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Abstract

Background: Metabolic reconstruction is the computational-based process that aims to elucidate the network of
metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed
models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic
methods for solving this problem have been previously developed, there are many situations where manual
curation is still needed.

Results: We introduce a general definition of gap metabolite that allows its detection in a straightforward manner.
Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions
connected through gap metabolites, is proposed. The method has been successfully applied to the curation of
iCG238, the genome-scale metabolic model for the bacterium Blattabacterium cuenoti, obligate endosymbiont of
cockroaches.

Conclusion: We found the proposed approach to be a valuable tool for the curation of genome-scale metabolic
models. The outcome of its application to the genome-scale model B. cuenoti iCG238 is a more accurate model ver-
sion named as B. cuenoti iMP240.
Background
Metabolic reconstruction is the computational-based
process that aims to elucidate the network of metabolites
interconnected through reactions catalyzed by activities
assigned to one or more genes [1-5]. The reconstruction
process begins with the functionally annotated genome of
an organism. Then, the identification of those genes
whose putative products catalyze some biochemical reac-
tion, i.e. gene products with an assigned enzyme commis-
sion number (EC) or transport commission number (TC),
should be done. This relational information can be orga-
nized in the so-called gene-protein-reaction association
tables (GPR) [1]. In a further step GPR tables will be used
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to infer candidate metabolic pathways coded in the organ-
ism’s genome [2].
In order to automate the process of reconstruction of

a target organism’s metabolic network, computational
methods have been previously developed that will yield
a first draft [6-8]. This first draft can be used to formu-
late a mathematical representation of an organism’s me-
tabolism, termed as genome-scale model (GSM). The
Constraint-Based-Modeling (CBM) is an approach that
combines the stoichiometric analysis with optimization
techniques to study genome-scale models [9-14]. The
CBM has been successfully used to predict metabolic cap-
abilities such as growth rates, as well as systems responses
to environmental or genetic perturbations [15-18].
When applying CBM to an initial draft of a metabolic

model, it is usual to find inconsistencies that can have
different causes. In the initial stages of a metabolic recon-
struction, due to annotation errors, as well as the exis-
tences of unknown enzyme functionality, GPR associations
can be incorrectly established. Thus, some reactions may
be not included in the model draft. As a consequence,
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some metabolic pathways will contain gaps that will create
dead-end metabolites [19]. These metabolites appear in the
model as only produced or only consumed by reactions,
and hence will never reach a steady state different than the
trivial, and then they will never participate in a feasible so-
lution. They will in turn block any reaction in which they
are involved. There are two classes of dead-end metabo-
lites: i) Root-Non-Produced metabolites (RNP) i.e. metabo-
lites that are only consumed by system’s reactions, and ii)
Root-Non-Consumed (RNC) that includes those metabo-
lites that are only produced by the network but never
consumed [20].
Detection of RNP and RNC can be conducted by

simply scanning the rows of the stoichiometric matrix.
However, the absence of flow through metabolites RNP
(or RNC) could be propagated downstream (or upstream)
by blocking reactions and thus, additional metabolites
would become gaps (see Figure 1). Those metabolites that
become a gap as a consequence of some RNP metabolite
are termed Downstream-Non-Produced (DNP). In a sym-
metric way, Upstream-Non-Consumed (UNC) metabo-
lites are defined as those metabolites that became a gap as
a consequence of some present RNC metabolite [20]. In
general, the detection of dead-end metabolites and
blocked reactions is referred commonly as the gap find-
ing problem [6,7,19,20].
Model’s gaps can be solved by adding one or more re-

actions that allow connecting a dead-end metabolite
with other metabolites of the network, a process known
as gap-filling [6,20]. In some cases, the incorporated re-
actions can be mapped into some coding gene. However,
there are some situations where even if a set of candi-
date reactions that fill the gaps has been successfully
predicted, it could not be possible to find the genes that
code for these activities. In such cases the reactions are
called orphan reactions. Methods to predict candidate
Figure 1 Description of gap metabolites. A schematic representation w
of missing reactions. Red crosses indicate the absence of some reaction. D
tions, respectively. Yellow and green circles represent gap and non-gap me
a) the absence of a reaction, causes metabolite A to become a Root-Non-P
erating new gap metabolites (Downstream-Non-Produced, DNP) and block
Root-Non-consumed metabolite (RNC) and this effect propagates upstream
(UNC), in a symmetric manner respect to case a).
genes to be assigned to orphan reactions have also been
previously developed [21,22]. Thus, the reconstruction
of metabolic models is an iterative process in which the
CBM plays an important role to detect inconsistencies
that should be resolved or curated in order to improve
model formulation [23].
Automated methods for model curation have been

previously developed (for a comprehensive review the
reader is referred to [24]). In order to solve the gap-
filling problem, an optimization-based method to iden-
tify the minimum number of reaction to be included in
the model has been proposed by different authors
[20,23]. These methods rely in the use of Mixed Integer
Linear Programming (MILP) combined with universal
reaction databases such as KEGG [25], BiGG [26] or
MetaCyc [27]. Other proposed approaches are based on
the use of experimental information to detect inconsist-
encies with model predictions that may suggest errors in
model formulation [28,29].
Even though automated methods for metabolic net-

work curation are of an undoubted help to improve
model formulation, there may be situations where the
manual inspections of a curator are still needed. This is
certainly the case of the reconstruction of networks from
genomes that suffer reductive evolution (e.g. intracellular
bacterial symbionts) and code for minimized metabo-
lisms. During the establishment of symbiosis, metabolic
redundancies with the host can result in the loss of en-
zymatic steps in the endosymbiont network, leading to
the emergence of obligate metabolic complementation.
These shared metabolic abilities take the form of inter-
rupted pathways when the endosymbiotic network is
reconstructed. Thus, the problem of gap-filling is a
complex decision making process where a visual repre-
sentation of the inconsistencies can help to a model’s
curator to understand how gap metabolites and blocked
here the four classes of gap metabolites are shown as a consequence
otted and continuous arrows represent blocked and non-blocked reac-
tabolites, respectively. Metabolites are labeled according to its class. In
roduced metabolite (RNP) and this effect propagates downstream gen-
ed reactions. In b) the absence of reactions consuming H makes it a
causing other metabolites to become Upstream-Non-Consumed
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reactions are related and thus find the nature of these
inconsistencies.
In this paper we present a method that combines the

CBM with an algorithm to compute Connected Compo-
nents over bipartite-graphs. The presented method al-
lows the detection of the isolated sets of blocked and
gap metabolites and the way in which these are inter-
connected in what we have termed unconnected mod-
ules (UM) (see Identification of Unconnected Modules in
section Methods). Then, the analysis of each individual
unconnected module simplifies and clarifies the visual
representation, and hence can be used to decide how
gaps should be filled during the curation of the model.
The availability of accurate GSM is especially relevant

in the case of bacterial obligate (primary) endosymbionts
since it is not possible the culture of these microorgan-
isms and hence there is an intrinsic difficulty for obtain-
ing direct experimental data from the system. In this
case, modeling can serve as an appropriate proxy for func-
tional characterizations. For instance, metabolic modeling
has been successfully used in the case of Buchnera aphidi-
cola (obligate endosymbiont of aphids) to evaluate the role
of the endosymbiont and the host in nitrogen metabolism
[30], in Sodalis glossinidius (facultative endosymbiont of
tse-tse flies) to characterize intermediate steps during the
reduction of the network as a result of the interaction with
the host metabolism [31], and in Blattabacterium cuenoti
(obligate endosymbiont of cockroaches) to better under-
stand the striking conservation of the endosymbiont me-
tabolism along the evolutionary time as well as its putative
role in the nitrogen economy of the system [32]. In this
paper we have used the GSM from B. cuenoti (iCG238) to
test the proposed method of curation. Our study allows
upgrading iCG238 to a more accurate model version
named iMP240, and it can be used as a guide for systems
biology experimental explorations of the interaction be-
tween cockroaches and their endosymbionts.

Methods
Constraint-based modeling
The study of the structural properties of biochemical re-
actions network relies on the analysis of the stoichiomet-
ric matrix [33,34]. Let denote by N the stoichiometric
matrix associated to a certain metabolic network with
m rows and n columns corresponding to the number of
metabolites and reactions, respectively. In the following
I and J will refer to the set of metabolite indexes (rows)
and reaction indexes (columns), respectively. Moreover,
the set of reaction indexes J will be partitioned into two
disjoint subsets: the set JINT which contains the indexes
of internal fluxes, i.e. the biochemical reactions that take
place inside the cell, as well the transport reactions that
operate between the cell and the surrounding medium.
On the other hand, the set JEX contains the indexes of
the exchange fluxes, which are the auxiliary variables
used to represent the rate at which certain metabolites are
consumed or produced by the system [35]. There will be
only one exchange flux per metabolite and these fluxes
will be associated to the metabolites belonging to the
extra-cellular compartment. By convention, the activity of
the exchange fluxes is defined as positive or negative if the
metabolite is produced or consumed by the system, re-
spectively [35].
The CBM approach relays on the use of different kinds

of constraints represented by mathematical equations to
define the so called flux space F, i.e. the set of all flux dis-
tributions compatible with the given constraints [9,36,37].
The steady state condition is imposed over the mass bal-
ance equation of each metabolite of the network yielding
the following homogeneous system of linear equations:

N :v ¼ 0 ð1Þ
where the vector v is a flux distribution compatible with
the steady-state condition. Moreover, lower and upper
bounds are imposed over each reaction to represent add-
itional constraints. For instance, the thermodynamic con-
straints that make some reactions to be irreversible are
represented by setting to zero the lower bound. Besides,
the surrounding environment of a metabolic system can
be modeled by setting bounds over the exchange fluxes.
For example, if a given metabolite is available in the
medium and thus can be consumed by the system, the
lower bound of the corresponding exchange flux should
have a negative value. The lower and upper bounds im-
posed over each flux can be written as the following sys-
tems of linear inequalities:

vlbj ≤ vj ≤ vubj ∀ j� J ð2Þ

where vj is the activity through the flux j, whereas vlbj
and vubj are its lower and upper bounds, respectively.

Together, the homogeneous system of linear equations
(1) and the system of linear inequalities (2) yields the
mathematical representation of the flux space F,
expressed as:

F ¼ v � Rn : N :v ¼ 0; vlbj ≤ vj ≤ vubj ∀j � J
n o

ð3Þ

Blocked reactions
A reaction in a metabolic model is defined as blocked
under a given medium condition if it cannot display a
steady-state flux other than zero:

j � JBlocked⇔vj ¼ 0; ∀v � F ð4Þ
where JBlocked is the set of blocked reaction indexes. This
set can be computed solving a set of linear programs, as
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proposed by Burgard et al. [38]. The approach consists
in calculating the minimum and maximum flux value
through each reaction of the system. When the max-
imum and minimum values found for a given reaction
are both equal to zero, the reaction is said to be blocked
under the defined medium condition. The formulation
of the set of linear programs is the following:

Min=Max : vj ∀ j� J
s:t:
N ⋅v ¼ 0
vlbj ≤ vj ≤ vubj ∀ j� J

ð5Þ

Gap metabolites
Gap metabolites in GSM are defined as those vertexes of
the network through which there can be no steady state
flow [24]. While the detection of RNP and RNC metabo-
lites (see the Introduction for a proper definition) is
straightforward by scanning of each row of the stoichio-
metric matrix N, the case of detecting UNP and DNC
metabolites cannot be accomplished by a simple inspec-
tion of the entries of N [20]. However, based on the def-
inition of blocked reaction (4) we found a way to define
gap metabolites that allow its identification in a straight-
forward manner.
Definition: a metabolite ί ∈ I in a network under

steady-state is a gap if and only if all the reactions in
which its participate (either as reactant or as product)
belongs to the set of blocked reactions JBlocked. This state-
ment implies that there cannot exists a stationary flow
through this metabolite.
Thus, if we name the set of reactions in which a me-

tabolite ί participate as:

σ ið Þ ¼ j � J : Nij ≠ 0
� �

∀i � I ð6Þ
then, the set of gap metabolites IGap⊆ I can be defined
as follows:

i∈IGap⇔σ ið Þ⊆ JBlocked ð7Þ
Hence, the detection of gap metabolites can be accom-

plished by finding the set JBlocked and applying equations
(6) and (7) for each metabolite. The given definition for
a gap metabolite doesn’t make any distinction between
the different classes of gap defined (i.e. RNP, RNC, UNP,
DNC). Although there is no general procedure for the
classification of gap metabolites as RNP, RNC, UNP, or
DNC once they have been found, this is possible in simple
cases. For example, if a gap metabolite ί is involved only in
an irreversible reaction by which it is consumed, or if all
the reactions in which this metabolite is involved are irre-
versible and in all it is consumed, then metabolite will be
a RNP. A similar reasoning can we argued for the sym-
metric case, leading to the identification of a RNC. For
more complex cases, a visual inspection of the underling
“Unconnected Module” (see section: Identification of Un-
connected Modules) may help to the classification.

The coenzyme pseudo-gap problem
In general gap metabolites can be identified using its re-
lation to the set of blocked reactions JBlocked as it was ex-
plained in previous subsection. However, there could be
some special metabolites that are not “gap” under the
definition given by (7). Nevertheless these metabolites
may be the cause that certain reactions get blocked, as
the example depicted in Figure 2 shows. The metabolite
D is not a gap but the mass balances equation for D* im-
plies that v5 is equal to v6, and the mass balance equa-
tion for D implies v4 + v6 = v5. As a consequence of
these relations v4 is restricted to zero, i.e. v4 is a blocked
reaction. This effect propagates downstream to v3, v2
and v1. This is why we name D as a pseudo-gap metab-
olite. In order to unblock v4, which in term will unblock
v1, v2 and v3, there must be added a sink for D or D*.
These kinds of situations may take place when the bio-

synthetic pathway of a coenzyme is present in a model,
but there are no fluxes draining or degrading the coen-
zyme produced by this pathway. These metabolites may
be involved in conserved moieties, and in such cases
they will be consumed and regenerated in a cyclic man-
ner. As a consequence they could not be detected as gap
metabolites because they will participate in at least two
active reactions. However, if the biosynthetic pathway
for a coenzyme is included in a metabolic model, the net
production of a coenzyme will not occur under steady
state unless some flux consumes it. Hence, the reactions
involved in the biosynthesis pathway may become blocked.
A common approach to solve this problem is to include
the coenzyme-like metabolite into the biomass equation
or alternatively to introduce an exchange flux that can
drain the metabolite out of the system. Either of these two
situations is equivalent to the addition of the above-
mentioned sink.
The way to detect the pseudo-gap metabolites may be

summarized as follow. When an UM overlap with the
biosynthetic pathway of a certain cofactor, two different
situations can be found: the cofactor is included in the
UM as a gap or it is not. If it is a gap, the cofactor must
be included in the biomass equation in order to solve
the UM (see “UM3 - Pyridoxal 5-phosphate biosynthetic
pathway” under section Results and discussion as en ex-
ample). If the cofactor is not included in the UM (i.e. is
not a gap), then it is quite probable that the cofactor
may be involved in a conservation relation which con-
nect the cofactor to active reactions and for this reason
is not detected as a gap under the definition given by
equation (7). However, even not detected as gap, the co-
factor could be the underlying cause that the UM become



Figure 2 Pseudo-gap metabolites. Schematic representation of a situation where there is a metabolite not detected as gap (metabolite D)
because of its participation in non-blocked reactions. However, the set of non-blocked reactions in which it participates forms a loop and there is
no net production/consumption of the metabolite. As a consequence, the pathway of synthesis of D becomes blocked. The color and line codes
are the same as in Figure 1.
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blocked, and for this reason was termed the cofactor a
“pseudo-gap” as has been pointed out at the beginning of
this section (as an example, see “UM1 - Menaquinol bio-
synthetic pathway”, under section Results and discussion).
The conservation relations can be detected by the analysis
of the conserved moieties, which were calculated as previ-
ously described [33]. Finally, by adding the corresponding
cofactor to the biomass equation the UM can be solved.

Identification of unconnected modules (UM)
When analyzing the set of blocked reactions and gap
metabolites of a metabolic model, it is common to find
relations between both sets due to the fact that blocked
reactions may be connected with other blocked reactions
through gap metabolite. In some cases, blocked reac-
tions are directly connected to a RNP/RNC metabolite.
However, this may be not the case of other blocked reac-
tions that may be not linked directly to a RNP or RNC
metabolite. For example, as it can be seen in Figure 1a,
reaction v3, although blocked, is not directly connected
to a RNP metabolite (A), but indirectly through metabol-
ite through a set DNC metabolites (B and C) and other
blocked reactions (v1 and v2). Similarly occurs in the
symmetric case (Figure 1b). As a consequence of these
relations, it is possible to systematically establish how
the blocked reactions are connected through the gap
metabolites.
Any metabolic network can be represented as a di-

rected bipartite graph by considering the sets of vertex
V = IUJ [39,40]. Then, a directed edge or arc will exist
between a metabolite and a reaction if the metabolite
participates in the reaction. The direction of the arc will
be incident to the reaction if the metabolite is a reactant
and incident to the metabolite if it is a product. In the
following, the graph associated to a metabolic network
will be referred as the metabolic graph.
Once the metabolic graph is constructed it is possible

to consider any possible sub-graph by selecting a pair of
subsets I'⊆ I and J'⊆ J of metabolites and reactions re-
spectively. In particular, it is possible to consider the sub-
graph defined by the subset of vertex V = IGapUJBlocked.
This sub-graph will contain the relation that exists
between gap metabolites and blocked reactions. Moreover,
the set of connected components can be computed over
this graph. In this context, each connected component
can be interpreted as a “module” of the metabolism that
becomes inactive or unconnected, possibly as a conse-
quence of model inconsistencies, such as the presences of
a set of RNP/RNC metabolites. For this reason the set of
connected component will be referred as an Unconnected
Modules (UM).
In simple cases, the reason that causes a certain UM

to be unconnected from the rest of the network may be
found by visual inspection of the graph representing the
UM. In such cases connectivity restoring of the RNC
and RNP metabolites present in the UM may, in general,
solve the problem of the UNC and DNP metabolites.
The set of elementary operations that can be applied to
solve UMs has been discussed by Kumar and collabora-
tors [20], and it includes: addition of biochemical reac-
tions of transport, incorporation of exchange fluxes and
relaxation of irreversibility constraint of some reactions.
More complex situations may include cases such as the
pseudo-gap problem described in the previous section.

Flux balance analysis
The Flux Balance Analysis (FBA) is an approach that
combines the description of the flux space F defined by
equation (3) with optimization techniques to find a flux
distribution v that maximizes the growth rate [17,37,41].
This problem can formulated as a linear program and
can be solved with standard techniques of Linear Pro-
gramming (LP).

Max : vBiomass

s:t:
N ⋅v ¼ 0
vlbj ≤ vj ≤ vubj ∀ j� J

ð8Þ

where the flux vBiomass represents the growth rate of the
organism. This flux, also refereed as the biomass equa-
tion, includes all the metabolites that are biomass com-
ponents, in its specific proportions [42,43].
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In-silico knockout experiments
The fragility analysis of a network was performed by simu-
lating knockout experiments for each metabolic gene
included in a GSM. An in-silico knockout experiment for
a given gene consists in bound to zero the flux for each re-
action coded by the gene, which are inferred through the
GRP association table. After so, FBA is used to find the
maximal value of the biomass reaction under the genetic
perturbation. If the optimal value of biomass reaction is
lower than a certain threshold, the knockout is said to be
lethal (i.e. essential), otherwise the gene is not essential.
The procedure is performed over all the genes in the
model.

Minimal medium prediction
The minimal medium may be defined as the smaller set
of metabolites that should be present in the medium
condition in order a feasible flux distribution v to exist,
with a biomass production rate greater than zero. The
minimal medium was calculated by solving a MILP algo-
rithm as previously described [44-46]. The MILP algo-
rithm is the following:

Min :
X
j � JEX

yj

s:t:
N ⋅v ¼ 0
vlbj ≤ vj ≤ vubj ∀ j� J INT
vBiomass ≥ vlbBiomass
vlbj yj ≤ vj ∀ j� JEX
yj � 0; 1f g ∀ j� JEX

ð9Þ

The algorithm requires the incorporation of a set of
binary yj variables, one for each exchange flux j ϵ JEX.
Moreover, a set of constraints that relates each binary
variable with its corresponding exchanges flux should be
incorporated to the problem. Then, whenever a binary
variable takes the zero value, the corresponding ex-
change flux is constrained to take a value greater or
equal than zero. Additionally, the lower bound corre-
sponding to the biomass production flux should be set
to a cutoff value greater than zero in order to guarantee
a positive growth rate. Finally, the optimization target is
defined in such a way that minimizes the number of ac-
tive exchange fluxes with a negative value. Due to the
fact that each exchange flux is related with one extracel-
lular metabolite this is equivalent to find the minimal set
of metabolites that the system must consume in order to
produce a biomass flux greater than zero.

Detection of reaction subsets
A Reaction Subsets (RS) [47,48] or Full Coupling Sets
[38] in a stoichiometric network is a group of reactions
that operate together in fixed flux proportions for any
flux distribution. Due to the fact that the relations be-
tween enzymes and reactions are not always biunivocal,
the reaction subset does not always match the concept
of Enzyme Subset previously introduce by Pfeiffer et al.
[49], and for this reason the term Reaction Subset seams
more appropriate [48]. The RSs are structural invariant
of network and for that they are independent on the kin-
etic parameters of the system. Moreover, they shed valu-
able information that may help to understand how the
network is regulated [50].For these reasons the concept
RS is important for the analysis of metabolic networks.
In order to compute reaction subset the following pre-

processing steps were applied to the network. First, rows
and columns corresponding to gap metabolites and blocked
reaction respectively were removed from the stoichiometric
matrix. As it was previously described [38], the constant
biomass composition imposed by the stoichiometry of the
biomass equation was relaxed by removing the correspond-
ing column, while allowing each biomass component to be
drained from the system in an independent way. Then, the
identification of RS was done by using the algorithm de-
scribed in [49].

Computational tools
Constraint-Based analysis was performed using the python-
based toolbox COBRApy [51]. LP and MILP problems
were solved using the Gurobi Solver [52] acceded through
COBRApy. Identification of conservation relations was
done by computation the set of extreme rays using the
Polco package [53]. Identification of RS was done by
using an implementation based on Python [54,55] of the
algorithm described in [49]. The detection of the con-
nected components of a graph was done using the im-
plementation of the algorithm available in the iGraph
library [56]. Graphs were drawn using the yEd Graph
Editor [57]. All computation was done on a desktop
computer with an Intel® Core™ i7 CPU 950 processor,
with 23.5 GiB, running under Fedora 17 Linux OS.

Results and discussion
The first step in the analysis of the GSM of B. cuenoti
iCG238 was to find the sets JBlocked and IGap of blocked
reactions and gap metabolites, respectively. The results
showed that 69 reactions over a total of 419 (~16%) are
blocked under any medium condition. Using this informa-
tion a set of 58 metabolites over a total of 364 (~15%)
were detected as gaps. A bipartite graph representation of
the metabolic network was constructed, and the sub-
graph defined by the subset of vertex IGap U JBlocked was
selected (see Identification of Unconnected Modules in
section Methods). Computation of connected components
over this sub-graph allows identifying 10 UM. After so,
each gap metabolite was classified in one of the four cat-
egories: RNP, RNC, UNC and DNP. A description of each



Table 1 Description of UMs

UM Related to subsystem No. reactions No. metabolites RNP RNC

1 Menaquinol Biosynthesis 23 21 Mev, 2ombzl 2ommbl

2 Nucleotide Salvage Pathway 22 15 - Hxan, xan, r1p, 2dr1p, thym, ura

3 Pyridoxal 5-phosphate Biosynthesis 7 6 - 4hthr

4 Lipopolysaccharide Biosynthesis 4 4 - u3hga

5 Siroheme Biosynthesis 4 4 - uppg3

6 Arginine and Proline Metabolism 2 2 - 1pyr5c

7 Transport, Extracellular (Fe2+) 2 2 - Fe2+

8 Transport, Extracellular (K+) 2 2 - K+

9 Superoxide Dismutase 1 1 O2
– -

10 Acyl-Carrier Protein Synthase 1 1 apoACP -

Total 68 58 8 4

UM identified in B. cuenoti iCG238 GSM. Metabolite abbreviations: Mev (mevalonate), 2ombzl (2-Octaprenyl-6-methoxy-1,4-benzoquinol), 2ommbl (2-Octaprenyl-3-
methyl-6-methoxy-1,4-benzoquinol), hxan (Hypoxanthine), xan (Xanthine), r1p (Ribose-1-phosphate), 2dr1p (2-deoxy-D-Ribose-1-phosphate, thym (Thymine), ura
(Uracil) 1pyr5c (1-Pyrroline-5-carboxylate), 4hthr (4-Hydroxy-L-threonine), u3hga (UDP-3-O-(3-hydroxytetradecanoyl)-D-glucosamine), uppg3 (Uroporphyrinogen),
apoACP (apoprotein [acyl carrier protein]). The relation between an UM and a subsystem was established according to the most frequent subsystem associated to
the reactions of the UM.
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different UM found in iCG238 is summarized in Table 1,
which was sorted according to the number of reactions in-
cluded in each UM.
When analyzing the reactions participation of each

UM, it was found that in many of the cases the set of
reactions belonging to an UM overlapped with known
biochemical subsystems (or metabolic pathways). For
example, all the reaction included in UM1 belongs to
the menaquinol biosynthetic pathway. It is worth to note
that in some cases UMs could be composed by an iso-
lated reaction as the cases of UM9 and UM10. After the
identification of all UM applying the proposed approach,
each sub-graph was drawn independently. Visual inspec-
tion of each graph was done to detect possible inconsist-
encies in the network formulation that may help to carry
out the manual curation of a GSM.

UM1 - Menaquinol biosynthetic pathway
The biggest UM found in the metabolic model (UM1)
was first analyzed. Figure 3 shows the graph that repre-
sents the UM. A visual inspection of these Figure shows
that UM1 includes all the reactions and metabolite that
conforms the menaquinol biosynthetic pathway. The
Figure also shows that from the 21 gap metabolites in-
cluded in the UM, two are RNP metabolites (mevalonate,
2-Octaprenyl-6-methoxy-1,4-benzoquinol), and one is
an RNC metabolite (2-Octaprenyl-3-methyl-6-methoxy-1,
4-benzoquinol), while the remaining metabolites are then
upstream/downstream gap metabolites.
Mevalonate is a precursor for the biosynthesis of isopen-

tenyl diphosphate that in turn is involved in the biosyn-
thetic pathway of many cofactors such as menaquinol and
2-demetyl-menaquinol. An inspection of the current gen-
ome annotation of B. cuenoti [58] was done to look for
candidate genes coding for enzymes belonging to the
mevalonate biosynthetic pathway. However, none of those
genes were identified indicating a plausible partial loss of
the mevalonate biosynthetic pathway. As a consequence
of this putative lost trait, mevalonate should be hypothet-
ically imported from the environment (i.e. the insect host),
a situation that would suggest a new case of metabolic
complementation between the bacterial endosymbiont
and its host. In favor of our hypothesis we point out that
the mevalonate pathway plays a key role in insect metab-
olism as the precursor of juvenile hormone (JH) and it is
active in the fat body of B. germanica ([59] and references
therein). Indirect evidence of the ability of mevalonate to
diffuse and reach the endosymbiont is given by feeding ex-
periments using mevalonate as a precursor of JH synthesis
in the corpora allata ([59] and references therein).
Moreover, the locus tag BLBBGE_110 has been anno-

tated as a homolog to ubiE [58], which codes for an en-
zyme, a C-methyltransferase, that catalyzes reactions in
both ubiquinone (Q) and menaquinone (MK) biosyn-
thesis [60]. In Q biosynthesis, UbiE catalyzes the con-
version of 2-octaprenyl-6-methoxy-1,4-benzoquinone to
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone (EC
2.1.1.201). In MK biosynthesis, UbiE catalyzes the con-
version of demethylmenaquinone to menaquinone (EC
2.1.1.163). While the genome of Blattabacterium has pu-
tative genes that code for the remaining activities for the
MK biosynthesis, it has not any other annotated gene that
accounts for the activities of the Q biosynthesis. As a con-
sequence the activity EC 2.1.1.201 has no biological mean-
ing in the metabolic network of B. cuenoti and for that
reason it should not be included in the model.
Assuming a case of metabolic complementation be-

tween the bacteria and its host where mevalonate is a



Figure 3 UM1 scheme. Schematic representation of the biggest UM found in B. cuenoti iCG238 model, which includes all the reactions
belonging to the Menaquinol Biosynthetic Pathway. Metabolites are represented by name labels and colored accordingly to its category
(yellow for RNP and RNC; black for DNP and UNC); reactions are represented as squares with its associated EC number.
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metabolite supplied by the host, a transport flux that
allow the uptake of mevalonate by the cell was incorpo-
rated to the model. After so UM where recomputed just
to find out that UM1 was still non-functional. A new in-
spection of the graph showed that there were two “dead
end” reactions (EC 2.5.1.31 and EC 3.3.1.1) for which no
products were included as RNC metabolites. A closer in-
spection of these reactions showed the following: reac-
tion EC 2.5.1.31 produces undecaprenyl diphosphate, a
metabolite that works as a coenzyme in the biosynthesis
of murein, whereas reaction EC 3.3.1.1 is the last step in
the biosynthesis of menaquinol, which is a known coen-
zyme that operates as an electron carrier. As it is ex-
plained in section Methods (The coenzyme pseudo-gap
problem), both metabolites were then included in the
biomass equation. After so, UM1 was completely solved,
meaning that all reactions got unblocked (Additional
file 1: Figure S1).

UM2 - Nucleotide salvage pathway
In this case, the set of 22 reactions contained in the UM
belongs to the nucleotide salvage pathway. The set of
genes coding for these activities was analyzed and it was
found that 12 of the reactions are orphans, i.e. they do
not have an associated coding gene (see Figure 4). The
remaining 10 reactions were grouped according to its cod-
ing gene and this showed that 3 genes code these activities
in the following way: seven reactions, that correspond to
the activity 2.4.2.1, are assigned to gene BLBBGE_377
Figure 4 UM2 scheme. Schematic representation of the UM2 that corresp
are represented as in Figure 1. However, in this case the reactions with no
represented with rounded rectangles and highlighted in yellow.
[GenBank: CP001487], annotated as purine-nucleoside
phosphorylase; two reactions defined by the activities EC
3.1.5.1 are associated to gene BLBBGE_612 [GenBank:
CP001487]; finally, the activity EC 3.5.4.1 is assigned to
the gene BLBBGE_353 [GenBank: CP001487]. Due to the
great number of orphan reactions contained in UM2 and
based on the fact that all of these reactions are predicted
as blocked, the first step to analyze this UM was to re-
move its orphan reactions. After so, the set of UMs were
recalculated to evaluate the impact of these changes. It
was found that the UM splits into two UMs: one of them
formed by all the reactions associated with the activities
EC 2.4.2.1 together with the two reactions associated with
activity EC 3.1.5.1; the other one was composed by the
isolated reaction EC 3.5.4.1. In both situations, most of
the metabolites involved in the UMs were classified as
RNP or RNC (Additional file 1: Figure S2b).
With the purpose of evaluating the functional assign-

ment of these three genes, a close inspection of the gen-
ome annotation was done. First, it was found that the
annotation of BLBBGE_612 [GenBank: CP001487] does
not have strong evidence supporting that this gene code
for the activity EC 3.1.5.1. Thus, considering the lack of
information supporting the association between the gene
and the activity and taking into account that the model
predicts that both reactions associated with activity EC
3.1.5.1 are blocked, it is more plausible to assume that
the activity does not take place in the metabolism of the
endosymbiont. Second, the association of the enzyme
onds to the Nucleotide Salvage Pathway. Reactions and metabolites
gene association (i.e. orphan reactions), or wrong EC assignations, are
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activities EC 2.4.2.1 and EC 3.1.5.1 to genes
BLBBGE_377 and BLBBGE_353 [GenBank: CP001487],
respectively, is supported by the genome annotation.
However, the activity EC 2.4.2.1 appears to have a broad
substrate specificity and seven different reactions associ-
ated with this activity are included in model iCG238, all of
them predicted to be blocked because their direct connec-
tion to an RNP, an RNC or to both. In the case of the ac-
tivity EC 3.1.5.1 the reaction becomes isolated being one
of its substrates and one of its products a RNP and a RNC
metabolites, respectively. Due to the complexity of this
situation and in the absence of experimental evidence that
could help to solve these metabolic puzzles it was not pos-
sible to find the role of these activities in the metabolism
of the bacterium, and thus the set of genes with its associ-
ated activities were excluded from the model until new ex-
perimental data shed some light over this problem.

UM3 - Pyridoxal 5-phosphate biosynthetic pathway
The seven reactions involved in this sub-graph corres-
pond to the complete Pyridoxal-5-phosphate pathway
(Additional file 1: Figure S3). Pyridoxal-5-phosphate,
also called Vitamin B6, functions as a cofactor of differ-
ent enzymes involved, among others, in transamination
reactions required for the synthesis and catabolism of
amino acids. Due to its importance in metabolism, this
metabolite was included in the biomass equation in the
same way that it has been done with other cofactors and
coenzymes. As a result all the reactions in the UM be-
come unblocked. It is worth to note that animals, in par-
ticular insects, do not possess any biosynthetic pathway
for pyridoxal-5-phosphate, and for this reason they need
to take it from their diet in order to survive [61]. As a
consequence B. cuenoti may provide its host with this
metabolite, suggesting another case of possible metabolic
complementation.

UM4 - Lipopolysaccharide biosynthetic pathway
The UM4 is composed by a linear chain of four reac-
tions that are related to the biosynthetic pathways of
different membrane lipids. The first two reactions are
involved in the palmitate biosynthetic pathway. However,
these reactions are not biochemically defined, but they
are in turn the condensation of a set of reactions. For
example, the first reaction labeled as C120SN is the net
sum of 19 activities that produce dodecanoyl-ACP from
acetoacetyl-ACP. Moreover, the reaction KAS16 is also
the condensation of the activities EC 2.3.1.41 and EC
1.1.1.100 (Additional file 1: Figure S4). The other two re-
actions of the UM are the first and second steps of the
Lipid IVA biosynthetic pathway. UM4 was reformulated
by decomposing the reactions C120SN and KAS16 in
its corresponding activities. After so, the structure of
the UM was analyzed to find the following. First, the
activities EC 4.2.1.58 and EC 4.2.1.59, seem to be orphan
in ICG238. Second, the activities assigned to the Lipid
IVA biosynthetic pathway were all orphan except for the
activity EC 3.5.1.108, which was assigned to the gene
BLBBGE_037 [GenBank: CP001487]. This scenario sug-
gests that this pathway may be absent, and thus it could
be the consequences of an error in the annotation of
BLBBGE_037 [GenBank: CP001487]. Indeed, it was found
that the set of ortholog genes identified in the genome of
other sequenced genomes from diverse B. cuenoti strains
have been annotated as coding for the activities EC
4.2.1.58 and EC 4.2.1.59. As a consequence, the annotated
activity of BLBBGE_037 [GenBank: CP001487] was chan-
ged from EC 3.5.1.108 to EC 4.2.1.58 and EC 4.2.1.59. The
remaining orphan activity present in the Lipid IVA path-
way was also removed from the model because it is as-
sumed that this pathway is not present in the metabolism
of B. cuenoti.

UM5 - Siroheme biosynthetic pathway
A linear chain of four reactions composes the UM5,
where the last reaction produces uroporphyrinogen III,
which was found to be a RNC (see Table 1). This metab-
olite acts as substrate in the biosynthesis of siroheme, a
prosthetic group which catalyzes the reduction of sulfite
to sulfide and of nitrite to ammonia in the assimilation
and dissimilation of sulfur and nitrogen compounds [62].
After an inspection of B. cuenoti genome annotation,

it was found that all the coding genes of the biosynthetic
pathway of siroheme are present. However, they had not
been previously included in the metabolic model. The
pathway consists in four reactions (arranged in a linear
pathway) coded by two genes: BLBBGE_281 [GenBank:
CP001487] that codes the enzyme with activity EC
1.3.1.76 and the gene BLBBGE_278 [GenBank: CP001487]
which codes an enzyme that catalyzes activities EC
2.1.1.107 and EC 4.99.1.4.
Since siroheme is an important cofactor involved in

sulfur and nitrogen metabolism, the cell would have to
be able to maintain certain pool of this cofactor. Hence,
during the bacterial growth phase, the organism will need
some production of siroheme. In order to take into ac-
count this fact, siroheme was included into the biomass
equation. After including this modification to the model,
FBA was applied to find a metabolic state that maximizes
biomass production. As expected, it was found that the
four reactions included in UM5 and the four new reac-
tions added to the model showed non-zero flux under op-
timal state (Additional file 1: Figure S5).

UM6 - Proline biosynthetic pathway
In this case two reactions were found: N-acetylornithine
deacetylase coded by gene BLBBG_320 (with no corre-
sponding EC number) and L-glutamate 5-semialdehyde
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dehydratase annotated to be spontaneous. Both reactions
were annotated as belonging to the proline biosynthetic
pathway. In this scenario suggest that the pathway only
lacks the last reaction step in order to be able to pro-
duce proline (Additional file 1: Figure S7). However a
closer look to the annotation of gene BLBBG_320
shows that it has been assigned to code the following 3
activities:

1. N-Acetyl-L-glutamate 5-semialdehyde + H2O→
Acetate + L-Glutamate 5-semialdehyde

2. N-acetyl-L-ornithine + H2O→ L-ornithine + acetate
3. N-succinyl-L,L-2,6-diaminopimelate + H2O→ L,L-

diaminopimelate + succinate

Reaction (1) could not be found in the BRENDA data-
base. However it was found as an entry in BiGG data-
base [26]. For these reason it is not clear whereas the
reaction has been biochemically characterized or not. In
addition, experimental results show that proline is the
most abundant amino acid in the cockroach’s hemolymph
[63] supporting the hypothesis that proline is provided by
the host. As a consequence, considering UM6 as an anno-
tation error seems a more plausible hypothesis and thus
these activities were not included in the new version of
the metabolic model.

UM7–UM10 - The case of isolated reactions
In the cases of UM7 and UM8, both of them correspond
to transport reactions associated to two different ions:
Fe2+ and Mg2+ and, the associated exchange fluxes. Both
ions are included in the biomass equation as described
by other authors [19,42] and in this way both UMs got
unblocked (Additional file 1: Figure S6). The isolated
reaction that defines UM9 is superoxide dismutase (EC
1.15.1.1), a reaction that together with the activity EC
1.11.1.6 works as a detoxification pathway against free
radicals such as superoxide and hydrogen peroxide
(Additional file 1: Figure S7b). Both activities have an
associated coding gene and there is also experimental
information suggesting the aerobic character of B. cue-
noti [32]. Taking together these facts it is expected that
superoxide dismutase plays an important role in the
metabolism of the endosymbiont. The graph analysis
showed the superoxide as a RNP metabolite. The ex-
planation of the previous finding rely in the fact that the
processes of free radical formation, e.g. as by product of
aerobic respiration, is out of the scope of the model and
hence the model does not include any reaction produ-
cing superoxide.
UM10 is also a case of an isolated reaction (EC 2.7.8.7)

which catalyzes the activation of the apoprotein into
acyl-carrier-protein (ACP), been this product a highly con-
served carrier of acyl intermediates, important for fatty
acid synthesis (Additional file 1: Figure S7c). The process
of protein biosynthesis is not included in the metabolic
model of B. cuenoti (neither the DNA nor RNA biosyn-
thesis) and for that reason the model doesn’t include any
reaction producing the apoprotein. As a consequence, the
apoprotein becomes a RNP metabolite that blocks the ac-
tivity EC 2.7.8.7. As in the case of UM9, some metabolite
(e.g. the apoprotein) is produced by a metabolic process
that is out of the scope of the model and thus appears as a
dead-end.

Model update
The curation process described in the previous section
resulted in the removal of 6 genes associated to 6 reac-
tions from iCG238 and the addition of 8 new genes corre-
sponding to a total of 9 reactions. Thus, the new model
version has two more genes (240) and for this reason has
been named as iMP240. Moreover, the reassignment and
the inclusion of activities as well as the removal of orphan
activities lead to elimination of 73 reactions (71 reactions
plus 2 exchange fluxes) from iCG238 and the inclusion of
59 new reactions (56 reactions plus 3 exchange fluxes) in
iMP240 (see Additional file 2). Since no experimental data
was available for Blattabacterium Bge, chemical compos-
ition of E. coli, adapted from [19], was used. In particular,
the stoichiometric coefficients of the new cofactor in-
cluded to the biomass of iMP240, were those found in
E. coli model iJO1366. Even if Blattabacterium and E. coli
are phylogenetically very distant organisms, it is worth to
note that these coefficients are approximations of the
order of magnitude meant to capture the needs of an or-
ganism during growth in a qualitatively fashion. For a de-
tailed comparison between both models see Additional
file 3.

Comparative analysis of the reaction subsets
The curation process involved addition and removal of
reaction and metabolites as well as changes in the formu-
lation of the biomass equation. These changes affected the
stoichiometric matrix, and then resulted in different struc-
tural properties of the network. In particular, we have ana-
lyzed the organization of the Reaction Subsets (RS).
Table 2 summarizes the number of RS identified for

the two models, as well the number of reaction within
each RS. The Jaccard index was used as a measure of simi-
larity between the RS from the two models. This index
was calculated for each pair of RS as the cardinality of the
intersection over the cardinality of the union between
both RSs. Thus its value is bounded between 0 and 1. The
higher the index value, the higher is the number of reac-
tion shared by both RS.
The major difference found in the reorganization was

the presence of a RS composed by 19 reactions present in
iMP240 but not found in iCG238. This difference is due



Table 2 Comparison of RS

No. reactions in RS iMP240 iCG238 J1.0 J.75

2 27 28 21 –

3 8 6 3 1 (+1)

4 2 4 1 –

5 4 3 2 –

6 3 3 2 –

7 3 1 1 1 (+1)

8 – 1 – –

9 4 3 3 –

10 1 1 – 1 (+1)

11 – 1 – –

13 1 – – –

17 – 1 – –

18 1 – – 1 (−1)

20 1 – – –

The first column indicates the number of reactions that belong to a RS. The
second and third columns indicate how many RS with a given number of
reaction are in model iMP240 and iCG238, respectively. The fourth column
shows how many RS pairs are equal in both models and for a given number
of reactions. In the last columns, the number out of the parenthesis indicate
how many RS with a Jaccard index greater than 0.75 have been found, taking
as the reference point the model iMP240. The number in parenthesis indicates
the difference of reactions between a pair of RS in the following way: a
positive number means that the RS in iCG238 has this number of additional
reactions whereas a negative indicate the opposite.

Table 3 Minimal medium

Medium components iMP240 iCG238

Thiamin Required Required

Nicotinate Required Required

Sodium Required Required

L-Glutamine Required Required

Sulfate Required Required

(R)-Pantothenate Required Required

Phosphate Required Required

L-Asparagine Required Required

L-Proline Required Required

Glycine Required Required

O2 Required Required

(S)-Dihydroorotate – Required

(R)-Mevalonate Required –

Glycerol Required –

Porphobilinogen Required –

Fe2+ Required –

K+ Required –

Mg2+ Required –

Comparative table showing the in-silico predicted minimal medium for the
new version model iMP240 and previous version iCG238.
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to the fact that model iCG238 has all these 19 reactions
condensed in a single step (Additional file 1: Figure S4).
This is also the case of both the RS that contains 13 reac-
tions and one of the RS composed by 7 reactions founded
in iMP240. Moreover, there is another RS of 7 reactions
only present in iMP240 that corresponds to the Pyridoxal
Biosynthetic Pathway. This pathway was blocked in
iCG238, and hence cannot be detected as an RS. Add-
itionally, there are three RS almost equal in both models,
but differing in only one reaction. For example, the RS of
18 reactions in iMP240 corresponds to the RS present in
iCG238 that contains 17 reactions. Despite the differences
described above, no major changes were found in the or-
ganizations of RS between both models.

Comparison of minimal medium
The in-silico minimal set of compounds needed for the
endosymbiont in order to produce all biomass compo-
nents was predicted for both model versions (iCG238
and iMP240), using an optimization algorithm (see Min-
imal Medium Prediction in Methods section). Table 3
shows the results. As it can be seen, all the metabolites
included in the minimal medium predicted for model
iCG238 are included in the minimal medium predicted
for iMP240, except for (S)-Dihydroorotate. This metab-
olite is a precursor in the biosynthesis of pyrimidines.
The reason for this difference is that iCG238 did not
include the activity EC 3.5.2.3, which catalyzes the conver-
sion of N-carbamoyl-L-aspartate into (S)-Dihydroorotate,
and thus the model predicts that (S)-Dihydroorotate
should be uptaken from an external source. The activity
EC 3.5.2.3 has been found to be coded by the gene
BLBBGE_317 [GenBank: CP001487], and its inclusion in
the new model predicts that (S)-Dihydroorotate can be
produced by the metabolism of the endosymbiont.
The predictions using the model iMP240 also suggest

six new compounds that need to be present in the
medium in order for the organism to be able to grow.
These sets of metabolites include: i) mevalonate, which
is needed to synthesize menaquinol and 2-demetyl-
menaquinol; ii) glycerol, which is phosphorylated by the
activity EC 2.7.1.30, and used in the biosynthesis of phos-
phatidylglycerol species. In model iGC238 glycerol-3-
phosphate is produced from dihydroxyacetonephosphate
through the reaction EC 1.1.5.3 operating in reverse sense.
However, it was not possible to found any evidence
suggesting that the reaction EC 1.1.5.3 could operate in a
reversible manner. Hence, if the reaction is considered
as irreversible, then the cell cannot produce glycerol-3-
phosphate. Then glycerol should be uptaken from the
medium and phosphorylated inside the cell. iii) Porpho-
bilinogen that is converted into hydroxymethylbilane,
the first precursor in the synthesis of siroheme, which
in turn requires Fe2+; iv) the case of K+ and Mg2+ are
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trivial: these ions become required in the minimal
medium after their inclusion into the biomass equation.

Network fragility
The set of essential metabolic genes were computed by
an in-silico analysis of the model iMP240. These results
were then compared with the set of essential genes pre-
viously predicted for model iCG238 [32]. Figure 5 sum-
marizes the results of the comparative analysis between
both models. The set of 172 genes (~72.3%) predicted as
essential in iCG238 remains as essential in iMP240. In
addition, a set of 30 genes was predicted as essential in
iMP240, resulting in total of 202 metabolic genes pre-
dicted as essential (~84%). As it is depicted in Figure 5,
25 of those 30 genes were present in the previous ver-
sion of the model (iCG238), while the remaining 5 are
new genes.
This increase in the predicted network fragility ob-

tained after model curation is explained, in greater ex-
tent, due to the addition of new components to the
biomass equation. For example, the genes coding for the
biosynthetic pathway of menaquinol where predicted as
non-essential in model iCG238 because the cofactor was
not included in the biomass equation. However, the co-
factor must be essential to the organism, due to its strict
aerobiosis, and then it should be included as a biomass
component. As a consequence most of the genes coding
the biosynthetic pathway of menaquinol are predicted as
essential in the new scenario. Moreover, the 5 new genes
included in iMP240 that are predicted as essentials, in-
clude two genes that code for three steps in the biosyn-
thesis of siroheme, two genes that code for the transport
of nicotinamide and Mg+2, and the gene that encode
Ftsl, an essential cell division protein.
Figure 5 Differences between models iCG238 and iMP240. Venn diagra
iMP240. The sets drawn with a thin continuous line represents the genes in
the set of genes present in both models, i.e. the intersection. Finally, sets d
in-silico simulations over each model.
Conclusion
In this paper we have introduced a general definition of
gap metabolite that allows its detection in a straightfor-
ward manner, even for the cases of upstream-non-
produced and downstream-non-consumed metabolites.
Moreover, a method for the detection of Unconnected
Modules (UM), defined as isolated sets of blocked reac-
tions connected through gap metabolites have been pro-
posed. The visual representation of UM can shed useful
information that may help the model’s curator to solve
inconsistencies. Furthermore, the present approach can
be combined with existing tools in order to find a set of
model modifications that solves the inconsistencies and
thus improves model’s predictions.
This method was applied to the curation of the GSM

of the cockroach endosymbiont B. cuenoti iCG238. In
this way every blocked reaction detected in the model
was successfully unblocked or alternatively removed, in
those cases where there was not enough information
supporting the existence of such reactions. As an ex-
ample, those reactions found as blocked and with no
gene association were excluded. Moreover, new reactions
were added to the model based on the careful revision
of the genome annotation that allows the identification of
gene functions previously not included, as well as the in-
corporation of new compounds into the biomass equation.
As a consequence of model curation a new GSM version
of B. cuenoti, named as iMP240, is proposed. The impact
of these modifications, with respect to some structural
properties of the networks, was analyzed by performing
different in-silico analysis over each model’s version.
As a final commentary, the method here presented

can be considered as a semi-automatic approach that
has the advantage of allowing a quick representation of
m representing the main differences between models iCG238 and
cluded in each model. The set delimited by thick solid line represents
efined by dotted lines indicate genes predicted as essential by the
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the gaps of the model but that needs the supervision of
an expert in the biology of the studied organism. This
issue may be seen as a drawback of the method but, as in
the case of automatic genome annotation, there is a trade-
off between the degree of automation of the metabolic re-
construction and the quality of the generated model.

Additional files

Additional file 1: Schematic representation of UMs. The file contains
schemes and a brief description of each UM.

Additional file 2: New GSM model of B. cuenoti iMP240. Spreadsheet
with the model description. The file contains three sheets corresponding to
Metabolites, Reactions, and Exchange Fluxes, respectively.

Additional file 3: Comparative table iCG238 vs iMP240. Spreadsheet
describing the main differences between both model versions. The file
contains three sheets: the first one includes the genes added as well the
genes that were removed; the second one presents the removed
reactions; and the third one shows the set of added reactions.
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