Classifying metabolic
inconsistencies from a topological perspective allowed us
to think of such inconsistencies in terms of bottlenecks,
paths and branching ratios, etc. As an extension to this
work we would like to formalize our approach in the
future.
Comparing the contribution strengths of individual

reactions among the different sample categories (control,
LIG, HIG) revealed unspecific contributions to the incon-
sistency, as well as a group of reactions that differentially
contribute in a specific fashion.We constructed amethod-
ological framework for the topological classification of the
inconsistency contributions. Therefore, topological mark-
ers were developed for the characterization of both, spe-
cific and unspecific contributions, thus enabling a thor-
ough understanding of the context-specific flux-activity
results. It turned out, that on the one hand, the specific
contributions cast light on an unforeseen diversity of alter-
ations in the physiology of adrenal gland adenomas and,
on the other hand, the unspecific contributions provide
entry points for the iterative refinement of the metabolic
reconstruction.

Conclusion
We have presented a sequence of three results on the
network-mediated correspondence between gene expres-
sion patterns and metabolic systems: (1) We have shown
the general agreement between GIMME [14] and a
purely topological method from [15], both of them capa-
ble to detect distinct physiological behaviors in the
adrenal gland tumors. (2) We have extended the GIMME
approach by moving from the inconsistency score to the
inconsistency vector that contains the various contribu-
tions to the metabolic inconsistency. (3) We have been
able to formulate biological hypotheses for these vector
components based on comparison with network topology.

Methods
An extended “Methods” section is provided in the Sup-
porting Information.

Model of humanmetabolism
All flux balance simulations were conducted using the
metabolic reconstruction Recon 1, a genome-scale com-
partmentalized representation of human metabolism [7],
which is available in SBML [21] format via the BIGG
database [17].

Gene expression data
Aldosterone producing adenomas were obtained through
the COMETE network from patients who had under-
gone surgery for lateralized PAL at the Hôpital Européen
Georges Pompidou between 2002 and 2006. Methods
for screening and criteria for diagnosing PAL were in
accordance with institutional guidelines and have been
described recently [22]. The clinical and biological char-
acteristics of the patients are resumed in Boulkroun et al.
[23]. Here, logarithmized transcript levels from 58 ade-
nomas and 11 control tissue samples were mapped onto
the GPR (gene-protein-reaction) associations included in
the Human Recon 1 model. Therefore, it was necessary to
replace logical AND and OR by min and max functions,
respectively, following the protocol described in [14]. The
eleven control normal adrenals (CA) were obtained from
enlarged nephrectomies (kindly provided by the depart-
ment of Pathology of the University Hospital of Rouen,
Hôpital Tenon as described previously [9]). The EBER2
gene expression has been published in [16].

Context-specific flux balance analysis
Context-specific flux balance analysis of human expres-
sion data was conducted using the GIMME algorithm as
described in [14] and in the introduction to this work.
ATP-production was implemented as a cellular objective
by introducing an artificial reaction that consumes cytoso-
lic ATP. The aldosterone objective was implemented as
the maximization of flux through aldosterone synthase
(model ID: P45011B21m). The pathway to aldosterone
was initially blocked in the metabolic reconstruction.
Further analysis revealed 4-Methylpentanal as a dead-
end metabolite inhibiting steady-state flux to the aldos-
terone synthase reaction. The introduction of an artificial
drain for 4-Methylpentanal restored the functionality of
the whole pathway. Furthermore, the same conservative
approach was chosen regarding missing GPR: reactions
without GPR associations were assumed to be expressed,
i.e., having expression values above t. The aldosterone
objective and the parameters t = 2 and l = 0.8 were used
throughout the study, if not stated otherwise.

Growthmedia
The growth medium was defined as in [24] (see Table S1
in Supporting Information Additional file 1: Text S1). It
contains both glucose and glycerol as carbon sources,
the amino acids L-arginine, L-histidine, L-isoleucine,
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L-leucine, L-lysine, L-Methionine, L-phenylalanine, L-
threonine and L-tryptophane, as well as the fatty acids
palmitic and linoleic acid. Aerobic conditions were
assumed by leaving oxygen consumption unconstrained.
Random media conditions were constructed by picking
randomly between 4% (approx. the number of enabled
exchange reactions in the reference medium) to 100% of
all available exchange reactions in the model and assign-
ing random upper and lower boundaries in the intervals
[−20, 0] and [0, 20] to them. Oxygen, protons, sulfate,
phosphate, water were assumed to be always available. In
case of random media sampling, inconsistency values I
have been normalized by the objective function’s flux in
order to make them comparable.

Metabolic coherence
The metabolic coherence (MC) was computed as
described in [15]. Active genes g (obtained after thresh-
olding) are mapped onto a gene network (representing
metabolism) G to obtain an effective subgraph Gsub that
consists of nodes gsub = g ∩ V (G). Repeatedly and ran-
domly choosing |gsub| nodes from G provides us with a
distribution of N random subgraphs Grnd. Let C(G) be a
function that extracts the set of connected nodes from a
network. Let

μ = 1
N

N∑
i=1

|C(Grnd
i )|

|gsub| (1)

denote the mean of the ratio of connected nodes to overall
nodes in the population of random networks and

σ =
√√√√ 1

N

N∑
i=1

(
|C(Grnd

i )|
|gsub| − μ)2 (2)

its standard deviation. The z-score that we termmetabolic
coherence can then be described as

MC =
|C(Gsub)||gsub| − μ

σ
. (3)

Before constructing the gene network out of the bipar-
tite representation, overly abundant currency metabo-
lites, e.g., ATP, H2O, NADH etc., have been excluded
by removal of 4% of the highest connected compounds
from each compartment in the network [25]. The pre-
sented results, e.g., the strong anti-correlation between
MC and inconsistency, are not particularly sensitive to this
parameter (see Additional file 1: Text S1 Supplementary
Figure S7).

Additional files

Additional file 1: Text S1. Supporting information, including
Supplemental Figures S1–7 and Tables S1–2 [8-14,16,21-24,26-28].

Additional file 2: Pathwaymap SIaa. Amino acid biosynthesis pathways.
The map depicts the usage patterns and inconsistency contributions for
the overall contributions (page i), control (page ii), LIG (page iii), and HIG
(page iv). The thickness and color of a reaction edge corresponds to the
usage frequency and the contribution strength, respectively. The pathway
maps have been obtained from the BIGG database [17].

Additional file 3: Pathway map SIcarb. Central metabolism and
carbohydrate pathways (see also Additional file 2).

Additional file 4: Pathway map SIlip. Lipid metabolism pathways (see
also Additional file 2).

Additional file 5: Pathway map SIvit. Vitamins and cofactor pathways
(see also Additional file 2).
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