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Abstract

Background: A key challenge in the post genome era is to identify genome-wide transcriptional regulatory
networks, which specify the interactions between transcription factors and their target genes. Numerous methods
have been developed for reconstructing gene regulatory networks from expression data. However, most of them
are based on coarse grained qualitative models, and cannot provide a quantitative view of regulatory systems.

Results: A binding affinity based regulatory model is proposed to quantify the transcriptional regulatory network.
Multiple quantities, including binding affinity and the activity level of transcription factor (TF) are incorporated into
a general learning model. The sequence features of the promoter and the possible occupancy of nucleosomes are
exploited to estimate the binding probability of regulators. Comparing with the previous models that only employ
microarray data, the proposed model can bridge the gap between the relative background frequency of the
observed nucleotide and the gene's transcription rate.

Conclusions: We testify the proposed approach on two real-world microarray datasets. Experimental results show
that the proposed model can effectively identify the parameters and the activity level of TF. Moreover, the kinetic

parameters introduced in the proposed model can reveal more biological sense than previous models can do.

Background

A challenge facing molecular biology is to develop quan-
titative, predictive models of gene regulation. The
advance of high-throughput microarray technique
makes it possible to measure the expression profiles of
thousands of genes, and genome-wide microarray data-
sets are collected, providing a way to reveal the complex
regulatory mechanism among cells. There are two broad
classes of gene regulatory interactions: one based on the
‘physical interaction’ that aim at identifying relationships
among transcription factors and their target genes
(gene-to-sequence interaction) and another based on the
‘influence interaction’ that try to relate the expression of
a gene to the expression of the other genes in the cell
(gene-to-gene interaction).
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In recent years, researchers have proposed many dif-
ferent computational approaches to reconstruct gene
regulatory networks from high-throughput data, e.g. see
reviews by Bansal et al. and Markowetz and Spang [1,2].
These approaches fall roughly into two categories: quali-
tative and quantitative aspects. Inferring qualitative reg-
ulatory networks from microarray data has been well
studied, and a number of effective approaches have been
developed [3-10]. However, these methods are based on
coarse grained qualitative models [11,12], and cannot
provide a realistic and quantitative view of regulatory
systems. On the other hand, quantitative modelling for
gene regulatory network is in its infancy. Research on
quantitative models for genetic regulation has arisen
only in recent years, and most of them are based on
classical statistical techniques. Liebermeister et al. [13]
proposed a linear model for cell cycle-related gene
expression in yeast based on independent component
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analysis. Holter et al. [14] employ singular value decom-
position to uncover the fundamental patterns underlying
gene expression profiles. Pournara et al. [15] and Yu et
al. [16] proposed the Factor analysis model to describe a
larger number of observed variables. However, these
approaches are based on linear regression, and are not
always being consistent with the observations in bio-
chemical experiments which are nonlinear. Imoto et al.
[17] proposed a nonlinear model with heterogeneous
error variances. This model matches the microarray data
well but it is not satisfying enough in revealing more
biological sense. Segal et al. [18] proposed a transcrip-
tion control network based model and apply their
model to the segmentation gene network of Drosophila
melanogaster. They reveal that positional information is
encoded in the regulatory sequence and input factor dis-
tribution. However, there is still a little bit of dilemma
in the model: the activity level of transcription factors is
difficult to be measured or to be identified. Actually,
assaying the transcription factors’ activity state in a
dynamic fashion is a major obstacle to the wider appli-
cation of the kinetic modeling. TFs’ activity levels are
difficult to measure mainly due to two technical limita-
tions: TFs are often present at low intercellular concen-
trations and the changes in their activity state can occur
rapidly due to post-translational modifications.

Based on the above description, this paper aims to
describe the transcriptional regulatory network quantita-
tively. In this work, a Bayesian inference based regula-
tory model is proposed to quantify the transcriptional
dynamics. Multiple quantities, including binding energy,
binding affinity and the activity level of transcription
factor are incorporated into a general learning model.
The sequence features of the promoter and the occu-
pancy of nucleosomes are exploited to derive the bind-
ing energy. Compared with the previous models, the
proposed model can reveal more biological sense.

Results

Case |: Circadian patterns in rat liver

Circadian rhythm is a daily time-keeping mechanism
fundamental to a wide range of species. The basic mole-
cular mechanism of circadian rhythm has been studied
extensively. As a real example to test our approach, we
considered the dynamics of the circadian patterns in rat
liver. We employ the datasets from Almon et al [19].
This experiment was designed to examine fluctuations
in gene expression in liver within the 24 hour circadian
cycle in normal animals. Fifty-four male normal Wistar
rats were housed in a strictly controlled stress free
environment with light: dark cycles of 12 hr: 12 hr.
Three animals were sacrificed at each of 18 selected
time points within the 24 hour cycle. RNA was prepared
from livers for gene arrays. Time point designations
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reflect time after lights on in hours. For details, please
refer to Table S1 in additional file 1.

Analysis of the predicted activity levels of transcription
factors

To test the proposed model on the above dataset, we
employ two important transcriptional regulators of
which activity levels indicate the variation of heat signals
in a subset of gene circadian network, hsfl and ppara. In
total, we selected 7 genes to perform posterior inference
of TF activities. To ensure identifiability, we included
three genes that are regulated solely by hsfl (HSP110,
HSPA8 and COL4A1), and two genes that are regulated
solely by ppara (ACSL1 and HMGCS1). The remaining
two genes are jointly regulated by hsfl and ppara. These
genes were chosen since they exhibit the largest variance
in the microarray time course, and hence are likely to
provide a cleaner representation of the output of the
system.

The inferred TFs activity levels are shown in Figure 1
(a) and 1(b). Both inferred TF profiles show a noisy per-
iodic behaviour [20]. Figure 1(c) gives the values of the
parameters k; for the four selected circadian genes
(HSPAS8, ACSL1, HSP90AA1 and HSPA1B). The green
column represents the response k; to hsfl alone, the red
column is the response k, to ppara alone and the black
column represents the joint response kj,. It can be seen
that, for gene, HSPAS, the model predicts a clear activa-
tion by hsfl alone, which is consistent with the experi-
mental conclusion from Yan et al [20]. The black
columns of HSP90AA1 and HSPA1B demonstrate that
the model predicts a significant combinatorial activation
which can be verified by mutagenetic techniques, i.e. by
knocking out one of the TFs.

The biological sense of kinetic parameters

Table 1 shows the relationship between scaling para-
meter k and the corresponding binding affinity ¢. In
table 1, ‘H’ indicates ‘high’ and ‘L’ indicates ‘low’. We
define the scaling parameter ki as ‘High’ if it is bigger
than the mean value, as ‘low’, otherwise, and the same
to binding affinity ¢. From Table 1, we can find that, for
most case, the scaling parameter is in accordance with
the binding affinity: High scaling parameter coupling
with high binding affinity, vice versa. However, gene
COL4A1 and HSP110 are 2 exceptions: they have high
scaling parameter but low binding affinity. Our view is
that low binding affinity but high value for k; might
represent a TF which rarely binds to promoter but can
strongly regulate gene expression when bound.

Figure 2 shows the results of inference on the values
of the parameters c; and ;. The columns on the left,
shaded red, show results from our model and the white
columns are the estimates obtained by the method of
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Figure 1 Results on circadian patterns data. (a) mean activity profile for hsf1, (b) mean activity profile for ppara, () bar-chart representation of
the parameters ki, giving the logical structure of the interaction between two TFs.
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Barenco et al. [21]. The parameters were assigned a
vague gamma prior distribution (a = b = 0.2, corre-
sponding to a mean of 1 and a variance of 5). The
results are in good accordance with the results obtained
by Barenco et. a I [21]. We can find that the parameters
¢j and o; obtained by our method have smaller variance
than that of Barenco et al. Figure 3 shows the fit of the
model to the observed data at each time-point.

Case lI: A yeast synthetic network for in vivo assessment

Validation of gene regulation network (GRN) inference
methods has traditionally been done using in silico net-
works. However, depending on how realistic the choice
of an in silico model is, this kind of validation approach
has obvious limitations. To our knowledge, rarely the
underlying model from which artificial/simulated data is
generated is realistic enough. Real biological networks
are fairly complex chemical reaction network models. In
simulation setting one typically adds noise on top of a
hypothetical simulation model, but the noise character-
istics may not be realistic enough. Also, simulation
models tend to be overly simplistic when compared to
e.g. real gene regulatory networks. Data measured from
a real biological system is, real. To overcome these pro-
blems, we use the IRMA network to evaluate out model.
The IRMA network is a synthetically constructed GRN
in the Saccharomyces cerevisiae genome [22], which is
designed to be maximally independent in such a way
that genes in the network are not regulated by genes
outside of the network (i.e. by other yeast genes). How-
ever, genes in the IRMA network may regulate other
genes in the genome. The network consists of five genes

Table 1 Relationship between scaling parameter k and the ¢

and there are positive and negative feedback loops and
one protein to protein interaction, shown as Figure 4.
Although the IRMA network contains only five genes,
there are studies suggesting that the performance on
smaller networks typically generalize to larger networks
[1,23]. The data samples were collected every 20 min up
to 5 hr in five independent experiments for the switch-
on state, and every 10 min up to 3 hr in four indepen-
dent experiments for the switch-off state. For details on
the construction of the network and experimental pro-
cedures, we refer to [22]. One of the purposes of the
IRMA network is to provide a realistic benchmark set
for computational studies by providing mRNA-level
measurements from a known GRN. To our knowledge,
the IRMA network and dataset are the first of a kind
that are meant for validation purposes. Besides, we
assume that mRNA decay rates may be gene-specific,
but remain constant in time [36]. The sequences of all
promoters are retrieved from SCPD and SGD database.
The scanning region ranges from -800 to +50 bp of
each target gene.

Analysis of the predicted activity levels of transcription
factors

To evaluate whether the proposed model can effec-
tively learn the TFs’ activity level and the regulation
type, we first evaluate the model using the switch-on
time series data. The inferred TFs’ activity levels are
shown in Figure 5(a) and 5(b). Both inferred TF pro-
files show a noisy switch-on behavior. Figure 5(c) gives
the values of the parameters ki for the five target
genes. The green column represents the response to

orresponding binding affinity ¢.

Gene  HSP110  HSPA8  COL4A1  ACSL1 HMGCS1 HSP90AA1-hsf1 HSPA1B- hsf1 HSPA1B- ppara
k H H H H L H L H
¢ L H L H L H L H
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Figure 2 The bar charts for basal transcription rates and decay rates. (a) Basal transcription rates from our model and that of Barenco et al.
Red are estimates obtained with our model, white are the estimates obtained by Barenco et al [21]. (b) Similar for decay rates.
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the first regulator alone, the red column is the Analysis of the kinetic parameters

response to the second regulator alone and the black Table 2 shows the relationship between scaling para-
column represents the joint response, kj,. It can be  meter k and the corresponding binding affinity ¢. In
seen that, for gene, GAL8O, the model predicts a clear table 2, the definition of ‘High’ and ‘Low’ are same as in
activation by swi5 which is consistent with the experi- Table 1, and the same abbreviations are employed. It
mental conclusion [22]. For gene CBF1, the red down- can be found that gene GAL8O has the TF that rarely
ward column indicates that ashl behaves as a binds to promoter but can strongly up-regulate its
repressor, which is verified in [22]. The black column expression when bound.

of CBF1 demonstrates that the model predicts a signif- Figure 6 shows the results of inference on the values of
icant combinatorial regulation [22]. the parameters ¢; and ;. The columns on the left, shaded
s N
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Figure 3 The predicted mean expression profiles. (a) HSPAS8, (b) COL4A1, (c) ACSLT, (d) HMGCST, (e) HSP9OAAT and (f) HSPA1B. The red circle
indicates the observed value at each time-points.
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Figure 4 IRMA network. The rectangle indicates the gene while the oval represents the protein.

red, show results from our model and the white columns
are the estimates obtained by Opper et al. [24]. It can be
found that the results are in good accordance with the
results obtained by the method of Opper et Al [24]. It can
be found that the parameters ¢; and ®; obtained by our
method have smaller variance than that of Opper et al. [24].

For comparison, we also evaluate the model using the
switch-off data. Figure 7 shows the fit of the model to

the observed data at each time-point for both the
switch-on case and switch-off case.

Discussion

In this study, two real-world microarray datasets were
exploited two evaluate the efficiency of the proposed
model. Comparison shows that the kinetic parameters
obtained by our method have smaller variance than that
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Figure 5 Results on IRMA network data. (a) mean activity profile for regulator swi5, (b) mean activity profile for regulator ash1, (c) bar-chart
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Table 2 Relationship between k and ¢ for IRMA network
data.

Gene GAL80 GAL4 SWI5 ASH1 CBFl-swi5 CBFl-ash1
k H L H L H H
¢ L L H L H H

of Barenco et al. [21]. One reason is that the proposed
model provides a principled method for the incorpora-
tion of prior biological knowledge. This may be in the
form of suitable ranges for kinetic parameters, known
kinetic parameter values and suitable distributions on
measurement noise. Besides, it is possible for the pro-
posed model to circumvent the need for expensive sam-
pling-based inference and a TFA profile can be inferred
over all time, rather than just at the discrete time-points
at which expression was measured.

The Bayesian inference based model of transcription
rates and regulator activity levels allows us to handle
these biologically relevant quantities despite the indirect
measurement of the former and the lack of measure-
ments of the latter. It also allows us to handle the inher-
ently noisy measurement in a principled way. However,
the proposed model still abstracts away some of the
explicit processes that generate the actual observed
expression data. A more explicit modelling of these will
provide a more principled treatment of different sources
of noise in the data. Furthermore, this model does not
handle directly the upstream events that affect regulator
activity. In fact, the current model is an open loop sys-
tem, such that the regulation of regulator activity is
itself viewed as exogenous to the system. By developing
a richer modeling language we may capture more com-
plex reaction models, model the upstream regulation of
activity levels, and identify systems that involve feedback
mechanisms and signalling networks.

Post-Transcriptional Modification Model (PTMM)
have been previously used to model TF activities [25]; in
that work, further dependencies were included between
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TF mRNA expression levels and their predicted activ-
ities, which enabled to predict possible post-transcrip-
tional modifications in TFs. Naturally, it should be
possible to combine both our approach and their
approach to give a model capable of simultaneously
inferring TF activities, combinatorial interactions and
post transcriptional regulations.

Conclusions

In this work, we have proposed a computational model
to reverse engineer simultaneously both the activity of
TFs and the logical structure of promoters by integrat-
ing multiple sources of knowledge, including time-series
gene expression data, TFs’ binding information and
sequence features of promoters. The approach relies on
a detailed model of transcription, which is an approxi-
mation to the Michaelis-Menten model from classical
enzyme kinetics, and therefore should be able to capture
accurately the effects that changes in TF activity have
on gene expression dynamics. We testify the proposed
approach on two real-world microarray datasets. Experi-
mental results show that the proposed model can effec-
tively identify the parameters and the activity level of
TF. Moreover, the kinetic parameters introduced in the
proposed model can reveal more biological sense than
previous models can do.

Methods

Problem statement

A microarray experiment only measures the “observed”
quantities, as shown in Figure 8, whereas the other
quantities are not observed ("hidden”). The dashed oval
encloses the closest quantities on the path between the
TF and the target gene. Consider a transcriptional net-
work of n genes that are regulated by m regulators, as
well as a time-dependent external signal. Given the
structure G and a set X of transcription rates of these
genes in T time points, is it possible to reconstruct the
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Figure 6 The bar charts for basal transcription rates and decay rates. (a) Basal transcription rates from our model and that of Opper et al.
[24]. Red are estimates obtained with our model, white are the estimates obtained by Opper et al. (b) Similar for decay rates.
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time-varying activity level of m regulators, R, at all time
points and the corresponding model parameters? This is
an infinite dimensional problem that we tackle by pla-
cing a stochastic process prior over the activities of
regulators.

Our approach relies on a continuous time, differential
equation description of transcriptional dynamics where
TFs are treated as latent on/off variables and are

modelled using a switching stochastic process. The fra-
mework of the proposed method is shown in the Figure
9.

Kinematic model of regulation

Compared with the gene expression level, the gene tran-
scription rate can capture more dynamic characteristics
of transcription regulation. We here employ the
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transcription rate to model the regulation function. We
first assume:

+ The derived transcription rates are average rates
over a cell population.

+ The speed of a TF’s binding to or dissociation
from its target sites is assumed to be much more
rapid than the transcription process, thus rapid-equi-
librium approximation can be used.

Based on the above assumptions, the transcription rate
of a gene is proportional to the amount of the gene
bound by its regulators in all genes of the measured cell
population. We first consider the case that a gene is
regulated by a single activator. The corresponding regu-
lation function can be properly described by Michaelis-
Menten equation:

dx r(t)
dt Paer T @)
here x represents the mRNA concentration for a parti-
cular gene, r(z¢) the concentration of active TF, § and d
are kinetic constants, ¢ a baseline expression rate and w
the mRNA decay rate.
To incorporate the sequence feature and the TF bind-
ing preference into the model, we set the binding

affinity ¢ = k/d, and (1) can be reformulated as

dx _ ker(t) om0, 2
dt 1 + ker(t)

here k is a scaling parameter.

We now take the regulation involving two regulators
into account. Denote by ri(t) and ry(t) the concentration
of two regulators, ¢; and ¢, the binding affinity of two
regulators from their own target sites, the regulation
function can be written as below:

dx  kigir(t)y + kagara (€) + kap19211 (£)72(1) re— o
dr p (1 + (plrl(t)) (1 + (,021'2([)) ¢ % (3)

Considering the general case, a gene is regulated by n
regulators. There are 2" different binding states in total.
The n-dimension binary vector is employed to indicate
a certain binding state, e.g., a 4-dimension vector (0 1 0
1) indicates that the second and the fourth regulators
are bound to their own target sites while the first and
the third are not bound. The regulation function can be
written as:

dx;
dt

s Zsesj ks l_[s,-=1;i=1,n (piiri(t)
T TTE (L gyr(n)

+C — wiXj (4)
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where S; denotes the set of all 2" possible state vec-
tors, and s; is the iy, element of the state vector s.

Modelling for binding affinity

Measuring affinities of molecular interactions in high-
throughput format remains problematic, especially for
transient and low-affinity interactions. We here try to
describe the landscape of binding affinity in the perspec-
tive of binding energy between the various DNA-binding
molecules and their target genes. Binding affinity land-
scapes describe how each molecule translates an input
DNA sequence into a binding potential that is specific
to that molecule. The presented framework models sev-
eral important aspects of the binding process.

By allowing molecules to bind anywhere along the
input sequence, the entire range of affinities is consid-
ered, thereby allowing contributions from both strong
and weak binding sites [26,27].

+ Conventional cooperative binding interactions can
be explicitly modelled by assigning higher statistical

weights to configurations in which two molecules
are bound in close proximity.

+ The cooperativity that arises between factors when
both nucleosomes and transcription factors are inte-
grated is captured automatically [28].

We first consider the simplest case that there is only
one target site Sy for TF i in the promoter of gene j:

I
TF; + S;; <k—‘”> [TF; - Sjj]
d

The site-specific binding affinity is given by
Ej

- 5
¢ =Cie kT )

where C; is a constant, E;; the binding free energy
between TF; and the promoter of gene j, k and T are
the Boltzmann constant and temperature, respectively.

The above case can be expanded to the general case
that binding may happen in anywhere along the input
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sequence and the accessibility of target sites varies due
to the occupancy of nucleosomes. The general binding
affinity is modelled as

N —E;"
vij =G Zpij(")e kT (©)
n=1

where p™ ; is the probability of transcription factor i
binding to the nth binding site in the promoter of gene j.
Note that the derivation of p™ ;7 involves the information
of the possible occupancy of nucleosomes. The nucleo-
somes positions can be predicted based on the nucleo-
some-DNA interaction model proposed by Kaplan et al
[29]. Figure 10(b) shows the occupancy of nucleosomes
for the genomic sequence shown in the Figure 10(a).

Since the positional weight matrices (PWM) are often
used to represent the sequence motif [30,31], we esti-
mate the binding energy in perspective of PWM. As the
background information has been taken into the PWM,
the binding free energy can be approximately calculated
as below:

L
Ej =KD" 0 T (ML — M)

I=1 n={A,CGT}
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1if n=s(])

where J" = )
0 otherwise

here K9 is the scaling factor, M*_ indicates the maxi-
mum background frequency in the motif, s() is the
nucleotide in position /.

Regulatory network modelling using dynamic Bayesian
inference
In many biological processes, the transcription factor
transit from inactive to active state quickly as a conse-
quence of fast post-translational modifications, (the time
scale is micro second), so it is reasonable that we model
the TF activity as a binary variable r(t) € {0,1}[24,32].
For the regulation involving a single regulator, the TF
activity can be seen as a two states Markov Jump Pro-
cess. Based on Ref [24,33], the probability of the system
being in a particular state at a given time is given by the
following Master equation:

dp,

PO o)~ np(0) %
d

PO i ()~ npol) ®)

Al0.14 072 -061 -143 -143 0.72 086

C|-0.16 -0.16 -0.61 -1.45 -1.43 0.16 -0.61
G|-061 -061 086 119 -143 -0.61 06l
T 038 -061 061 -143 119 0.6l -0.61

d

\

Figure 10 Employing sequence features and the occupancy of nuclesomes to estimate the binding affinity. The positional weight matrices
are used to represent the sequence motif. The binding may occur anywhere along the input sequence, the entire range of affinities is considered.
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here p;(t) = p(r(t) = 1), po(t) = p(r(t) = 0) and n. indi-
cates the transition rate.

The observed expression data is often assumed to be
normally distributed [24]. We now define a noise model
that relates the predicted mRNA concentration to the
observed expression data, as shown in Figure 11.

Setting y;(t) as the observations of mRNA species j at
time £, x;(t) the predicted expression and o; the varia-
tion, the noise model can be described as

Y1) [r(t) ~ N(x(1), o)

Based on Refs [24,33], we define the TF’s switching
stochastic process as the prior distribution, then we
combine the prior distribution and the noise model
(likelihood) into Bayes’ theorem to obtain the posterior
over the process:

prly, @)= (ol in )p0)

where y denotes collectively the observations, Q are
the parameters involved in the regulation function and S
a normalization constant.

Variational inference and model optimization

We will use a variational formulation of the inference
problem [34]. Variational inference is a powerful infer-
ence method and it has been well applied for optimiza-
tion by Opper and Sanguinetti [24,33]. Our model
optimization is based on Ref [22]. Variational inference
is used as an approximation technique: given an intract-
able probability distribution p, the variational approach
finds an optimal approximation g within a certain family
of distributions. This is usually done by minimizing the
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Kullback-Leibler (KL) divergence between the two distri-
butions

q(r)
p(r)

By selecting a suitable family of approximating distri-
butions, the inference problem is then turned into an
optimization problem. It can be shown that the KL
divergence is a convex functional of g and is equal to
zero iff q = p [24,35]. In this case, we will choose the
approximating process g to be again a Markov Jump
Process, so that the required KL is given by

KLiq[p] = Eq[logZ] - / log ") 4(r)ar ©)

KL poq] = KLIq]p ;] + 108 — Egllogp(yIr, @)1 (10)

here S is a normalization constant, E,[log p(y|r, Q)]
the expectation of the likelihood of the observations
under the approximating process.

According to Ref [24], minimization of the KL func-
tional (11) can be represented as the saddle point pro-
blem

n 2
J = mraxmqin{KL[q |pprior 1 + Z [5(y; — X(4)) — ”2 21 11)
j=1

here 7 is auxiliary variables. It can be found that this
functional is concave in 7 and convex in q. Hence we
can exchange min and max. Performing the max first
yields the result. This also shows that there is only a
unique saddle point solution.

The optimization procedure is based on a forward-
backward procedure, leading to ordinary differential
equations which can iteratively be solved. Taking the
regulation involving two regulators for example, the free

Xt

X=f (r(t), Q)

the normally distributed observations.

Figure 11 Normally distributed observational data. The solid line indicates the mean predicted expression while the dotted line represents
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energy is a functional of both the approximating pro-
cesses q', q> and their transition rates n;, n,. However,
these are not independent, but are related by the Master
equation. To incorporate this constraint, we add
Lagrange multipliers as

(12)

- "
1 ) = el 17O st @ [ 1O s 0
s s

where g; and g, are the rates of jumps from the 0 to
the 1 state for process q1 and qz, respectively.

The Lagrange multiplier functions obey the final con-
dition A(T) = 0. Estimation of the parameters A and b
can be done directly by maximizing the approximate
marginal likelihood E[logp(y|r,Q2)]. The framework of
the inference is shown in the Figure 12.

Additional material

Additional file 1: Table S1. The time series gene expression data for
circadian patterns in rat liver.
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