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Abstract

Background: Studying protein complexes is very important in biological processes since it helps reveal the
structure-functionality relationships in biological networks and much attention has been paid to accurately predict
protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available
algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into
account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to
investigate the possibility of discovering protein complexes using the topological information hidden in edges.

Results: To provide an investigation of the roles of edges in PPl networks, we show that the edges connecting
less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties
phenomenon in PPl networks. We further demonstrate that there is a negative relation between the weak tie
strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each
maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is
transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects
the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our
algorithm has been made by comparing the predicted complexes against benchmark complexes.

Conclusions: We proved that the weak tie effect exists in the PPl network and demonstrated that the density is

insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on
the yeast PPl network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of
detected modules by the present algorithm suggests that most of these modules have well biological significance

in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes.

Background

Interpretation of the completed biological genome
sequences initiated a decade of landmark studies addres-
sing the critical aspects of cell biology on a system-wide
level, including gene expression analysis [1,2], gene dis-
ruptions detection [3,4], identification of protein subcel-
lular location [5,6] and so on. An important and
challenge task in proteomics is the detection of protein
complexes from the available protein-protein interaction
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(PPI) networks generated by various experimental tech-
nologies such as yeast-two-hybrid [7], affinity purifica-
tion [8], mass spectrometry [9], etc.

Protein complexes, consisting of molecular aggrega-
tions of proteins assembled by multiple protein interac-
tions, are of the fundamental units of macro-molecular
organizations and play crucial roles in integrating indivi-
dual gene products to perform useful cellular functions.
It is confirmed by the fact that the complex ‘RNA poly-
merase II’ transcribes genetic information into messages
for ribosomes to produce proteins. Unfortunately, the
mechanism for most of biological activities is still
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unknown and hence accurately predicting protein com-
plexes from the available PPI data has a considerable
merit of practice because it allows us to infer the princi-
ples of biological processes.

The general methods for protein complexes prediction
are based on experimental and computational notions.
Experimentally, the Tandem Affnity Purification (TAP)
with mass spectrometry [9] turns out to be popular.
However, it is far away from being a satisfying answer
because of the limits on TAP [10]. For example, the
transient low affinity protein complexes may be
excluded because of the washing and purification opera-
tions in the TAP-MS. At the same time, this experimen-
tal approach needs the tag proteins to infer the protein
complex. Gavin et al. [8] have indicated that only lim-
ited known yeast protein complex subunits can be
extracted by the TAP-MS. Moreover, Schonbach [11]
showed that, in order to validate the experimental
results using the subcellular localization information, a
preparation of subcellular fractionated lysates is a must.
But the preparation procedure is time-consuming.
That’s why the computational approaches are becoming
promising alternatives to complement the experimental
ones.

Generally, protein interaction data can be effectively
modeled as a graph (also called a network) by regarding
each protein as a vertex and each known interaction
between two proteins as an edge. Although there are
plenty of related results in graph theory and many
graph algorithms have been developed, it is still non-tri-
vial to design an efficient algorithm to mine protein
complexes from PPI networks. One reason is that there
has not been an exact definition for a protein complex.
To overcome this difficulty, Tong et al. [12] assumed
that a protein complex corresponds to a dense subgraph
since proteins in the same complex interact frequently
among themselves, and similar discussion was also made
in Ref. [13].

Although it is non-trivial to design effective and effi-
cient computational methods for predicting complexes,
many algorithms have been devoted to the issue. Mar-
kov Cluster Algorithm (MCL) [14,15] simulated random
walks within graphs based on the intuition that a walker
started at an arbitrary protein and visited a neighbor-
hood vertex with a predefined probability. If he walked
into a dense region, it is hard to get out of the region.
Molecular Complex Detection (MCODE) [16] relied on
the topological structure of a network, where it is
assumed that a protein belongs to some complex if it
has a subset of neighbors with high degree and there
are many interactions among them. CFinder [17]
defined a dense subgraph by using the concept of adja-
cent k-cliques. Other non-topological properties such as
the functional information [18] and data of protein
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binding interface [19] are also incorporated into algo-
rithms with an immediate purpose to improve the accu-
racy of prediction. In addition, there are some others
relying solely on TAP data [20-22], which can be sum-
marized as two points: first, a reliable PPI network is
constructed by applying specific scoring strategies based
on the purification records and selected protein interac-
tions with high scores; second, some existing algorithms
are employed to detect dense clusters in the newly con-
structed networks.

Except the biological information, some newly devel-
oped algorithms using the core-attachment structure in
complexes revealed by Gavin et al. [8] (As shown in Fig-
ure 1). Leung et al. [23] proposed the CORE algorithm,
a statistical framework to identify protein-complex
cores. The probability for two proteins to be in the
same protein-complex core is mainly determined by two
factors: whether the two proteins interact or not and the
number of their common neighbors. The CORE then
calculates the p-values for all pairs of proteins to detect
cores. Wu et al. [24] presented the Coach consisting of
two steps: it first defines core vertices from the neigh-
borhood graphs and then detects protein-complex cores
as the hearts of protein complexes; it then includes the
attachments into the cores to form biologically mean-
ingful structures. Ma et al. [25] showed that the density
of a subgraph is insufficient to characterize the complex
and further demonstrated that the graph communicabil-
ity is much better in characterizing the protein com-
plexes. There are also many newly developed techniques
for protein complex prediction [26-29]. Further informa-
tion concerning the computational approaches for pre-
dicting protein complexes can be obtained from [30].

The core-attachment based approaches outperform
dramatically the available state-of-the-art algorithms,
demonstrating the significance of the structure and indi-
cating the critical role of it in discovering protein com-
plexes. This is one of the our major motivations. On the
other hand, another major problem confounding the
existing computational algorithm is that, available PPI
networks are too sparse, for instance, the average num-
bers of interactions per protein are 5.29, 6.98, and 10.62
in DIP [31], Krogan [22], and Gavin [21], respectively.
In these PPI networks, many protein complexes are dif-
ficult to be extracted since the sparse networks are full
of noises [32]. Therefore, designing an efficient algo-
rithm that gets rid of the noise is an important and
challenging task to predict protein complexes. Unfortu-
nately, previous algorithms did not pay enough attention
to the problem since they only filter the noise by delet-
ing nodes with degree 1 based on the fact that the inter-
actions between proteins have lower reliability to the
topological reliability measures [33,34]. Aside from
issues of noise, all the existing computational
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Figure 1 An schematic example of core-attachment structure of protein complexes. An example of the DNA repair complex [8], whose
core consists of four red proteins in the dotted square and others are the attachments of this complex. The interactions in this figure are from
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approaches only make use of the topological structure
information from the vertices and fail to take into con-
sideration the roles of edges. It, however, is unreason-
able to ignore the roles of edges, say the weak tie theory
[35] and percolation [36], since an edge may play an
important role in enhancing the locality or be significant
in maintaining the global connectivity. For example, the
famous weak ties theory indicates the job opportunities
and new ideas are usually from persons with weak con-
nections. Furthermore, the weak ties can be used to
characterized the topological properties of networks
such as the stability of biological functions [37], the
accuracy of network structure prediction [38], the struc-
ture in mobile communication networks [39]. And the
percolation characterizes the tendency to undergo a
topological phase transition as the number of connec-
tions is progressively increased. Motivated by these
observations, we pose the following question:

Question: whether the roles of edges can be used in
protein complexes detection?

In this study, we aim to investigate the possibility to
extract protein complexes by exploring the roles of
edges and develop an affirmative answer to the above
question. In detail, similar to the weak ties effects in
mobile communication [39] and document networks
[40], we prove complementary results on the PPI net-
works that is the edges connecting less similar nodes
are more significant in maintaining the global connectiv-
ity. By using the weak ties and percolation, a reliable

virtual network is constructed from the original PPI net-
work, in which each maximal clique corresponds to a
protein complex. A core-attachment based method is
developed. To test the performance of the proposed
algorithm, we applied it to the PPI networks. The
experimental results on the yeast PPI network show that
the proposed method outperforms DPClus [41], DEC-
AFF [42], MCL [14], MCODE [16] and Coach [24].
Further, the analysis of detected modules by the present
algorithm suggests that most of these modules have well
biological significance in context of complexes, suggest-
ing that the roles of edges are critical in discovering
protein complexes.

Materials and methods

The key idea behind our algorithm consists of three
main steps: (1) verifying the existence of weak ties effect
in PPI networks; (2) constructing a reliable network by
exploring the roles of edges; and (3) identifying the pro-
tein complexes by using a core-attachment based
method. We show them in turns.

Weak ties phenomenon in PPl networks

A network consists of two basic elements: vertices and
edges. Many measurements are developed to character-
ize the role of a node for structure and function includ-
ing random walk-based indices [43], PageRank score
[44]. In comparison, the study of the edge’s role is less
extensive.
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Actually, edges in a network usually have two roles to
play: some contribute to the global connectivity like the
ones connecting two clusters while others enhance the
locality like the ones inside a cluster. In social networks,
the two roles are reflected as two important phenomena,
being respectively the homophily [45] and weak ties effects
[46]. Homophily demonstrates that connections are more
likely to be formed among individuals with close back-
ground, common characteristics. On the other hand, the
weak ties phenomenon shows that the less similar indivi-
duals are prone to be connected with weaker strength.
These weak ties have important roles to play in maintain-
ing the global connectivity. It has been proved that the
weak ties phenomenon exists in the mobile communica-
tion [39] and document networks [40]. But, the weak ties
effect for PPI networks remains to be tested.

To investigate the weak ties effects in PPI networks,
we quantify how the topological structure changes
according to an edge percolation process. In detail, if
the weak ties effect exists in terms of topological simi-
larity, the network disintegrates faster when we delete
edges successively in an ascending order of the similarity
than that in descending order. Similar to [40] two mea-
sures are employed to quantify how topo-logical struc-
ture changes when the edges are removed. The first one
is the fraction of vertices contained in the giant compo-
nent, represented by Rgc. The second one is the nor-
malized susceptibility, defined as

S = Z SZ/N, (1)
S<Smax
where s is the size of a connected subgraph, N is the
size of the whole network and the sum includes all con-
nected components. An obvious gap occurs when the
network disintegrates [47].
Prior to studying the weak ties, the bridgeness of an
edge should be discussed. In [40] it is defined as

B= \/CuCU/C(u,v)/ (2)

where (i, v) is the edge with u, v being the end-
points, C,is the size of the maximal clique containing
vertex u and C,,,) is the size of the maximal clique
containing (u, v). It, however, can not distinguish the
bridges and non-bridges because it fails to take into
account the difference between a pair of vertices. The
bridggness value for each edge in a clique is 1 accord-
ing to Eq.(2). It is unreasonable because intuitively the
larger the size of a clique is, the lower the probability
for some edge in the clique being a bridge is. For
example, edges in 3-clique are more prone to be
bridges than ones in 8-clique.

Actually, if (#,v) is a bridge, the roles of vertex u,v
should differ greatly since they belong to various groups,
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indicating that they are dissimilar in topology. There-
fore, a new bridgeness is defined as

\/Cu\ucu\u
Buovy = (1 =7 (u, 3
wvy =1 —=J W v)) Cu v) 3)
where J(u, v) is the Jaccard similarity, i.e.,

IN () NN (v)]
IN (W) NN ()]
of vertex u, and C,,is the size of the maximal clique
containing u without v. The 1- J(i, v) measures the dis-
similarity between the pair of endpoints while the latter
component quantifies the relation between the neigbors
of two endpoints. The physical interpretation of Eq.(3)
is that only these edges whose endpoints are less similar
in topological and maintain the global connectivity are
the bridges. Compared with Eq.(2), the new index is
more reasonable, for example, for an edge in a m-clique
is 2(m—1)
m2
increases.
Similar to Ref. [39], we quantify the weak ties phe-
nomenon according to an edge percolation process.
Generally speaking, if the weak ties phenomenon exists
in terms of content similarity, the network will disinte-
grate much faster when we remove edges successively in
ascending order of content similarity than in descending
order. Figure 2 (a) shows Rgc decreases much faster
when the less similar edges are removed firstly. As
shown in Figure 2 (b), a sharp peak occurs when the
edges removed from the weakest to the strongest one,
demonstrating the disintegration of the networks
involved. Careful comparison of Figure 2 (a)(b) further
shows that no percolation phase transition appears since
there is no clear peak. These strongly supports the weak
ties phenomenon in the PPI networks. In addition to
the existence of weak ties phenomenon, we also have
great interest in quantifying the edges’ role of maintain-
ing global connectivity. How good the bridgeness char-
acterizes the weak ties phenomenon has been
investigated in Figure 2 (c)(d). Figure 2 (c) indicates that
Rgc decreases much faster when the stronger bridges
are removed firstly. As shown in Figure 2 (d), a sharp
peak occurs when the edges removed from the strongest
to the weakest one, demonstrating the disintegration of
the networks involved. It is enough to assert that the
bridgeness is an excellent alternative to describe the tie
strength. To make a fair comparison between the index
[40] in and ours, we also investigated how the networks
changes in terms of bridgeness in Eq.(2) as shown in
Figure 2 (e)(f). Compared Figure 2 (c)(d) with Figure 2
(e)(f), we can easily conclude that the network disinte-
grated more quickly (the bigger gaps in Rgc and §)
when the novel bridgeness is adopted, indicating that

J(w,v) = with N(u) being the neighbors

, which decreases as the size of a clique
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the new index is more efficient in characterizing the
bridges in networks.

Furthermore, the relation between the topological
similarity and bridgeness is also studied. The topological
similarity for protein pair is defined as

Sim = A + BA? + B2A3, (4)

where A is the adjacency matrix of the network involved,
(Al%- denotes the number of walks of length k connecting
vertex vand uj, and 3 is parameter controlling the relevant
importance of each component. The long walks receive
greater weights when f3 > 1 while the short ones get more
attention if B < 1. Here, we set 8 = 0.618. The result is
showed in Figure 3. It demonstrates that there is a nega-
tive correlation between bridgeness and topological simi-
larity, i.e., the weaker the similarity between a pair of
proteins is, the stronger its bridgeness is.

Constructing a reliable network
Gavin et al [8] have pointed out that the core of a com-
plex has relatively more interactions while the

attachments bind to the core proteins to form a biologi-
cal complex, implying that the connectivity of a core is
better than the whole complex.

To assess the topological proximity of a core, the mea-
sure of proximity of a pair of vertices should be handled
beforehand. The most commonly used one is the graph
distance, that is, the length of the shortest path connect-
ing the pair of vertices. This quantity, however, is not
appropriate for the biological networks largely because
of two drawbacks: first, it does not take into account the
local structural feature of the networks; second, it is very
susceptible to the noises, e.g., a single missing edge
effects the proximity, significantly. Thus, vertices con-
nected by paths of various lengthes are likely to be func-
tionality closer than vertices connected via a single path.
In detail, give an edge, say (»,v), it is reasonable to con-
sider that the information transferred from u to v
through the right channels. The more the channels are,
the better the connectivity is. Actually, in biological net-
work, the genetic information is transferred by the path-
ways. From the aspect of graph theory, it is natural to
consider the channels as various walks connecting u, v.
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Likewise, we also take into consideration the strength of
paths: the strength of the effect via longer paths with
more intermediate vertices is very likely to be lower
than those via shorter ones with fewer intermediaries.
Given a walk of length k, say v1—>v, — ... vg,1, its
strength is defined as the product of the weights on
each edge in the walk, i.e., I—[l}.‘zl w; ;.1 Where w; jis the
weight on the edge (v; v,1).

Given an un-weighted PPI network, how to assign
weights to edges is one of the key steps in our algo-
rithm. As shown in Figure 3, there is a negative correla-
tion between bridgeness and topological similarity.
Thus, a novel strategy for the weight on the interaction
(u, v) based on the bridgeness in Eq.(3) is developed as

D (u,v) = exp (—B,u)) - (5)

The larger the bridgeness of an interaction is, the less
weight it is.

Now, it is sufficient to deal with the similarity between
a pair of proteins via various lengths of walks. (D%),,,
denotes the sum of strengths of all walks of length k
connecting u and v. Since the connectivity in cores is
high, any pair of proteins in the same core should be
tightly connected by short walks. Therefore, the

similarity for a pair of proteins is the sum of strengths
of walks connecting them, which can be a generalization
of Eq.(4) as

S=W+BW?+82W3, (6)

where W is a matrix with element (W); = D(i, ;).

For any protein pairs, if the similarity between them is
large enough, we have enough reason to believe they
should be connected, otherwise, un-connected. There-
fore, the proteins among a core should connect each
other. To construct a virtual and reliable network for
the original PPI network, similar to [25], a definition is
proposed as

Definition 1 The reliable network ®(G, 7) = (V,, E,)
for a PPI network G = (V, E) is the graph with V=V
and E, = {(u, v) | u, v eV, y(S,,t) = 1}, where y(x, 1) is
a function defined as

lifx>r,
0 otherwise.

’(//(X,T)={

There are two good physic interpretations for ®(G, 7):
first of all, if the similarity of a pair of proteins is con-
sidered as the reliable score on the corresponding edge,



Ma and Gao BMC Systems Biology 2012, 6(Suppl 1):56
http://www.biomedcentral.com/1752-0509/6/51/S6

®(G) can be considered as a reliable network of the ori-
ginal one; second, it can be understood as a perturba-
tion of the original network by adding edges between
vertices if there are enough short walks connecting
them and deleting edges between vertex pairs if there
are fewer short walks connecting them.

In this way, the core of a protein complex corresponds
to a maximal clique in the virtual network. In the fol-
lows, we design algorithm to discover complexes by
extracting cores and attachments, respectively.

A core-attachment algorithm

The first task is to extract all the maximal cliques in the
virtual network, known as the classic all cliques pro-
blem-an NP-hard problem [48]. Therefore, the exact
algorithms are prohibited largely due to the complexity.
The heuristic algorithms are selected in order to avoid
the time issue. The Coach algorithm detects dense sub-
graphs very quickly and accurately from each vertex’s
neighborhood graphs [24]. We adopt the Protein-com-
plex core mining algorithm in the Coach to identify
approximately all cliques in the communicability graph
®(G). Of course, others can be used to identify the cli-
ques, for example, the greedy algorithm, the tabu search
and so on.

What we would like to point out is that, although we
adopt the same strategy to detect the cores, our algo-
rithm differ greatly from Coach algorithm for two rea-
sons: first, our algorithm detects core in a virtual
network based on the weak ties phenomenon, while the
Coach on the original network; second, the strategies
for the attachment vary greatly.

Given a core denoted by an induced subgraph G(U)
with U is the protein set of the core in the virtual net-
work @(G), one crucial step to reveal the attachments is
to construct the candidate protein set CS(U). For simpli-
city, we limit ourselves to only these proteins connected
to at least one protein in U, i.e., CS(U) = {v|v e V\ U,
du € U = (u,v) € E}. What remains to be done is to
determine the correct membership of each protein v in
CS(U) by exploring the closeness between the vertex v
and U. If v is an attachment of G;;, there should be no
protein ue U such that interaction (u, v) is bridge. In
other words, there must be many short walks connect-
ing v and vertices in U. Thus, we can define a new simi-
larity function based on the brigdeness to quantify how
closeness of a vertex v to its core component as

2:ueusvu

c(v,U) = U+t

7)

which quantifies the average closeness of v to U from
the aspect of connectivity. The larger c/(v, U) is, the
more walks connecting v and the core. Thus, a vertex v
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e CS(U) is selected as an attachment when the

ZUEN(U) (v, U)
IN (@) + U]
ing that the selected attachment has more connection

ways with U than the average connectivity in N(UJ).

The procedure can be described as following:

Step 1: Compute the bridgeness for each interaction in
PPI network G according to Eq.(3);

Step 2: Compute similarity matrix S based on Egs.(5)
(6);

Step 3: Construct the virtual network ®(G) with a pre-
defined threshold z;

Step 4: Extract the cores using Protein-complex core
mining algorithm [24];

Step 5: Detect the attachments for each core.

c (v, U) > acl(UUN (U)) = , indicat-

Performance measures

The biological significance of the numerically computed
modules can be validated by comparing the experimen-
tally determined complexes (will be introduced in result
section).

F-measure

Let PS (Predicted Set of Complexes) and BS (Benchmark
Set of Complexes) be the sets of protein complexes that
are predicted by a computational algorithm compared to
the real complexes in the benchmark. N,is the number
of real complexes that match at least a predicted com-
plex, i.e. Ny, = |{b|b e BS, dp € PS, NA(p, b) > t}|,
where ¢ determines whether two sets match or not.
N,is the number of correct predictions that match at
least one real complex, i.e., N, = |{p|p e PS,3b € BS,
NA(p, b) = t} | The F-measure can be used to quantize
the closeness between two complex sets [20]:

Fe 2 x Precision x Recall’ ®)

Precision + Recall

N, N,
? and Recall = =% [49].

here Precision =
¢ PS| IBS|

Coverage rate

The coverage rate assesses how many proteins in the
real complexes can be covered by the predicted com-
plexes [50,51]. In detail, given the set of benchmark
complexes BS and the set of predicted complexes PS, a
|BSr x |PS | matrix T is constructed whereby each ele-
ment Tyis the number of proteins in common between
the i-th benchmarked complex and the j-th predicted
complex. The coverage rate is defined as

|BS|
CR - Y.y max {Tj}
= BS
ZLJNi

where Njis the number of proteins in the i-th bench-
marked complex.

, )
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P-value
The P-value [18] is employed. In detail, given a cluster
C with & proteins in a functional group

F, the P-value is defined as

- <|F|) (IVI - IFI)
- i |IC| —i
P —value=1— ,
()
ICl|
where | V| denotes the size of PPI network involved.
Geometric accuracy
To measure the robustness of the algorithm, the follow-
ing measures are adopted [51]. Similar to Eq.(9), a
matrix 7T is obtained by considering the annotated com-

plexes as the BS. The clustering-wise sensitivity Su is
defined as

(10)

_ XLy Nimax; (Ty/N;)
Z?:l Ni ,

where n, m and Nare the sizes of BS, the number of
clusters obtained by algorithms and the number of pro-

teins in the i-th complexes, respectively. The positive
predictive value PPV is defined as

eril (X Ty) maxit, Ty/ 3oL, T
ij=1 Z?:l T

Based on Sun and PPV, the geometric accuracy is
defined as

Sn (11)

PPV = (12)

ACC = +/SnPPV. (13)

Geometrical separation
Before our description about the geometrical separation,
we define separation

Sepi]- = Fcol,-jPPVij/ (14)

Tj
where Feol; = m] Then, the geometrical separa-
Zj:l T

tion Sep is defined as

Sep = \/SePwS@Pcl, (15)
Y X Sep g Sop = i Xt Sepij

where gep,, =
n m

Results

In this section, the presented algorithm was applied to
PPI networks with an immediate purpose to verify the
performance from two perspectives: its ability to predict
the protein complexes with accuracy, and the robustness
of the algorithm. The algorithm was coded using
MATLAB version 7.11.
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Data

The Database of Interaction Proteins [31] (DIP)(http://
dip.doe-mbi.ucla.edu/[version yeast20071104]) data is
adopted, which consists of 4,928 proteins and 17,201
interactions. To evaluate the protein complexes pre-
dicted by our algorithm, a benchmark set was con-
structed from the the MIPS [52], Aloy et al. [53] and
the SGD database [54] based on the Gene Ontology
(GO) notations, which consists of 428 protein com-
plexes [50].

F-measure and coverage rate

To further verify the novel bridgeness, we proposed two
versions of our algorithm: Type I using the bridgeness
in Eq.(2), Type II in Eq.(3). The basic information of
predictions by various compared algorithms is summar-
ized in Table 1. From it, the MCL identifies 1116 com-
plexes, of which 193 mach 242 real protein complexes;
DPClus extracts 1143 complexes, of which 193 match
274 real complexes, DECAFF detects 2190 protein com-
plexes, of which 605 match 243 ones and Coach reveals
746 complexes, of which 289 match 249 real ones. Our
Type I algorithm predicts 686 protein complexes, out of
which 242 match 198 real ones in the benchmark, while
Type II discovers 604 protein complexes, out of which
230 match 220 real ones in the benchmark.

Figure 4 shows the overall comparison in terms of F-
measure and coverage rate on the DIP data. Although it
is 2.9% lower than Coach algorithm, the F-measure of
our algorithm Type II is 43.2%, which is 16.7%, 16.5%
and 6.0% higher than MCL, DPClus and DECAFF,
respectively. It demonstrates that our algorithm can pre-
dict protein complexes very accurately. From Figure 4, it
is very easy to see that our method obtains the highest
coverage rate of 42.8%, which is 7.9%, 9.6%, 11.4% and
16.2% higher than Coach,MCL, DPClus and DECAFF,
respectively. It shows that the predicted complexes by
our algorithm can cover the most proteins involved in
the real complexes. From Figure 4, we can make a con-
clusion that our algorithm is obviously outperform the
MCL, DPClus and DECAFF, and it makes a better bal-
ance between the F-measure and Coverage rate than the
Coach. Compared Type I with Type II, we discovered
that the Type II is much better than Type I, demon-
strating that the efficiency of the proposed bridgeness.
Such results further demonstrate that the critical phe-
nomenon in the PPI can be used for enhancing the pre-
diction accuracy.

P-value

To further investigate the biological significance of the
predicted complexes, the P-value is adopted here. The
functional homogeneity P-value is the probability that a
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Table 1 The results of various algorithms using DIP data
MCL DPClus DECAFF Coach Our method-I Our method-II
Predicted complexes 1116 1143 2190 746 686 620
Covered proteins 4930 2987 1832 1832 1776 1702
Nep 193 193 605 285 242 230
Nep 242 274 243 249 198 220

given set of proteins is enriched by a given functional
group merely by chance, following the hypergeometric
distribution. It is the probability of cooccurrence of pro-
teins with common functions. Accordingly, a low P-
value of a predicted complex indicates that the collective
occurrence of these proteins in the complex does not
merely combine by chance and thus achieves high statis-
tical significance. The values are calculated by the GO::
TermFinder [55].

We discarded all clusters with P-value above a cutoff
threshold. In the experiments, we chose a cutoff of 1 x
1072 for each protein complex because it offers a com-
promise between complex-cluster matching rate and a
clustering passing rate.

Table 2 shows the comparison results in terms of the
proportion of significant protein complexes over all

predicted ones. In the Table, our method-II achieves the
best performance (83.7%), implying the majority of pre-
dicted complexes are significant. Furthermore, the Coach
has a comparative performance with our algorithm but
the MCL and DPClus can only predict a small proportion
of significant complexes. To further demonstrate the pre-
dicted protein complexes, 5 protein complexes with very
low P-values, predicted by our method. The second colu-
mun is Table 3 refers to the ratio of the annotated pro-
teins to ones in the identified complex.

Size and density distributions

Because the above experiments are sufficient to prove
that the superiority of the proposed bridgeness, we only
focused on the Type II method in the forthcoming
experiment.

\

0.5 .
. vcL
B DFClus
[ DECAFF
04t [ ] Our method-I
' N Our method-II
I Coach
0.3+
0.2}
0.1f
0 1 1
F-measure Coverage rate
Figure 4 F-measure and Coverage rate. The performance comparison for various algorithms on DIP data.
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Table 2 Statistical significance of protein complexes obtained by various algorithms on DIP data

MCL DPClus DECAFF Coach Our method-I Our method-II
Predicted complexes 1116 1143 2190 746 686 620
Significant complexes 312 352 1653 622 536 519
Proportion (%) 342 308 755 834 781 837

The P-values of predicted complexes by our algorithm
support that the roles of interactions in PPI networks is
promising on enhancing the accuracy of prediction. The
module size distribution of predicted protein complexes
for each compared methods on the DIP network has
been shown in Figure 5. From it we can conclude that
the major trend generated by our algorithm is very simi-
lar to that of the complexes in the benchmark set, which
suggest that the definition of protein complex based on
the weak tie effect is reasonable. However, the Coach
can identify much less modules than these in the bench-
mark set, and its trend is different from that of the
benchmark set. What we would like to point out is that
the size distributions of the DPClus and MCL algo-
rithms are very different from the previous ones.

Notice that our algorithm is quite different from those
based on discovering the dense subgraphs because it
makes use of the weak ties effect. To verify the differ-
ence on the densities of the predicted complexes, we
compared the Coach algorithm with our method in
terms of the graph densities of the predicted complexes,
shown in the Figure 6. It is easy to figure out that more
than 50% complexes predicted by the Coach algorithm
whose densities are more than 0.9, while only 40%

complexes predicted by our method whose densities are
larger than 0.9. Furthermore, our algorithm can discover
more protein complexes whose densities in range [0.6
0.9], which suggests that the density is not the only
manner to characterize the protein complex and others
are necessary and reasonable.

Effects of the parameters
This subsection is devoted to investigate how the para-
meters 7 and f3 used effects the performance. The value
of 7 controls the size of a core, the total number of
cores in the virtual graph, and the connectivity ‘strength’
of the network involved. Therefore, we studied its effect
on the size of the virtual network. Figure 7 shows how
the number of edges in the virtual network changes for
various values of 7. From it, we can see that the size of
the virtual graph decreases dramatically when the value
of 7 increases from 0 to 0.4. Specifically, the size is
approximately 3 x 10* if z = 0.02. The reason is that
when the value of 7 increases, only the edges whose con-
nectivity is strong enough are maintained.

The parameter 8 controls the weights on the edges.
Thus, we study its effect on the accuracy of prediction
in terms of F-measure and coverage rate. Figure 8

Table 3 Selected complexes predicted by our method-Il on DIP data

ID  Match P-value Predicted complexes Function
1 90.5% 544E-44 YBLOO2W YBROO9C YBR154C YDL140C ~ DNA-directed RNA polymerase activity
YDL150W YGLO70C YJRO63W YKL144C
YKRO25W YNLT13W YNRO03C YOR116C
YOR151C YOR207C YOR210W YOR224C
YOR341W YPRO10C YPR110C YPR187W
YPR190C
2 94.4% 8.77E-40 YDL150W YKL144C YKRO25W YNL151C  RNA polymerase activity
YNR0O3C YOR116C YOR207C YPR110C
YBLOO2W YBR154C YDR045C YJRO63W
YNLT13W YOR224C YOR341W YPRO10C
YPR187W YPR190C
3 100% 7.57E-26 YPL138C YDR469W YBR175W YHR119W  histone methyltransferase activity (H3-K4 specific)
YBR258C YAROO3W YKLO18W YLRO15W
4 88.2% 1.49E-20 YBLO93C YBR253W YDR443C YNLO25C  transcription regulator activity
YNL236W YOR140W YBR193C YCRO8TW
YDLO05C YERO22W YGL15TW YGR104C
YHR041C YOLO5TW YOL135C YPLO42C YPL248C
5 100% 2.64E-21 Q0085 YBLO99W YDR298C YDR377W YJR121W proton-transporting ATPase activity, rotational mechanism

YKLO16C YMLO81C-A YPLO78C YPRO20W
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demonstrates that the F-measure decreases, while the
coverage rate increases when 8 increases. A possible
reason is that the size of a maximal clique in the virtual
network decreases when f increases, resulting in many
small cores by dividing the large cores in the virtual
graphs with small 8. As 8 increases, more and more
proteins in the PPI data are covered because the num-
ber of predicted protein complexes increases. For this
reason, the coverage rate keeps increasing. To make a
good balance between the F-measure and coverage rate,
we set § = 0.618.

Robustness analysis

The robustness analysis on the proposed algorithm was
discussed in this subsection. The benchmark networks
adopted here originated from Ref. [51]. In detail, from
the protein complexes annotated in the MIPS database
[52], an interaction network named a test graph is con-
structed by regarding each protein as a vertex and

connecting each pair of nodes in the same complexes.
The test graph has a poor value for assessing the robust-
ness of the algorithms because each protein complex
corresponds to a clique in the test graph. To solve this
problem, the altered graphs are constructed from the
test graph by adding or deleting the edges in various
proportions. For the sake of convenience, the altered
graph is denoted by AG,;,; 4eWhere add and del show
the percentage of added and deleted edges, respectively.

In this experiment, only the MCL and Coach algo-
rithms are selected for a comparison. The reason is that
it is reported that the MCL is the most robust algo-
rithms [51], and the Coach algorithm is the best core-
attachment based method.

The Figure 9(A) shows how the geometric accuracy
fluctuates as the number of edges increases. Increasing
proportions of edges were randomly added to the test
graph from 0% to 100%. Both the MCL and our algo-
rithm are barely affected by the additions of up to 100%
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edges, while the performance of Coach is acceptable for
low values of noise, they change dramatically when the
percentage of added edges increases to 40%. A good rea-
son is that as the percentage of added edges increases,
the added edges connecting to the vertices in different
cliques yield larger complexes(through merging the
small complexes). In this case, the altered graph is not
suitable for correctly extracting the complexes by the
Coach algorithm. However, our algorithm can remove
the noise dramatically because it extracts the protein

x 10

Number of edges in the virtual network

: ©
0 0.1 0.2 0.3 04

parameter 7

Figure 7 Effect of parameter z. The plot of the number of edges
in the virtual network for various values of t
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Figure 8 Effect of parameter 8. The plot of the F-measure and
Coverage rate for different values of f.

complexes in a virtual network, where some of the
added edges are filtered by increasing the value of the
threshold 7.

Figure 9(B) displays the impact of edge addition on
the separation. We can see that both the MCL and our
algorithm have good performances when the percentage
of the added edges increases to 80%, while the perfor-
mance of the Coach algorithm decreases when the per-
centage of added edges increases to 20%. The impacts of
edge removals on the geometric accuracy and separation
are shown in Figure 9(C)(D), respectively. Figure 9(C)
demonstrates that both the MCL and our algorithm out-
perform the Coach algorithm. A possible reason is that,
as more and more edges are deleted, it becomes more
and more difficult to re-obtain the deleted edges. When
the percentage of removed edges is more than 20%, the
virtual network constructed by our algorithm differs
greatly from the original test graph. The general trends
in Figure 9(D) are similar to those displayed in Figure 9
©.

Figure 9 (A-D) are the results on the networks being
either added or removed edges, while Figure 9 (E-H) are
the results on the networks involving both addition and
removal. Figure 9 (E) demonstrates the effect of edge addi-
tion on the altered network from which 40% of the edges
have been deleted previously. From it one can easily draw
a conclusion that, when the addition less than 50%, the
MCL outperforms the Coach and our algorithm, but when
the the addition greater than 50%, both methods outper-
form the MCL. There is a good explanation: since the
Coach and our algorithm are clique-based method, edge
deletion destroys the structure of cliques, decreasing their
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edges removed randomly; (G-H) edge removal from the altered graph with 40% of edges added randomly.

performance; when more and more edges are added, some
of the cliques destroyed previously are recovered, enhan-
cing their performance. Furthermore, these two algorithms
are barely affected by addition that is up to 100%, as the

MCL decreases significantly the edges start to increase
gradually. The values of separation on this type of altered
network are shown in Figure 9 (F), where the MCL is at
its the best performance. However, both the Coach and
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our algorithm are more stable than the MCL. The results
on edge deletion on the altered network from which 40%
of the edges have been added previously are shown in Fig-
ure 9 (G-H), which are similar to those in Figure 9 (E-F).

Conclusions

Protein complexes are key and basic molecular units in
cellular functions and computational approaches to dis-
covering accurately the unknown protein complexes
hidden in the available PPI data are critical need. At
present all these computational algorithms focus on the
roles of proteins without taking into account the roles
of interactions.

In this paper, we investigate the possibility to predict
protein complexes with the roles of edges in PPI net-
works. Firstly, the weak ties phenomenon in the PPI
network is proved by using the concept of bridge. Sec-
ondly, a reliable and virtual PPI network is constructed
making use the relations of topological similarity and
bridgeness. Finally, a core-attachment algorithm is
designed. The experimental results demonstrate that the
roles of edges in biological network is more promising
than the roles of proteins, implying the significant
importance of the roles of interactions.

The possible future research directions are

» Because biological network is a special kind of
social networks, to uncover the social behaviors hid-
den in biological networks and make the most of
them to discover biological problems, such as pro-
tein complex prediction, disease causing genes pre-
diction, are very promising.

+ The discovery of structure-functionality is a hot
and very important topic in bioinformatics. How to
associate the social behaviors including the weak ties
with the functions is challenge and critical since it
provides a deep insight into the biological processes.

Thus, designing effective and efficient methods which
can solve these problems will be very important and
interesting.
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