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Abstract

Background: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte
Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for
example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic
simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the
Euler, midpoint and θ -trapezoidal τ -leap methods, to demonstrate the power of stochastic extrapolation. The
extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very
easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion
of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the
same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of
the system.

Results: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can
increase the weak order of convergence for the moments of the Euler and the midpoint τ -leap methods, from one to
two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler,
midpoint and θ -trapezoidal τ -leap methods. In almost all cases, extrapolation results in an improvement of accuracy.
As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even
higher-order approximations.

Conclusions: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic
solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical
problems to be solved.
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Background
Biochemical systems with small numbers of interacting
components have increasingly been studied in recent
years, as they are some of the most basic systems in cell
biology [1-3]. Stochastic effects can strongly influence the
dynamics of such systems. Applying deterministic ordi-
nary differential equation (ODE) models to them, which
approximate particle numbers as continuous concentra-
tions, can lead to confusing results [4,5]. In some cases,
even systems with large populations cannot be accurately
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modelled by ODEs. For instance, when close to a bifurca-
tion regime, ODE approximations cannot reproduce the
behaviour of the system for some parameter values [6].
Stochastic systems can bemodelled using discreteMarkov
processes. The density of states of a well-stirred stochastic
chemical reaction system at each point in time is given by
the chemical master equation (CME) [7,8]. The stochas-
tic simulation algorithm (SSA) [9] is an exact method for
simulating trajectories of the CME as the system evolves
in time.
The SSA can be computationally intensive to run for

realistic problems, and alternative methods such as the τ -
leap have been developed to improve performance [10].
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Instead of simulating each reaction, the τ -leap performs
several reactions at once, thus ‘leaping’ along the history
axis of the system. This means that, unlike the SSA, the
τ -leap is not exact; accuracy is maintained by not allow-
ing too many reactions to occur per step. The size of each
timestep, τ , determines the number of reactions occurring
during that step, given by a Poisson random number.
This gain in speed must be balanced with loss of accu-

racy: larger steps mean fewer calculations but reduced
accuracy. Many common τ -leap implementations employ
a variable stepsize, as using the optimal stepsize τ at
each point is crucial for the accuracy of the method [10-
12]. However a fixed-step implementation can be useful
in some cases. Although it may be less efficient, it is
much easier to implement than variable-step equivalents.
More importantly, the extrapolation framework that we
describe in this paper requires a fixed-step method.
The original τ -leap as described by Gillespie [10] is

known as the Euler τ -leap, as it can be compared to the
Euler method for solving ODEs. It has been shown to have
weak order of convergence one under both the scaling
τ → 0 (traditional scaling) [13,14] and V → ∞ (large
volume scaling) [15], where V is the volume of the system.
In the same paper, Gillespie also proposed the midpoint
τ -leap method [10], which has higher-order convergence
in some cases [15,16]. Tian and Burrage [17] proposed
a variant known as the Binomial τ -leap method that
avoids issues with chemical species becoming negative.
Only recently has more work been done on constructing
higher-order stochastic methods. One such method is
the random-corrected τ -leap [18], where at each timestep
a random correction is added to the Poisson random
number that determines the number of reactions in that
step. Given a suitable random correction, the lowest
order errors on the moments can be cancelled. In this
way methods with up to weak order two convergence
for both mean and covariance have been constructed.
More recently, Anderson and Koyama [19] and Hu et
al. [20] proposed another weak second-order method,
the θ-trapezoidal τ -leap, which is an adaptation of the
stochastic differential equation (SDE) solver of Anderson
and Mattingly [21] for the discrete stochastic case.
In this paper we introduce a framework for improv-

ing the order of accuracy of existing fixed-step stochastic
methods by using them in conjunction with Richardson
extrapolation, a well-known technique for improving the
order of accuracy of a numerical solver by combining
sets of simulations with different stepsizes [22]. Extrapo-
lation was originally developed for ODE solvers but has
also been successfully applied to SDE methods [23]. Our
approach has three main advantages:

(1) It increases the order of accuracy of the methods
supplied to it. This is desirable for the obvious reason

that the resulting solutions are more accurate, as well
as that larger timesteps can be used to reach a certain
level of accuracy, reducing the computational cost.
This is discussed further in our Conclusions.

(2) It can be applied to any fixed-step solver, for instance
inherently higher-order methods such as the
θ-trapezoidal τ -leap or methods with an extended
stability region such as stochastic Runge-Kutta
methods [24].

(3) The resulting higher-order solutions can be
extrapolated again to give solutions with even higher
order, as there is no (theoretical) limit on the number
of times a method can be extrapolated (although
statistical errors can obscure the results if the method
is too accurate - see Section Monte Carlo error).

Our extrapolatedmethodsmay be useful for researchers
in biology and biochemistry, as they are easy to imple-
ment and can accurately and quickly simulate discrete
stochastic systems that could otherwise be too computa-
tionally intensive.
We show how the extrapolation framework can be

applied to fixed-step stochastic algorithms using the
examples of the fixed-step Euler τ -leap, midpoint τ -leap
[10] and θ-trapezoidal τ -leap [20] methods. The extrapo-
lation procedure depends heavily on the the existence of
an appropriate global error expansion for the weak error
of the numerical method. Once this is known, extrapo-
lation consists of simple arithmetic. We calculate such
an expansion for an arbitrary weak first-order method;
this allows us to use extrapolation in order to obtain
higher-order solutions. The weak order of all themoments
of such methods can be improved by extrapolation. To
reinforce this, we perform a simple error analysis by com-
paring the equations for the true and numerical mean
of the Euler τ -leap method; we see that its global error
is order one, and extrapolating it increases the order to
two for the case of zeroth-order and first-order reactions.
Using numerical simulations, we demonstrate that this is
true for two first-order and three higher-order test sys-
tems with the Euler, midpoint and θ-trapezoidal τ -leap
methods. Moreover, the extrapolated methods have con-
sistently lower errors, and in many cases visibly higher-
order convergence in the first two moments (the lack of
convergence in some of the simulations is discussed in
Section Monte Carlo error). Finally, we demonstrate that
the extrapolation framework can be used to give even
higher-order numerical solutions by applying a second
extrapolation to the Euler τ -leap method.
The rest of this paper is organized as follows. We begin

with an overview of the SSA and the τ -leap methods we
will use later. We then discuss Richardson extrapolation
for ODEs and SDEs and introduce the extrapolated dis-
crete stochastic framework. We give numerical results to
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support our claims that extrapolation reduces the error of
fixed-step methods. Finally, we discuss the Monte Carlo
error and give our conclusions. The derivations of the
global error expansions for SDEs and discrete stochas-
tic methods and related material are presented in the
Appendix.

Overview of stochastic simulation methods
SSA
Gillespie’s SSA [9] is a statistically exact method for sim-
ulating paths from a Markov jump process. The two basic
assumptions of the SSA are (i) that individual molecules
are not explicitly tracked, and (ii) there are frequent non-
reactive collisions. Thus we assume that the system is
well-mixed and homogeneous.
The SSA simulates a system of biochemical reactions

with N species andM reactions, interacting inside a fixed
volume V at constant temperature. The populations of
chemical species (as molecular numbers, not concentra-
tions) at time t are represented as a state vector x ≡
X(t) ≡ (X1, . . . ,XN )T . Reactions are represented by a
stoichiometric matrix ν j ≡ (ν1j, . . . , νNj)T , where j =
1, . . . ,M, composed of M individual stoichiometric vec-
tors. Each stoichiometric vector represents a reaction j
occurring and the system changing from state x to x + ν j.
Each reaction occurs in an interval [ t, t + τ) with relative
probability aj(x)dt, where aj is the propensity function of
the j-th reaction. Propensity functions are given by the
mass-action kinetics of the reactant chemical species. For
more detail, the reader is referred to Ref. [9]. The variables
X, ν j and aj(X) fully characterise the system at each point
in time.
Algorithm 1. SSA Direct Method

With the system in state Xn at time tn:

1. Generate two random numbers r1 and r2 from the
unit-interval uniform distribution U(0, 1).

2. Find the time until the next reaction τ = 1
a0 ln

(
1
r1

)
,

where a0(Xn) = ∑M
j=1 aj(Xn).

3. Find next reaction j from∑j−1
m=1 am(Xn) < a0r2 ≤ ∑M

m=j am(Xn).
4. Update tn+1 = tn + τ and Xn+1 = Xn + ν j.

The Direct Method requires two newly-generated ran-
dom numbers at each timestep. Although there are other
SSA implementations, such as the Next Reaction Method
[25] and the Optimised Direct Method [26], which can be
more economical, in general the SSA is computationally
costly.

τ -leapmethod
The τ -leap algorithm leaps along the history axis of the
SSA by evaluating groups of reactions at once [10]. This

means significantly fewer calculations, i.e. shorter compu-
tational time, per simulation, but simulation accuracy is
compromised: we do not know exactly how many reac-
tions occurred during each time step, nor can we tell
more precisely when each reaction occurs than in which
timestep. The leap condition defines an upper bound for
the size of each timestep τ : it must be so small that the
propensities do not change significantly for its duration,
i.e. the change in state from time t to t + τ is very small
[10]. Since τ is small, the probability a(x)τ that a reac-
tion occurs during [ t, t + τ) is also small, so the number
of times Kj each reaction fires over one timestep can be
approximated by P(aj(x)τ ), a Poisson random variable
withmean and variance aj(x)τ [10]. The Euler τ -leap algo-
rithm is the basic τ -leap method, and corresponds to the
Euler method for solving ODEs or the Euler-Maruyama
method for solving SDEs.
Algorithm 2. Euler τ -leap method

With the system in state Xn at time tn, and a timestep τ :

1. Generate M Poisson random numbers
kj = P(aj(Xn)τ ), j = 1, . . . ,M.

2. Update tn+1 = tn + τ and Xn+1 = Xn + ∑M
j=1 ν jkj.

The Euler τ -leap has weak order one [13-15]. Although
considerable work has been done on improving the mech-
anism for selecting the timesteps τ [10-12] and elimi-
nating steps that would result in negative populations
[17,27-29], this does not affect the order of the method,
limiting its accuracy. Methods with higher order are the
only way to improve the accuracy beyond a certain point.
Realising this, Gillespie also proposed a higher-order τ -
leap method, the midpoint τ -leap [10]. This is similar to
the midpoint method for ODEs, where at each step an
estimate is made of the gradient ofX at tn+τ/2.Xn is then
incremented using this extra information to give a more
accurate approximation.
Algorithm 3. Midpoint τ -leap method

With the system in state Xn at time tn, and a timestep τ :

1. Calculate X′ = Xn + 1
2τ

∑M
j=1 νjaj(Xn).

2. Generate M Poisson random numbers
kj = P(aj(X′)τ ), j = 1, . . . ,M.

3. Update tn+1 = tn + τ and Xn+1 = Xn + ∑M
j=1 ν jkj.

Although under the scaling τ → 0 the midpoint τ -leap
has the same order of accuracy in the mean as the Euler
τ -leap method, under the large volume scaling it has weak
order two [15,16]. Our numerical simulations also suggest
that it gives higher-order approximations to the first two
moments for both linear and non-linear systems (although
this is not clear from the literature). However the local
truncation error of its covariance is first-order [16].
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θ -trapezoidal τ -leapmethod
Based on the SDE method of Anderson and Mattingly
[21], the θ-trapezoidal τ -leap [20] is a weak second-order
method. It consists of two steps, a predictor step with size
θτ and a corrector step with size (1 − θ)τ that aims to
cancel any errors made in the first step.
Algorithm 4. θ-trapezoidal τ -leap method

For a specified θ ∈ (0, 1), α1 = 1
2(1−θ)θ

,α2 = (1−θ)2+θ2

2(1−θ)θ
.

With the system in state Xn at time tn, and a timestep τ :

1. Generate M Poisson random numbers
k′
j = P(aj(Xn)θτ ), j = 1, . . . ,M.

2. Calculate predictor step X′ = Xn + ∑M
j=1 νjk′

j .
3. Calculate lj = max

(
α1aj(X′) − α2aj(Xn), 0

)
.

4. Generate M Poisson random numbers
kj = P(lj(1 − θ)τ ), j = 1, . . . ,M.

5. Update tn+1 = tn + τ and Xn+1 = X′ + ∑M
j=1 ν jkj.

Specifically, the θ-trapezoidal τ -leapmethod was shown
to have weak order of convergence two in the moments,
and a local truncation error of O(τ 3V−1) for the covari-
ance. τ = V−β , 0 < β < 1 and in the analysis V → ∞,
but in simulations the system volume is kept constant;
thus it seems that in practice this also results in weak
second-order convergence in the covariance [20].

Methods
The extrapolation framework
We start with an ODE solver with stepsize h approximat-
ing the true solution x(T) by xhn (where T = nh), for which
we assume the following global error expansion exists:

x(T)−xhn = ek(T)hk+ek+1(T)hk+1+ek+2(T)hk+2+. . . ,
(1)

where k is the order of the numerical method and the
ek(T) are constants that only depend on the final integra-
tion time T. Extrapolating has the effect of cancelling the
leading error term, resulting in a more accurate approx-
imation. The existence of such an expansion is key to
constructing a higher-order approximation, as the appro-
priate extrapolation coefficients must be used for the
leading error terms to cancel. For example, in the case of a
first-order method with stepsize h,

x(T) − xhn = e1(T)h + e2(T)h2 + O(h3), (2)

and similarly for stepsize h
2 ,

x(T) − xh/22n = e1(T)
h
2

+ e2(T)
h2

4
+ O(h3). (3)

Setting x̂hn = 2xh/22n − xhn and using (3) and (2), we obtain

x(T) − x̂hn = −h2

2
e2(T) + O(h3), (4)

which implies that x̂hn is now a second-order
approximation to x(T).
We define z(k, q) = xhqn to be a series of approximations

with order k and stepsize hq to the true solution x(T),
where T = nh1, hq = T/pq and h1 > h2 > . . . > hq.
In general, one can use an order k method with step-
sizes hq−1 and hq (in the previous example, hq−1 = h and
hq = h

2 , i.e. p = 2), to arrive at an order k + 1 estimate to
x(T),

x(T) − z(k, hq−1) = O(hk+1),

where

z(k, hq−1) = pk z(k, q − 1) − z(k, q)
pk − 1

.

This process can be repeated indefinitely. We
can extrapolate from the initial approximations
z(1, 1), . . . , z(1, q) by combining the successive solutions
in each column of the Romberg table:

z(1,1)
z(2,1)

z(1,2) z(3,1)

z(2,2)
... z(q,q)

z(1,3)
... z(3,q)

... z(2,q)
z(1,q)

For instance, in Eq. (4) we used (with p = 2) xhn = z(1, 1)
and xh/22n = z(1, 2) to find x̂hn = z(2, 1). Repeating with xh/22n
and xh/42n , we could extrapolate to find x̂h/22n = z(2, 2). Then
we could extrapolate x̂hn and x̂h/22n to find a third-order
approximation ˆ̂xhn = z(3, 1), and so on.
Stochastic methods have two error measures: strong

(comparing trajectories) and weak (comparing moments).
In the context of extrapolation, we are interested in the
global weak error, defined as

|E(f (x(T))) − E(f (xhn))|, (5)

where f : RN �→ R is a suitable smooth functional, for
example the first moment of one of the components of x.
xhn is a numerical approximation to the SDE

dXt = a(Xt , t)dt + b(Xt , t)dWt , (6)

where a(x, t) : RN+1 �→ R
N , b(x, t) : RN+1×M �→ R

N×M

and Wt is a standard M-dimensional Wiener increment.
Talay and Tubaro [23] derived a similar expansion to Eq.
(1) for the global error when xhn was calculated using
the Euler-Maruyama and Milstein schemes (outlined in
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Appendix A). By using this expansion and the extrapola-
tion framework, they were able to derive a second-order
approximation to E(f (x(T))). The crucial step in obtain-
ing the global error expansion was to express it as a
telescopic sum of the local errors. Liu and Li [30] also
followed a similar procedure to derive a global error
expansion for numerical methods for SDEs with Poisson
jumps, thus allowing them to obtain higher-order weak
approximations.

Extrapolation for discrete chemical kinetics
The extrapolation framework can be extended to the dis-
crete stochastic regime. Since it requires two or more
sets of approximations with given stepsizes (e.g. h and
h/2), it can only be used with a fixed-step method: as
more complex τ -leap methods vary τ at each step, it
is not clear how to extrapolate them. However, this
has the advantage of making our method very easy to
program, as there is no complex programming over-
head, for instance in choosing the timestep for τ -
leap methods. We stress that we mostly use extrap-
olation to obtain higher-order approximations to the
moments of the system (or their combinations, such
as the covariance). In principle, given enough of the
moments, the full probability distribution at some given
time could be constructed. This is known as the Ham-
burger moment problem [31] and in general is a dif-
ficult problem to solve, as it might admit an infi-
nite number of solutions. However, in some cases it
is possible to reconstruct the full distribution from the
extrapolated moments, as we have a priori knowledge
about its shape. For instance, when the final distri-
bution of states is known to be binomial, only the
mean and variance are necessary for constructing the
full extrapolated distribution (see Numerical Results,
System 1).
In this section we focus on the Euler τ -leap method

(ETL), since this choice simplifies the analysis, but we
show in Appendix B that any fixed-stepsize method with
known weak order can be extrapolated. In our numerical
investigations we show results for the ETL, the mid-
point τ -leap (MPTL) and the θ-trapezoidal τ -leap (TTTL)
method. Extrapolating the ETL is very similar to extrapo-
lating an ODE solver. The extrapolated ETL, which we call
xETL from here on, involves running two sets of S ETL
simulations for time T = nτ .
Algorithm 5. Extrapolated Euler τ -leap method (xETL)

1. Run S ETL simulations with stepsize τ , to get
sxτ

n, s = 1, . . . , S.
2. Calculate desired moments

ES(f (xτ
n)) = 1

S
∑S

s=1 f (sxτ
n).

3. Repeat steps 1 and 2 using stepsize τ/2 to get
ES(f (xτ/2

2n )).

4. Take
(
2ES(f (xτ/2

2n )) − ES(f (xτ
n))

)
as the

extrapolated approximation to the desired moment.

Algorithm 5 can be easily modified for use with any
other fixed-step method, by replacing the ETL in Step 1
with the chosen method.
It is instructive to use a simple example to see ana-

lytically the effects of extrapolating the ETL. When
the propensity functions are linear (i.e. the system
only contains zeroth-order and first-order reactions), the
equations for the moments are closed [32,33] and we
can find explicitly the global error expansion for the first
moment of our numerical solution (i.e. choose f (x) = x).
The propensity functions can be written as

[ a1(x), a2(x), . . . , aM(x)]T = Cx + d, (7)

where C ∈ R
M×N , ν ∈ R

N×M and d ∈ R
M, and we define

W = νC, i.e.W ∈ R
N×N . Thus at some timestepm,mτ <

T , the ETL gives (using matrix notation)

xτ
m+1 = xτ

m + νP(τ (Cxτ
m + d)),

where xτ
m is an approximation to the true state vector x(t)

at the m-th timestep (i.e. time t) with stepsize τ . Taking
the expectation of both sides, the ETL evolves the mean as

E(xτ
m+1) = E(xτ

m) + νE(P(τ (Cxτ
m + d)))

= E(xτ
m) + νE(E(P(τ (Cxτ

m + d))|xτ
m))

= (I + τW )E(xτ
m) + τνd,

(8)

where I is the N × N identity matrix. Note that we can-
not evaluate the expectation of P(τ (Cxτ

m + d)) directly:
because xτ

m is a random variable, we do not know the dis-
tribution of P(xτ

m). Using the law of total expectation we
can condition on xτ

m taking a specific value; P(xτ
m)|xτ

m
does have a Poisson distribution. From (8), we see that at
time T = nτ ,

E(xτ
n) =

(
I + τnW +

(
n
2

)
τ 2W 2 + . . .

)
μ(0)

+ W−1(τnW + 1
2
τ 2n2W 2 + . . .)νd. (9)

The probability density function of the SSA at time t is
given by the CME [7,8]. The mean μ(t) = E(x(t)) can be
found from the CME [34]; it evolves as

dμ(t)
dt

= Wμ(t) + νd.

The solution of this is

μ(t) = eWtμ(0) + eWt
∫ t

0
e−Wsνd ds. (10)
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Using a Taylor expansion and basic manipulation, at t = T
this evaluates to

μ(T) =
(
I + TW + 1

2
T2W 2 + . . .

)
μ(0)

+ W−1
(
TW + 1

2
T2W 2 + . . .

)
νd. (11)

Taking (11) minus (9) we see that the global error is

μ(T) − E(xτ
n) =

(
1
2
τTW 2 + O(τ 2)

)
μ(0)

+
(
1
2
τTW + O(τ 2)

)
νd. (12)

Furthermore the extrapolated error is

μ(T)−
(
2E(xτ/2

2n )−E(xτ
n)

)
=

(
1
6
τ 2TW 3+O(τ 3)

)
μ(0)

+
(
1
6
τ 2TW 2 + O3

)
νd,

so the leading error term has been cancelled, leaving
an order two approximation. Such a calculation would
also apply for the MPTL. The difference is that for lin-
ear systems the MPTL is second-order convergent with
respect to the mean [16], and similarly for the TTTL [20].
This should be taken into account in order to choose the
correct extrapolation coefficients.
The above analysis only applies for the mean of a linear

system, a very restricted case, but it is useful for demon-
strating the basic principles of stochastic extrapolation.
We employ a similar approach to Talay and Tubaro [23]
and Liu and Li [30] to find a general expression for the
global error expansion of the moments of a weak first-
order discrete stochastic method; this is Appendix B. In
Appendix C we explicitly evaluate this for the particle
decay system and show that it is equivalent to Eq. [12]
in this case. Appendix D contains the equations for the
second moment for the case of linear systems.

Multimodal systems
As discussed before, one limitation of our approach is that
only specific characteristics of the particle distribution can
be extrapolated, rather than the full distribution. Typi-
cally we choose these to be the first and second moments,
as for many systems these are the quantities of interest.
However, in some cases the moments do not take val-
ues relevant to the actual dynamics of the system [35,36].
This occurs, for instance, in bimodal or multimodal sys-
tems, which have two or more stable states. Nevertheless,
our method can be easily generalised to accommodate
multimodal distributions as follows.

Algorithm 6. Extrapolated Euler τ -leap method (xETL)
for multimodal systems

1. Run S ETL simulations with stepsize τ , to get
sxτ

n, s = 1, . . . , S.
2. Plot histograms of the particle populations at time T

and identify the stable states.
3. Choose point(s) at which to partition the S

simulations into p subsets of S1, . . . , Sp simulations
clustered around each stable state.

4. Calculate desired moments over the subsets of
simulations,
ESi(f (xτ

n)) = 1
Si

∑Si
s=1 f (sxτ

n), i = 1, . . . , p.
5. Repeat steps 1 and 4 using stepsize τ/2 to get

ESi(f (x
τ/2
2n )), i = 1, . . . , p.

6. Take
(
2ESi(f (x

τ/2
2n )) − ESi(f (xτ

n))
)
, i = 1, . . . , p as

the extrapolated approximation to the desired
moment for each of the p subsets of simulations.

Algorithm 6 is also simple to code and does not require
significant extra computational time compared to Algo-
rithm 5 because the dynamics of the system are found
from the original simulations that are necessary for the
extrapolation anyway. The point(s) at which the simula-
tions are split into subsets can affect the accuracy of the
results, so must be chosen with some care. In the Numer-
ical Results (System 5), we apply Algorithm 6 to a bimodal
system, and investigate the effects of the choice of splitting
point.

Results and discussion
Numerical results
We simulate some example systems for various stepsizes
τ over time t =[ 0,T] using three fixed-step numerical
methods: the Euler τ -leap (ETL), midpoint τ -leap (MPTL)
and θ-trapezoidal τ -leap (TTTL) methods (with θ =
0.55), and their extrapolated versions, the xETL, xMPTL
and xTTTL.We plot the absolute weak errors in the mean
and second moment, i.e.

|E(x(T)) − ES(xτ
n)|, |E(x(T)xT (T)) − ES(xτ

n(xτ
n)

T )|
(13a)

for the ETL, MPTL and TTTL methods and

|E(x(T)) − 2ES(xτ/2
2n ) + ES(xτ

n)|,
|E(x(T)xT (T)) − 2ES(xτ/2

2n (xτ/2
2n )T ) + ES(xτ

n(xτ
n)

T )|
(13b)

for the extrapolated methods. Here x(T) is the analyti-
cal solution at time T and ES(f (xτ

n)) are the moments of
its approximations given by S simulations of a fixed-step
method with stepsize τ run for n steps. For the linear sys-
tems, the true solution is calculated analytically; for the
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non-linear systems we use the value given by 106 or 107
repeats of the SSA (depending on the system). The error
of a weak order α method with stepsize τ is approximately
Cτα , where C is an unknown constant. To easily see the
order of accuracy of our results, we plot all the errors
on log-log plots. Gradients are calculated using a least
squares fit through the points. The highest level of Monte
Carlo error, which can be calculated for the linear systems,
is marked on the appropriate plots as a straight black line.
Below this level, the absolute error results are, at least in
part, essentially random (see Section Monte Carlo error).
We note that in all test systems, the timesteps used were
all in the useful τ -leaping regime: Poisson counts for each
reaction channel varied between tens to hundreds.

System 1: Particle decay system
A simple test system is a particle decay,

X k−→ ∅, k = 0.1.

The initial particle number was X(0) = 104 and the sim-
ulation time was T = 10.4. The units here, and in the
systems below, are non-dimensional. This system is use-
ful only as a test problem, but is first-order and easily
tractable. The analytical mean and second moment are

E(X(T)) = X(0)e−kT ,

E(X(T)2) = X(0)e−kT − X(0)e−2kT + (X(0))2e−2kT .

The average final particle numbers, calculated as above,
were E(X(10.4)) = 3534.5. We ran 108 simulations using
timesteps τ = 0.05, . . . , 0.8. The errors on the mean and
second moment are shown in Figure 1. In both cases, the
ETL gives first-order errors and the xETL gives approx-
imately second-order errors. The MPTL and TTTL also
converge with second order. The errors of the xMPTL
and xTTTL are very small, although they do not converge

with any noticeable order. This is because the values of
the absolute error for these methods are effectively given
by their Monte Carlo error, rather than the bias (this is
a recurring theme in stochastic simulations - see Section
Monte Carlo error). The maximum level of Monte Carlo
error was 0.0148 for the mean and 104.8 for the second
moment.
In addition, because the final distribution of this system

is known to be binomial [10], we can construct the dis-
tribution of the extrapolated solutions from just the mean
and variance (Figure 2). The dashed lines are the distri-
butions of ETL simulations with τ = 0.05 (blue) and
τ = 0.8 (red), calculated from their histograms, and the
circles are the full distributions of the xETL using τ = 0.05
(blue) and τ = 0.8 (red). The solution of the CME (black
line) is the true distribution. Both the extrapolated solu-
tions match the CME solution very well, in both mean and
overall shape.

System 2: Chain decay system
This system consists of five chemical species, each under-
going a first-order reaction. It forms a closed chain of
linear reactions, and is intended as a more complicated,
but still linear, example system.

X1
k1−→ X2

k2−→ X3
k3−→ X4

k4−→ X5
k5−→ X1, kj = 0.3, j = 1, . . . , 5.

The initial populations were X(0) = (2500, 1875,
1875, 1875, 1875)T and simulation time was T = 16.
Since this system is linear, its expectation and covari-
ance can be calculated analytically, as shown in Jahnke
and Huisinga [32]; we used these to calculate the
true second moment. The average final particle num-
bers, given by the analytical mean, were E(X(16)) =
(1971.3, 1996.7, 2025.1, 2020.9, 1986.1)T . We ran 108 sim-
ulations with τ = 0.1, . . . , 1.6. Figure 3 shows the absolute
errors for the mean and second moment of X1. The ETL

Figure 1 System 1 absolute errors. Absolute error (13) in (a) the mean for the ETL (gradient 1.0) and xETL (gradient 1.9), MPTL (gradient 1.9) and
xMPTL (gradient 0.5), TTTL (gradient 2.0) and xTTTL (gradient 1.5); (b) the second moment for ETL (gradient 1.0) and xETL (gradient 1.6), MPTL
(gradient 1.9) and xMPTL (gradient 0.5), TTTL (gradient 2.0) and xTTTL (gradient 1.5). The maximumMonte Carlo error levels (black straight lines)
were 0.0148 (mean) and 104.8 (second moment). Results from 108 simulations, each run for T = 10.4.
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Figure 2 Constructing full extrapolated distributions of System 1. Distribution of states at time T = 10.4 for ETL with τ = 0.05 (blue dashes),
ETL with τ = 0.8 (red dashes), xETL with τ = 0.05 (red circles), xETL with τ = 0.8 (blue circles). The analytical solution is given by the CME (black
line). The extrapolated distributions match the CME solution very closely.

is again approximately weak order one and the xETL
weak order two. Again, the errors for the MPTL, TTTL,
xMPTL and xTTTL are very low, although again their
order of convergence is not quite as high as expected.
We believe this is due to the unusually high accuracy of
these methods for closed systems compared to a maxi-
mum Monte Carlo error level of 0.0132 (mean) and 52.8
(second moment), which are high relative to the bias of
these methods.

System 3: Michaelis-Menten system
The Michaelis-Menten is a common non-linear test
system, and represents an enzyme (X2) reacting with a
substrate (X1) to make a product (X4). The enzyme and
substrate form a complex (X3), which can either dissociate

or undergo a reaction to a product plus the original
enzyme. It has four chemical species in three reactions:

X1 + X2
k1−→ X3, k1 = 10−5,

X3
k2−→ X1 + X2, k2 = 0.2,

X3
k3−→ X2 + X4, k3 = 0.2.

Simulation time was T = 16 and the initial popula-
tions were X(0) = (104, 2 × 103, 2 × 104, 0)T . We used
108 simulations with τ = 0.1, . . . , 1.6. There is no ana-
lytical solution, so in this case we approximated it with
107 SSA simulations. The average final state, given by the
SSA, was E(X(16)) = (5927.0, 18716.2, 3283.8, 20789.2)T .

Figure 3 System 2 absolute errors. Absolute error (13) of X1 in (a) the mean for ETL (gradient 1.3) and xETL (gradient 2.4), MPTL (gradient 1.2) and
xMPTL (gradient 1.6), TTTL (gradient 1.1) and xTTTL (gradient 1.9); (b) the second moment for ETL (gradient 1.3) and xETL (gradient 2.4), MPTL
(gradient 1.6) and xMPTL (gradient 1.7), TTTL (gradient 1.0) and xTTTL (gradient 2.0). The maximumMonte Carlo error levels (black straight lines)
were 0.0132 (mean) and 52.8 (second moment). Results from 108 simulations, each run for T = 16.
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Figure 4 System 3 absolute errors. Absolute error (13) of X1 in (a) the mean for ETL (gradient 1.0) and xETL (gradient 2.0), MPTL (gradient 1.6) and
xMPTL (gradient 3.3), TTTL (gradient 1.6) and xTTTL (gradient 1.2); (b) the second moment for ETL (gradient 1.0) and xETL (gradient 2.0), MPTL
(gradient 1.6) and xMPTL (gradient 3.3), TTTL (gradient 1.6) and xTTTL (gradient 1.2). Results from 108 simulations, each run for T = 16.

The errors in the mean and second moment for X1 are
shown in Figure 4. The ETL converges with order one
for 108 simulations, and the xETL with order two. The
MPTL and TTTL have a similar accuracy to the xETL,
with approximate order two, with the xMPTL and xTTTL
of approximate order three.
We investigated the effects of the coefficient of variation

(CV, standard deviation divided by mean) on this system.
The CVs of each species, averaged across all τ , in System
3 at T = 16 were CV(X(16)) = (0.01, 0.003, 0.02, 0.004)T .
In general, a higher CV indicates that the system is more
noisy. We chose a new set of parameters for System 3
to give higher CVs: Xnew(0) = (100, 50, 200, 0)T , knew =
(10−4, 0.05, 0.07)T . The CVs using these parameters
were CV(Xnew(16)) = (0.05, 0.03, 0.1, 0.07)T , very
different from the original CVs. However the relative
errors (absolute error divided by average SSA state)

at τ = 0.1 were very similar: errorrel(X(16)) =
(0.004, 0.0005, 0.003, 0.001)T for the original system and
errorrel(Xnew(16)) = (0.001, 0.0002, 0.0007, 0.002)T with
the new parameters (note that it is not useful to average
the errors across all τ ). This shows that higher CV does
not necessarily mean higher errors, and the two are indi-
cators of different characteristics of the system. We have
focused on the errors as this is the characteristic that we
want to improve.

System 4: Two-enzymemutual inhibition system
This is a more realistic system involving 8 chemical
species and 12 reactions [37]. It represents two enzymes,
EA and EB, which catalyse the production of compoundsA
andB, respectively. In a classic example of double-negative
feedback, each product inhibits the activity of the other
enzyme. For this reason, the system is bistable in A and B:

Figure 5 System 4 absolute errors. Absolute error (13) of X1 in (a) the mean for ETL (gradient 1.3) and xETL (gradient 2.6), MPTL (gradient 1.9) and
xMPTL (gradient 2.3), TTTL (gradient 1.7) and xTTTL (gradient 2.7); (b) the second moment for ETL (gradient 1.3) and xETL (gradient 2.6), MPTL
(gradient 2.0) and xMPTL (gradient 2.3), TTTL (gradient 1.7) and xTTTL (gradient 2.9). Results from 107 simulations, each run for T = 3.2.
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Figure 6 System 5 low peak absolute errors. Absolute error (13) of X1 in (a) the mean for ETL (gradient 0.9) and xETL (gradient 0.06), MPTL
(gradient 0.8) and xMPTL (gradient -0.3), TTTL (gradient 0.4) and xTTTL (gradient 0.0); (b) the secondmoment for ETL (gradient 0.9) and xETL (gradient
-0.1), MPTL (gradient 0.8) and xMPTL (gradient -0.6), TTTL (gradient 0.3) and xTTTL (gradient 0.0). Results from 108 simulations, each run for T = 5.

when there are many particles of A, few particles of B can
be produced, and vice versa. The reactions are

EA
k1→ EA + A, k1 = 15,

EB
k2→ EB + B, k2 = 15,

EA + B
k3�
k4

EAB, k3 = 5 × 10−4, k4 = 2,

EAB + B
k5�
k6

EAB2, k5 = 10−3, k6 = 6,

A k7→ ∅, k7 = 5,

EB + A
k8�
k9

EBA, k8 = 5 × 10−4, k9 = 2,

EBA + A
k10�
k11

EBA2, k10 = 10−3, k11 = 6,

B k12→ ∅, k12 = 5.

We simulated this system for T = 3.2 using initial
populations of

X(0) = (2 × 104, 1.5 × 104, 9500, 9500, 2000, 500, 2000, 500)T ,

where X = (A,B,EA,EB,EAB,EAB2,EBA,EBA2)T . We ran
107 simulations of the τ -leap using τ = 0.005, . . . , 0.08.
106 SSA simulations were used as an approximation
to the analytical values. The final state of the system
as given by the SSA mean was E(X(3.2)) = (10420.5,
4884.4, 3594.7, 1528.0, 4592.7, 3812.6, 3853.8, 6618.2)T .
The errors for X1 in this system are shown in Figure 5.
The ETL and xETL gave errors of approximately order
one and two, respectively. The MPTL and TTTL were
again approximate order two; the xMPTL had errors very
similar to those of the xETL, and the xTTTL had very low
errors of approximate order three.

Figure 7 System 5 high peak absolute errors. Absolute error (13) of X1 in (a) the mean for ETL (gradient 1.2) and xETL (gradient 0.9), MPTL
(gradient 1.6) and xMPTL (gradient 1.9), TTTL (gradient 1.0) and xTTTL (gradient 0.4); (b) the second moment for ETL (gradient 1.2) and xETL (gradient
0.9), MPTL (gradient 1.3) and xMPTL (gradient 1.8), TTTL (gradient 1.2) and xTTTL (gradient 0.5). Results from 108 simulations, each run for T = 5.
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System 5: Schlögl system
The last example we give illustrates how our method
could work for systems that have multimodal distribu-
tions. The Schlögl system consists of four reactions [38]
and is bimodal:

A + 2X k1−→ 3X, k1 = 3 × 10−7,

3X k2−→ A + 2X, k2 = 10−4,

B k3−→ X, k3 = 10−3,

X k4−→ B, k4 = 3.5,
where the populations of speciesA and B are held constant
at 105 and 2 × 105 respectively, so only the numbers of X
can change. This is a common benchmark system for com-
putational simulation algorithms. Under certain parame-
ter configurations, this system has two stable states for X,
one high and one low. When X(0) is low, the system usu-
ally settles in the lower equilibrium, and vice versa for high
X(0). We used X(0) = 250, an intermediate value that
gives a bimodal distribution. We ran 108 simulations until
T = 5 using τ = 0.0125, . . . , 0.2. Because of the bimodal-
ity, we separated the data into two sets. As the Schlögl
system is simple enough to be solved using a CME solver
(see e.g. [39]), we could calculate the density of states of
X at T = 5. When simulating more complicated systems,
this can be approximated by a histogram of the distribu-
tion of species at T (from the initial ETL simulations, for
instance) to get a reasonable idea of its shape. Average
final particle number was calculated from the CME to be
E(X(5)) = 101.3 for the low peak and E(X(5)) = 546.2
for the high peak. Figures 6 and 7 show the absolute errors
for this system (low and high peaks, respectively). The
error levels seem to be similar in both cases. The general
trend was for the ETL, MPTL and TTTL to converge with
approximate order one, whereas the extrapolated solu-
tions did not have a clear order of convergence. It is clear
that in this case also, the Monte Carlo error is interfering
with our ability to see a clear order of convergence.
The gradient of the MPTL mean error seems to

change from approximately one (Figure 6) to around 1.5
(Figure 7). It is unlikely that this is due to Monte Carlo
error, as the error of the MPTL is high enough that this
should not be an issue. In fact, this is probably due to the
large volume limit behaviour of theMPTL, discussed after
Algorithm 3. Because the mean of the high peak is several
times higher than the mean of the low peak, the system
is closer to the large volume limit and the weak order of
theMPTL increases accordingly. Once in the large volume
limit, the gradient is expected to be two.
The point at which the data is separated must be cho-

sen carefully, as it can influence the error results. Figure 8
shows the distribution of X at T = 5 calculated using a
CME solver. The three choices of splitting points that we
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Figure 8 System 5 full distribution, T = 5. The distribution of
System 5 calculated using a CME solver for T = 5. The three splitting
points we have compared in this paper are illustrated.

compare have also been marked. We chose X = 300; this
is a fairly obvious splitting point in our case. To support
this, we tested the effects of splitting the data given by the
ETL at X = 250 and X = 350. We calculated the relative
change in mean, second moment and variance between
these two splitting values, averaged over all simulations of
the ETL and all five timesteps: Table 1 shows that in this
case the percentage difference is relatively small for the
mean, becomes larger for the second moment, and is very
high for the variance. This implies that the choice of split-
ting point is very important in this case, and should be
carefully considered.

Higher extrapolation
In principle it is possible to use extrapolation in con-
junction with some fixed-step method such as the
ETL to obtain increasingly higher-order approximations
using the appropriate extrapolation coefficients from the
Romberg table. In practice, the usefulness of repeated
extrapolations is debatable, as each adds extra computa-
tional overhead and the higher accuracy can be obscured
by Monte Carlo fluctuations. However it might be use-
ful to create up to third or fourth-order methods in
this way. We tried double-extrapolating the ETL on our

Table 1 Relative differences in moments for different
splitting values of Schlögl system

Moment Low peak High peak

Mean 6.4% 1.6%

Second moment 21.8% 2.5%

Variance 81.6% 50.5%

Relative differences in moments E(f (X)) for data split at X = 250 and X = 350
for the Schlögl system as percentages of their values when split at X = 300, i.e.
100 ∗ |E(f (X))split350 − E(f (X))split250|/E(f (X))split300 .
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Figure 9 System 2, double-extrapolated absolute errors. Absolute error of X1 for the Euler τ -leap (ETL), extrapolated Euler τ -leap (xETL) and
double-extrapolated Euler τ -leap (xxETL) algorithm for (a) the mean, gradients 1.3 (ETL), 2.3 (xETL), 3.7 (xxETL), and (b) the second moment,
gradients 1.3 (ETL), 2.4 (xETL), 3.8 (xxETL). Results from 108 simulations. Double-extrapolation produces consistently higher-order results.

test systems, with reasonable success. Figure 9 shows the
ETL, xETL and double-extrapolated Euler τ -leap (xxETL)
errors on species X1 of System 2; in this case we can
see that the xxETL results are approximately order three
(or higher). Double-extrapolating gave substantially lower
errors in almost every system, but it was not always easy
to determine the order of convergence. A good example
of this is System 3 in Figure 10. In such systems with rel-
atively high Monte Carlo error, the approximate solutions
from the xxETL were obscured by these fluctuations. The
order of accuracy of the xxETL could be successfully seen
for most molecular species of System 2, but it was not
possible for the other systems as this would require a sig-
nificant increase in the number of simulations, in order to
further reduce the Monte Carlo error.

Monte Carlo error
The weak error we calculate numerically is

|E(f (x(T))) − ES(f (xτ
n))|. (14)

This error can be separated into two parts

[
E(f (x(T))) − E∞(f (xτ

n))
]+[

E∞(f (xτ
n)) − ES(f (xτ

n))
]
,

(15)

where E∞(f (xτ
n)) are the theoretical values of the

moments calculated by an infinite number of simulations
with stepsize τ . The first term is the truncation error of the
moments from their analytical solutions, i.e. the bias of the
method, which depends only on the choice of timestep.
The second term is the Monte Carlo error, which depends
only on the number of simulations and is given by C√

S
,

where C is some constant and S the number of simu-
lations. The Monte Carlo error can be so large that it
overwhelms the bias of the underlying numerical method
completely; in this case all of the numerical results are, in
effect, incorrect, as they are random fluctuations.
This formulation is useful when the propensity func-

tions are linear. In this case, the moment equations are

Figure 10 System 3, double-extrapolated absolute errors. Absolute error of X1 for ETL, xETL and xxETL for (a) the mean, gradients 1.0 (ETL), 2.0
(xETL) and 2.3 (xxETL), and (b) the second moment, gradients 1.0 (ETL), 2.0 (xETL), 2.1 (xxETL). Results from 108 simulations. In this case, the xxETL
errors do not show a clear order of accuracy, but are nonetheless smaller compared to the other methods.
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closed, so E∞(f (xτ
n)) can be calculated for the appropri-

ate numerical method. As an example, consider the mean
of the ETL: its true value is given by Eq. (10) and the value
of its numerical approximation can be found by iterating
Eq. (8). In addition, a similar calculation can be found in
Appendix D for the secondmoment. Unfortunately, this is
not possible for non-linear systems, since in this case the
equations describing the evolution of themoments are not
closed any more [40].
Such a breakdown of the errors of System 1 with the

ETL method is shown in Figure 11, using results from
108 simulations. We see that for the case of the ETL and
xETL, the bias can easily be seen as theMonte Carlo errors
are relatively low compared to the bias. However, when
we extrapolate a second time, the bias of the resulting
estimator is so low that Monte Carlo fluctuations com-
pletely obscure it, even with 108 simulations. This gives a
poor approximation for the total error. The only way to
reduce Monte Carlo error is to run more simulations or
use variance reduction methods. This is a good illustra-
tion of why it is important to perform a suitable number
of simulations to get accurate estimates of the moments.
Variance reduction methods, which aim to decrease the

Monte Carlo error, are another useful way of reducing
computational time: because the Monte Carlo error is
lower, less simulations need to be run for a given accu-
racy, saving time. This is an important topic in its own
right and we do not address it in this paper; we refer the
interested reader to e.g. [41]. It is an active research area:
recently Anderson and Higham [42] were able to signif-
icantly reduce the overal computational cost associated
with the stochastic simulation of chemical kinetics, by
extending the idea of multi level Monte Carlo for SDEs
[43,44].

Conclusions
Throughout this paper, we have given reduced compu-
tational time as a motivation for using the extrapolation

framework. As this is an important issue, we support here
our claim that extrapolation speeds up simulations at a
given error level. Although twice as many simulations
must be run for a single extrapolation, the loss in com-
putational time from more simulations is compensated
for by the significant reduction in error. This is impor-
tant, as slow runtime is often a limitation of stochastic
methods. Total computational times and the correspond-
ing errors in the mean (in brackets) of all three methods
used in this paper and their extrapolated and double-
extrapolated versions are shown in Tables 2 and 3 for
Systems 1 and 4 (108 and 107 simulations, respectively).
The estimated time to run the same number of SSA sim-
ulations is given for comparison. It should be noted that
all the extrapolated and double-extrapolated τ -leap times
are estimates: the time-consuming part of the extrapo-
lation method is the two (or more) sets of simulations
of the original method that must be run; the extrapola-
tion itself is a fast arithmetic operation. The times for a
single extrapolation are calculated as runtime(τ = h) +
runtime(τ = h/2), and for a double-extrapolation as
runtime(τ = h) + runtime(τ = h/2) + runtime(τ = h/4).
The extrapolated methods take several times longer to
run, but the errors they give are several to hundreds of
times lower. Most of the exceptions are where the error
has clearly reached the Monte Carlo level (Tables 2 and
3, entries marked (-MC)). Besides extrapolation, the other
obvious way to reduce error is to use a smaller timestep,
so the real test for the effectiveness of extrapolation is to
compare the runtimes of cases with similar error values.
In Tables 2 and 3, we have marked in bold the extrap-
olated errors that can be directly compared to the base
method (i.e. read up one row) and take less time to run,
and similarly for double-extrapolated errors as compared
to single-extrapolated ones. Although this varies for each
system and simulation method, the general trend is that
extrapolation takes less time to give a similar level of
error, and this pattern was similar for our other example

Figure 11 Split errors of System 1 using ETL. Split errors for System 1 for (a) the mean and (b) the second moment. The bias can be easily seen
with the Euler τ -leap (ETL) or only a single extrapolation (xETL), but is obscured when we extrapolate a second time (xxETL). Results are from 108

simulations.
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Table 2 Processing times of System 1

τ

0.05 0.1 0.2 0.4 0.8

ETL 21.3 (9.2) 13.3 (18.4) 7.63 (37.1) 4.08 (74.7) 2.21 (152.0)

xETL - 34.3 (0.05) 21 (0.16) 11.8 (0.61) 6.34 (2.6)

xxETL - - (-MC) 42.1 (0.015) (-MC) 25 (0.016) 14 (0.043)

MPTL 21.3 (0.024) 13.4 (0.070) 7.65 (0.25) 4.18 (1.0) 2.24 (4.2)

xMPTL - (-MC) 34.7 (0.0088) (-MC) 21.1 (0.0082) (-MC) 11.8 (0.0026) 6.38 (0.041)

xxMPTL - - (-MC) 42.4 (0.0089) (-MC) 25.2 (0.0090) (-MC) 14 (0.0088)

TTTL 40.8 (0.017) 21.1 (0.063) 13.3 (0.26) 7.65 (1.1) 4.17 (4.2)

xTTTL - (-MC) 62.1 (0.0016) (-MC) 34.6 (0.0022) (-MC) 20.9 (0.0044) 11.8 (0.041)

xxTTTL - - (-MC) 75.4 (0.0022) (-MC) 42.2 (0.0031) (-MC) 25.1 (0.011)

Processing times (in thousands of seconds) of 108 simulations of System 1 using Euler τ -leap, midpoint τ -leap and θ -trapezoidal τ -leap methods and their
extrapolated and double-extrapolated versions. Absolute errors in the mean from the analytical values are included in brackets. For comparison, implementation of
108 simulations of an SSA using the Direct Method would take approximately 1.2 × 105 seconds. Entries marked (-MC) are thought to be below the Monte Carlo error
level; bold entries are faster than the un/single-extrapolated versions with similar error level (i.e. compare with one row above).

systems. Thus we feel that in general, extrapolation is a
worthwhile procedure.
Monte Carlo error is an unavoidable problem when

using stochastic simulations. The statistical fluctuations
inherent in stochastic systems can obscure the bias error
(i.e. order of convergence) of the numerical method if their
size relative to the bias is large, as the total error is made
up of these two contributions. A large number S of sim-
ulations must be run, as the Monte Carlo error scales as
1/

√
S. This error varies for each system. Figures 9 and

10 (and 11) show this clearly: both of the xxETLs have
total errors of similar size for the same τ , but System 2
has relatively low Monte Carlo error, allowing us to see
the bias of that system. However, we believe that System
3 has relatively high Monte Carlo error compared to its
bias, implying that the xxETL errors we see in the figure
are all due to statistical fluctuations. It should be noted

that this seems to happen for all five test problems we use.
The reason for this is that the extrapolated methods (and
even the MPTL and TTTL, in some cases) have very high
accuracy (i.e. low bias error). Since it is only possible to
run a limited number of simulations, when the bias is very
small, the total error will be given almost completely by
the contribution from the Monte Carlo error.
A contrasting approach to reducing numerical errors

is the multilevel Monte Carlo method. Originally devel-
oped for SDEs [43,44], it has recently been extended to
discrete chemical kinetics [42]. By considering a formu-
lation of the total error similar to Eq. (15), the multilevel
Monte-Carlo method aims to reduce it by decreasing the
Monte Carlo error. Here also many approximate solutions
are generated with a variety of different timesteps. By
intelligently combining many coarse-grained simulations
with few fine-grained ones, it is possible to find a similar

Table 3 Processing times of System 4

τ

0.005 0.010 0.020 0.040 0.08

ETL 191 (16.7) 82.3 (34.5) 46 (76.1) 32.6 (188.5) 19.7 (630.1)

xETL - 293 (1.1) 123 (7.2) 66.4 (36.3) 35.1 (253.1)

xxETL - - 279 (0.93) 152 (2.5) 80.1 (36.0)

MPTL 165 (1.3) 84 (3.6) 44.9 (15.0) 24.1 (65.5) 12.3 (257.1)

xMPTL - 244 (1.0) 129 (7.7) 69.1 (35.5) 36.3 (126.2)

xxMPTL - - (-MC) 289 (1.2) (-MC) 153 (1.5) 81.3 (5.3)

TTTL 277 (1.2) 155 (3.5) 82.4 (13.5) 44.6 (58.1) 23.3 (90.0)

xTTTL - (-MC) 430 (0.41) (-MC) 239 (0.15) 128 (1.4) 68 (107.5)

xxTTTL - - (-MC) 515 (0.45) (-MC) 283 (0.37) (-MC) 151 (16.9)

Processing times (in thousands of seconds) of 107 simulations of System 4 using Euler τ -leap, midpoint τ -leap and θ -trapezoidal τ -leap methods and their
extrapolated and double-extrapolated versions. Absolute errors in the mean of X1 from the SSA values are included in brackets. Running 107 simulations of an SSA
using the Direct Method would take approximately 1.47 × 107 seconds. Entries marked (-MC) are thought to be below the Monte Carlo error level; bold entries are
faster than the un/single-extrapolated versions with similar error level (i.e. compare with one row above).
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level of accuracy to just using fine-grained simulations. In
contrast, extrapolation uses the same number of coarse
and fine-scale solutions and gives results which are more
accurate than the fine-scale solution, by reducing the
bias instead of the Monte Carlo error. In cases where the
bias is obscured by statistical errors, using a combination
of both extrapolation and the multilevel Monte Carlo
method would be ideal, as it would reduce both sources
of error. This is an interesting research question and we
plan to address it in the future.
In this work, we have extended the extrapolation frame-

work, which can increase the weak order of accuracy
of existing numerical methods, to the discrete stochas-
tic regime. To demonstrate the concept, we have applied
it to three fixed-step methods, the Euler, midpoint and
θ-trapezoidal τ -leap methods. Thus we have demon-
strated numerically the effectiveness of extrapolation on a
range of discrete stochastic numerical methods with dif-
ferent orders of accuracy for a variety of problems. The
main requirement to use extrapolation with a numer-
ical method is the existence of an expression for the
global error that relates the error to the stepsize of the
method. Analytically, this is all that must be found to
show higher weak order convergence of the extrapolated
method. To extrapolate once, only the leading error term
need be known; further extrapolation requires knowledge
of higher terms. We have found the form of the global
weak error for a general weak order one method; the pro-
cedure is similar for higher-order methods. This is the real
power of our approach: it can be applied to any fixed-
step numerical method. Moreover, further extrapolations
can raise the order of accuracy of the method indefinitely
(although beyond a certain point the lower errors will be
overtaken by Monte Carlo errors). We expect our method
to be useful for more complex biochemical systems, for
instance where frequent reactions must be simulated fast
but accuracy is still important.

Appendices
SDE extrapolation
We summarise below the work of Talay and Tubaro [23]
on extrapolating SDEs. The global weak error of a stochas-
tic numerical scheme is

error(T , h) = E(f (x(T))) − E(f (xhn)). (16)

To extrapolate this scheme, we must obtain an expression
of the form (1). We start with the Kolmogorov backward
equations,

ut + Lu =0,
u(x,T) =f (x),

where ut = ∂u
∂t , f is a homogeneous function on

[ 0,T]×R
N → R and u(x, t) = E(f (x(T))|x(t) = x).

x are the solutions of the SDE (6) with initial conditions
x(0) = x0 and L is the generator of (6),

L ≡ a(x, t) · ∇x + 1
2
b(x, t)bT (x, t) : ∇x∇x,

withA : B = ∑
i,j AijBij. Crucially, (16) can then be written

as

error(T , h) = Eu(x0, 0) − Eu(xhn,T).

The first term is known; the second can be found by recur-
sively calculating the error between u when it is evaluated
from adjacent timesteps:

Eu(xhn,T) = Eu(x0, 0) + h2
n−1∑
k=0

Eψ(xhk , kh) + h2Kh
n ,

where ψ(x, t) is an error function that is well-behaved and
specific to each numerical method and Kh

n is a constant of
unit order. For the case of the Euler-Maruyama and Mil-
stein methods, the second term is O(h), so their global
weak error is [23]

error(T , h) = −h
∫ T

0
Eψ(x(s), t)ds + O(h2). (17)

Eq. (17) shows that the Euler-Maruyama and Milstein
methods have global weak order one. It is easy to see that
extrapolating them leads to solutions with global weak
order two.

Discrete stochastic global error expansion
Here we derive a global error expansion similar to Eqs. (1)
and (17) for the numerical approximation of moments by
a weak first-order discrete stochastic method, such as the
Euler or midpoint τ -leap methods. Once the form of the
error expansion is known, it is clear what extrapolation
coefficients to use and extrapolation is simple. Similarly to
the case of SDEs, we start with the Kolmogorov backward
equations

∂tu + Lu = 0 in Z
N+×[ 0,T), (18a)

u(x, t) = f (x) on Z
N+ × {T}. (18b)

Here

Lu ≡
M∑
j=1

aj(x)
(
u(x + νj) − u(x)

)
and

u(x, t) = E
(
f (XT )|Xt = x

)
,

with Xt = X(t). Using semigroup notation it is possible to
formally denote the solution of (18) as

u(x, t) = e(T−t)Lf (x),

which can be useful for quantifying the local error of
a numerical approximation. By applying a stochastic
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Taylor expansion [45] to jump processes [16], the one-
step expansion for the expectation of f calculated with a
first-order numerical method should satisfy

E(f (Xh
h)|Xh

0 = x) = Ahf (x)

= f (x) + hLf (x) +
∞∑
j=2

hj

j!
Ajf (x),

(19)

where Aj are difference operators associated with the
numerical method in hand. Furthermore we have for the
true one-step expansion

E(f (Xh)|Xh
0 = x) = eLhf (x)

= f (x) + hLf (x) +
∞∑
j=2

hj

j!
Ljf (x).

(20)

Remark 1. An important element in our derivation of a
global error expansion relates to the boundedness of u(x, t),
and its discrete derivative. This boundedess is guaranteed
[14] when the number of molecules in the chemical system
is conserved or decreases with time. Proving this in the gen-
eral case where zeroth-order reactions can add molecules
to the system is a non-trivial task. One way around this
problem is to set the propensity functions aj(x) to zero out-
side a large but finite domain [14]; this is the approach we
follow here.
Now if we let e(f ,T , h) define the global error in the

numerical approximation ofE(f (XT )) at time T = nh by a
first-order numerical method with timestep h we see that

e(f ,T , h) = E(f (XT )|X0 = x) − E(f (Xh
T )|Xh

0 = x)

= u(x, 0) − E(u(Xh
T ,T)|Xh

0 = x)

=
N∑
i=1

E(u(Xh
(i−1)h, (i − 1)h)) − E(u(Xh

ih, ih))

=
N∑
i=1

E(u(X∗
ih, ih)) − E(u(Xh

ih, ih)),

where we have used the result in Figure 12, and for nota-
tional simplicity omitted the dependence of the expecta-
tions on the initial conditions. If we take gi(y) = u(y, ih) =
eL(T−ih)f (y), then

E(u(X∗
ih, ih))−E(u(Xh

ih, ih)) = E(gi(X∗
ih))−E(gi(Xh

ih)).

Figure 12 Local error. Representation of the local error in terms of
the function u(x, t) = E(f (Xt,x

T )).

Applying Eqs. (19) and (20) to gi,

e(f ,T , h) =
N∑
i=1

E

[
h2

2
(L2 − A2)gi(Xh

(i−1)h) + h3Rh
i

]

=
N∑
i=1

E

[
h2

2
(L2 − A2)e−hLgi−1(Xh

(i−1)h)

]

+ h3E(Rh
i )

=
N∑
i=1

h2

2
E

[
(L2 − A2)e−hLu(Xh

(i−1)h), (i − 1)h)
]

+ h3E(Rh
i ),

where we have used the fact that gi = e−hLgi−1. We thus
obtain

e(f ,T , h) =
N∑
i=1

h2E(ψe((Xh
(i−1)h, (i−1)h)))+h3E(R̃h

i ),

(21)

where

ψe(x, t) = 1
2

(
L2 − A2

)
u(x, t), (22)

and

E(R̃h
i ) ≤ C(T),

from our assumptions on the boundedness of u(x, t).
Furthemore it is easy to see that

N∑
i=1

hE|ψe((Xh
(i−1)h, (i − 1)h)| ≤ C(T).
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Using this and results from Talay and Tubaro [23] we
find that

e(f ,T , h) = −h
∫ T

0
E(ψe(Xs, s))ds + O(h2),

where ψe(x, t) is dependent on the numerical method and
given by (22).

An example explicit calculation of the global error
expansion for a linear system
In Eq. (12) we calculated the global error on themean for a
linear system using the equations for its true and numeri-
cal solutions. We show how this approach connects to the
general formulation of the errors given by Eq. (21) by using
System 1 as an example. We choose this example as it is
one-dimensional and linear and is simple enough that the
global error Eq. (12) can be calculated explicitly from the
general formulation. We define the following notation for
the discrete difference:

f ν = f (x + ν) − f (x),

where we have assumed that we have only one chemi-
cal species subject to only one chemical reaction. For this
particular case,

L2f = a2f νν + a2aν f νν + aaν f ν ,

while for the ETL

A2f = a2f νν ,

and thus

ψe(x, t) = 1
2
(a2(x)(a(x + ν) − a(x))(u(x + 2ν, t)

− 2u(x + ν, t) + u(x, t))

+ 1
2
a(x)(a(x + ν)−a(x))(u(x + ν, t)−u(x, t)).

(23)

For particle decay, ν = −1 and a(x) = κx. For g(x) = x,
the solution to (18) is

u(x, t) = xe−κ(T−t),

so (23) becomes

ψe(x, t) = 1
2
κ2xe−κ(T−t).

Thus the global error given by the general formulation is
N∑
i=1

h2E(ψe((Xh
(i−1)h, (i − 1)h)))

= κ2h2

2

N∑
i=1

E(Xh
(i−1)h))e

−κ(T−(i−1)h)

= κ2h2

2

N∑
i=1

[
(1 − κh)eκh

]i−1
e−κT

E(Xh
0 )

= κ2Th
2

([
(1 − κh)eκh

]N − 1
(1 − κh)eκh − 1

)
e−κT

N
E(Xh

0 )

= κ2Th
2

E(Xh
0 ) + O(h2),

which agrees exactly with what one obtains by calculating
Eq. (12) for System 1 (i.e. setting d = 0,W = −κ).

Formulae for the secondmoment of the Euler
τ -leap in the case of linear systems
We can write the formulae for the numerical and analyt-
ical evaluation of the second moment of the ETL. This is
useful for finding the relative contributions of the bias and
Monte Carlo errors, as well as for explicitly calculating the
local errors. The ETL evolves the second moment in time
as

E(xτ
m+1(x

τ
m+1)

T )=E

[(
xτ
m+νP(τ (Cxτ

m+d))
)

(
xτ
m+νP(τ (Cxτ

m+d))
)T]

. (24)

Using the law of total expectation and writing Sτ
m =

E(xτ
m(xτ

m)T ), Bτ
m = diag(CE(xτ

m))) and D = diag(d), we
obtain

Sτ
m+1=Sτ

m+τWSτ
m+τSτ

mWT+τμτ
mdTνT+τνd(μτ

m)T

+τ 2WSτ
mW

T+τ 2Wμτ
mdTνT+τ 2νd(μτ

m)TWT

+τ 2νddTνT+τνBτ
mνT + τνDνT .

(25)

We can now iterate this formula in order to obtain the
numerical approximation for the second moment of the
ETL at any timestep.
The behaviour of the second moment in time as given

by the CME, S(t) = E(x(t)xT (t)), is [33,40]

dS(t)
dt

= WS(t) + S(t)WT + μ(t)dTνT + νdμT (t)

+ νB(t)νT + νDνT ,
(26)

where B(t) = diag(Cμ(t)). By solving Eq. (26) and iter-
ating Eq. (25), we can use the formulation of Eq. (15) to
quantify the bias and Monte Carlo errors of the ETL.
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A similar approach can also be used for the MPTL and
TTTL.

List of abbreviations
ODE;Ordinary differential equation, SDE;Stochastic differential equation,
CME;Chemical Master Equation, SSA;Stochastic simulation algorithm, ETL;Euler
τ -leap, xETL;Extrapolated Euler τ -leap, xxETL;Double-extrapolated Euler τ -leap,
MPTL, xMPTL, xxMPTL; Midpoint τ -leap and extrapolated and
double-extrapolated versions,TTTL, xTTTL, xxTTTL;Theta-trapezoidal τ -leap and
extrapolated and double-extrapolated versions, CV;Coefficient of variation
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