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Abstract

Background: Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the
coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize
gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively
summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions
in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A
computational methodology developed for this purpose is network component analysis (NCA), which has been

used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed
NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information
from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types.

Results: The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY,
AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/Pl) and 55 genes. NCA found strong interactions between certain
TF-gene pairs including LFY — MYB17, AG — CRC, AP2 — RD20, AGL15 — RAV2 and HY5 — HLH1, and the direction
of the interaction (activation or repression) for some AGL15 targets for which this information was not previously
available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the
changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not
observed for SEP3, AP2 and AGL15.

Conclusions: For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in
floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes
as well as TF activity. However, since NCA relies on documented connectivity information about the underlying TF-GRN,
it is currently limited in its application to larger plant networks because of the lack of documented connectivities. In the
future, the identification of interactions between plant TFs and their target genes on a genome scale would allow the
use of NCA to provide quantitative regulatory information about plant TF-GRNs, leading to improved insights on cellular

regulatory programs.

Background

Gene expression is a complex process regulated by the in-
teractions of proteins and other molecules with genes. This
regulation occurs at multiple levels, giving rise to gene
regulatory networks (GRNs) that define the regulatory pro-
grams for the expression of specific genes in response to
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specific cues [1]. One of the biggest challenges of systems
biology is deciphering the organization of GRNs [2,3]. This
task is further complicated by feedback- and feedforward-
type interactions of a multitude of genes and their protein
products upon themselves and others. GRNs are usually
modeled as graphs with nodes representing system com-
ponents (e.g. molecules) and edges indicating interactions
between components [1,4,5]. Various methodologies have
been developed for the analysis of GRNs including directed
graphs, Boolean networks, Bayesian networks and diffe-
rential equations [2,6-11]. An important subset of GRNs
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models gene expression as a result of the action of tran-
scription factors (TFs) upon their target genes. In these
models, directed edges from TFs to their target genes rep-
resent transcriptional regulation, and constitute a hier-
archical network governing gene expression [2,12]. The
reconstruction of TF-GRNs involves the identification of
genes that encode the TFs and the identification of the tar-
get genes of the TFs.

There is a considerable amount of information available
on TF-gene interactions in microbes which is housed in
databases. For example, RegulonDB and DBTBS are ex-
tensively curated databases containing information on
transcriptional regulation in the bacteria Escherichia coli
and Bacillus subtilis respectively [13,14]. The RegPrecise
database contains similar information for many other
prokaryotes [15], as does the YEASTRACT database for
Saccharomyces cerevisiae [16]. The availability of such re-
sources permits accurate reconstruction of TF-GRNs, and
consequent network analyses to obtain insights on regula-
tory capabilities of the organism of interest. For plants,
such information is comparatively sparse, with most regu-
latory studies directed at inferring GRNSs in isolated organs
such as roots or leaves, or processes such as development
or abiotic stress response [9,17,18]. Large-scale TF-gene
interaction data are only available for Arabidopsis thaliana
and housed in the Arabidopsis Gene Regulatory Informa-
tion Server (AGRIS) [19].

Although the establishment of TF-GRN connectivity
(i.e. which TF regulates which gene) is very useful, the in-
formation contained in such connectivity maps is binary
and not quantitative. Understanding quantitative changes
in gene expression would provide deeper insights into
gene regulation and perhaps even enable predictive
modeling of cellular regulatory programs. This would,
however, require significant mathematical processing of
high-throughput gene expression datasets [20]. Under a
given condition, gene expression would depend on the
strength of the interaction between a TF and its target
gene as well as the activity of the TF at that condition.
Therefore, given the connectivity of a TF-GRN and gene
expression values under a set of conditions, the next set of
questions that need to be answered are: (i) Is it possible to
obtain connectivity strengths (CS) of TF-gene interactions
for the network and (ii) Can we quantify how TF activity
varies across conditions? Estimating the CS between a TF
and its target gene may be possible computationally by de-
termining the decrease in free energy for binding between
the TF and the DNA region of the target gene it binds to
[21,22]. A higher free energy change would indicate stron-
ger binding and a lower free energy change weaker bind-
ing [21,23]. However, thermodynamic calculations for
determining changes in free energy are nontrivial and
would require knowledge of binding thermodynamics of
many TFs and their target genes. The CS between a TF
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and a gene can also be determined experimentally by
using binding assays for determining parameters such as
the dissociation constant or changes in free energy and en-
thalpy [24]. Although parameters derived from such TF-
gene binding assays are available in some databases, it
would be a laborious exercise to obtain these values for
every TF-gene pair [25]. For estimating changes in TF ac-
tivity, experimental assays may be employed based on the
binding of the active form of the TF with a target reporter
molecule. However, such assays are only available for a
limited number of TFs and would have to be conducted
for each condition. Additionally, the experimental ap-
proaches for determining TF-gene CS and TF activities
suffer from the drawback of being in vitro studies. Conse-
quently, the values determined may not represent the
in vivo interactions of the TFs and genes wherein multiple
TFs can act on a single gene. It may appear that changes
in the expression levels of the genes corresponding to the
TFs could be used as surrogates for TF activities. However,
a shortcoming of this approach is that TF activity could be
considerably affected by post-transcriptional and post-
translational modifications such as phosphorylation and
acetylation, and can therefore, differ substantially from the
expression levels of corresponding genes.

To deduce such quantitative information about TF-
GRN, researchers have developed methodologies like net-
work component analysis (NCA) and regulatory element
detection using correlation with expression (REDUCE)
[26-29]. NCA, in particular, models gene expression to be
the result of the connectivity strength between TF-gene
pairs and TF activity [26]. The strength of the TF-gene
interaction indicates the extent of the control of a TF over
the transcription of a target gene, whereas the TF activity
quantifies how active the TF is in regulating its target
genes either via activation or repression. NCA uses con-
nectivity information about the underlying network and
gene expression data to obtain non trivial information
about TF activity and TF-gene connectivity strength.
Because the TF activity provides a measure for the TF in
its final state, it includes information about the post-
transcriptional and post-translational modifications. Com-
pared to experimental approaches for obtaining similar in-
formation, NCA allows the deduction of such important
regulatory information by a much simpler approach in-
volving the measurement of gene expression for the set of
genes in a network. The other input for NCA, the con-
nectivity between TFs and genes, is available for many
organisms in databases. Consequently, NCA provides an
additional layer of regulatory information without the use
of sophisticated experimental measurements [28].

Given the connectivity map underlying a TF-GRN,
the NCA framework allows the decomposition of gene
expression data into TF activities and connectivity
strengths (CS) between each TF and its target genes.



Misra and Sriram BMC Systems Biology 2013, 7:126
http://www.biomedcentral.com/1752-0509/7/126

NCA models TF regulation of gene expression by the
matrix equation [26,27]:
[log G]

— [CS]ppep ¥ [log TEA],,., 1)

mxn mxp

Here, [G],,., is a matrix representing an experimental
gene expression dataset consisting of the expression of
m genes across n conditions; [log GJ,,., is its log-
transformed version. Similarly, [TFA],,, is a matrix of
the activities of p TFs across the n conditions; [log TFA]
pxn 18 its log-transformed version. These two matrices
are linked by [CS],,,,, which consists of the CS of p TFs
on m genes.

The log-linear relationship used in NCA allows the
benefits of linearization during the decomposition while
capturing non-linear network behavior to a limited ex-
tent. Besides, since high-throughput gene expression
data are usually expressed relative to a control condition,
the log-linear relationship is convenient while working
with relative gene expression data [26]. The NCA de-
composition is unique up to a scaling factor, when the
[CS] and [TFA] matrices satisfy a set of criteria termed
“NCA-compliance” criteria [26]. The originally reported
NCA algorithm [26] required the presence of as many
gene expression data points as regulators for the decom-
position. However, a more recent modification of that al-
gorithm [30] permits the analysis of limited microarray
datasets, thus widening the applicability of NCA. A de-
tailed analysis of the original NCA algorithm and the
modified algorithm are provided in the respective publi-
cations [26,30].

NCA has been previously applied for the analysis of
microbial and mammalian transcriptional networks. Liao
et al. [26] first used NCA to study cell cycle regulation
in S. cerevisiae, and specifically to quantify the activities
of different TFs during various stages of the cell cycle,
thus gaining insight on the regulatory roles of specific
TFs at each stage. Kao et al. [27] investigated the effect
of a glucose-to-acetate carbon source transition on the
activity of TFs in E. coli. They observed specific trends
in the changes in activities of several TFs (CRP, FadR,
IcIR, and Cra) important during this transition. In a fur-
ther extension of this study, they investigated the growth
lag that resulted by the deletion of the ppsA gene in
E. coli during this carbon source transition [28]. By using
NCA, they deduced the activities of TFs that were af-
fected by the deletion and proposed a mechanism for
explaining the growth lag. A set of twin studies investi-
gating the effect of the reactive nitrogen species, nitric
oxide and S-nitrosoglutathione, on E. coli identified im-
portant TFs involved in response to the respective treat-
ments [31,32]. The first study identified 13 important
TFs of which ten have not been previously documented
to be involved in response to nitric oxide [31]. The
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subsequent study with S-nitrosoglutathione identified
four novel TFs (CysB, SF, FIhDC, and TTA) involved in
response to the treatment [32]. The use of NCA in com-
bination with transcriptome data allowed the construc-
tion of models depicting the response process for both
studies. Brynildsen et al. investigated the isobutanol re-
sponse network in E. coli and identified the ArcA-ArcB
system to be a major regulator of the response via a loss
of quinone function [33]. They also compared differ-
ences in TF activities in response to isobutanol with
those seen for butanol and ethanol, and identified 6 TFs
with differing activities for butanol, and 19 TFs with dif-
fering activities for ethanol compared to isobutanol. In
another study [34], Buescher et al. performed genome
wide TF-gene analysis of B. subtilis during a change in
carbon substrate from glucose to malate and vice versa,
and determined CS for 2900 TF-gene interactions. They
deduced TF activities for 154 TFs out of which 127 TFs
were found to change their activities significantly. Inter-
estingly, many of these changes in TF activity were not
seen at the mRNA level thus implicating the role of
posttranslational modifications for the changes in TF ac-
tivities. In mammalian systems, Sriram et al. studied the
effect of overexpressing the glycerol kinase gene in rat
hepatoma cells using a network of 62 genes and 9 TFs
[35]. They found an increase in the TF activity for 7 of
the TFs (ChREBP, Spl, HNFla, HNF4a, PPARa, LXRa,
and glucocorticoid receptor [GR]) and a decrease in ac-
tivity for the remaining 2 TFs (SREBPla and CEBPp).
The increased activity of GR was hypothesized to be a
result of the moonlighting nature of the glycerol kinase
enzyme [36]. Sriram et al. experimentally verified the
NCA-deduced change in TF activity of GR in the gly-
cerol kinase-overexpressing cell line, thus demonstrating
the power of NCA for deducing TF activities from gene
expression data in a mammalian network. In a recent
study [37], Tran et al. studied the TFs directly down-
stream of PTEN (phosphatase and tensin homologue de-
leted on chromosome 10), which is an important tumor
suppressor gene. They identified 20 TFs whose activities
were altered significantly by the expression of PTEN
even when the mRNA levels of the corresponding genes
did not alter significantly. They found many of the iden-
tified TFs varied in murine and human cancer models,
and provided a signature for identifying the status of
PTEN in cancers caused by PTEN loss.

In this article, we report the application of NCA on a
plant TF-GRN using available regulatory information from
AGRIS. Starting with a set of TFs known to be important
in floral development, we mined AGRIS to establish a net-
work consisting of confirmed TF-gene connectivities in
this developmental event. We used previously published
gene expression data [38] for four types of cells isolated
from the shoot apical meristem, which is known to initiate
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the growth of floral organs. By using the connectivity in-
formation and gene expression datasets, we used NCA to
deduce activities for the NCA-compliant TFs, and numer-
ical values of CS between the TFs and their target genes.
To the best of our knowledge, this is the first study to
apply NCA to dissect a plant TF-GRN.

Results

In this work, we tested the ability of NCA to quantitatively
deduce nontrivial information about a plant TF-GRN solely
from gene expression data and previously documented TF-
gene connectivities. Toward this, we established a TF-GRN
consisting of ten TFs: LEAFY (LFY), AGAMOUS (AG),
SEPALLATA3 (SEP3), APETALA2 (AP2), AGAMOUS-
LIKE 15 (AGL15), ELONGATED HYPOCOTYL 5 (HY5),
APETALA3/PISTILLATA (AP3/PI), ATBZIP14 (ED),
WUSCHEL (WUS) and BEL1-LIKE HOMEODOMAIN 9
(BLR) using regulatory information available in AGRIS.
The network included 57 genes known to be regulated by
these TFs, as listed in the AtRegNet database from AGRIS
[19]. On the basis of the interaction information obtained
from AGRIS (Additional file 1, sheet: AGRIS TF-gene
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verification), we constructed an initial connectivity matrix
for this network for use in NCA (Additional file 1, sheet:
Initial connectivity matrix). We screened the Botany Array
Resource [39] to locate pertinent gene expression data for
the TFs under consideration. From this database, we se-
lected microarray data from a study [38] that sampled four
distinct types of shoot apical meristemmatic cells (denoted
as CLV3n, CLV3p, FILp and WUSp) and that showed ex-
pression of the genes encoding LFY and other TFs included
in our network (Additional file 1, sheet: Original micro-
array data). We then employed the NCA toolbox [26,30] to
analyze the network using the gene expression data and
the initial connectivity matrix, assuming that the CS was
the same across all four cell types. Initial networks con-
structed for NCA have to be pruned to make them
NCA-compliant [26,30]. On these lines, a subnetwork
of 55 genes and 7 TFs (Figure 1) was found to be NCA-
compliant (Additional file 2, sheet: NCA-compliant
network). The entire NCA output along with compari-
sons between deduced TF activities and the expression
levels of the genes encoding the TFs, is included in
Additional file 2.

35 g4 38

(At1g56660), 13

(At2922540), 25 -
(At1g26310), 31 -
(At3g19390), 37 -
(At3g04620), 43
(At5g10140), 49 -

Figure 1 Initial connectivity map of TF-gene interactions documented in AGRIS. Connections between 10 TFs (violet) important in floral
development and their 57 target genes (light blue). Edges from TFs to genes indicate target genes of TFs: a solid green edge indicates gene
activation, a dashed red edge indicates gene repression and solid gray edges indicate an unknown interaction. [The gene abbreviations and the
corresponding Arabidopsis gene model are: T - NAP (At1g69490), 2 - CRC (At1g69180), 3 - GIK (At2g35270), 4 - APL (At2g27330), 5 - AGL2 (At5g15800),
6 - AGL4 (At3g02310), 7 - AGLS8 (At5g60910), 8 - AGL3 (At2g03710), 9 - ACS8 (At4g37770), 10 - ADRT (At1g33560), 11 - INV1 (At1g02810), 12 - UNK4

- FAD bin (At1g57770), 14 - UNK5 (At2g25460), 15 - UNK6 (At2g25890), 16 - AP1 (At1g69120), 17 - FLO10 (At3g23130), 18 - AG
(At4g18960), 19 - AGL5 (At2g42830), 20 - AGLT (At3g58780), 21 - HLHT (At2g42870), 22 - RD20 (At2g33380), 23 - EDF4 (At1g13260), 24 - AGL22

RAV2 (At1968840), 26 - ACR7 (At4g22780), 27 - ASNT (At3g47340), 28 - BGLU15 (At2g44450), 29 - BZIP (At1g68880), 30 - AGL10
UNKT (At5g03230), 32 - LEA (At3g52470), 33 - UNK2 (At1g61830), 34 - LEUT (At5g49770), 35 - HB51 (At5g03790), 36 - GRAT

UNK3 (At5g60630), 38 - MYB17 (At3g61250), 39 - SUS4 (At3g43190), 40 - TLP8 (At1g16070), 41 - APUM9 (At1g35730), 42 - DAN1T

- KINT (At1g11050), 44 - AGL44 (At2g14210), 45 - PERK4 (At2g18470), 46 - DNAT (At3g47680), 47 - PKS2 (At1g14280), 48 - AGL25
FUS3 (At3g26790), 50 - IAA30 (At3g62100), 51 - LEC2 (At1g28300), 52 - ATGA20X4 (At1g02400), 53 - LEA7 (At1g52690), 54 - CSP4
(At2921060), 55 - AGL18 (At3g57390), 56 - DTA2 (At2g45830), 57 - CBF2 (At4g25470)].
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NCA deduces the strengths of TF-gene interactions

NCA decomposes the gene expression matrix into two
components: a matrix of [CS] signifying interactions be-
tween TFs and their target genes, and a matrix [log
TFA] of TF activities (Eq. {1}). The matrix decompos-
ition applies specific scaling factors for the activity of a
given TF as well as the CS between that TF with its tar-
get genes. If negative, this scaling factor can invert the
sign of the TF activity and CS pertaining to a given TF.
Consequently, the CS and TF activity for each TF may
need to be corrected by comparing the CS with the ini-
tial connectivity matrix and specifically looking at the
connectivity between a TF and gene that is convincingly
known from experimental evidence. Based on this com-
parison, we corrected the CS and corresponding TF ac-
tivity for AG, SEP3, AP2 and HY5 (Additional file 2,
sheet: TFA and mRNA). Figure 2 depicts the deduced
CS values in the analyzed network. The CS between a
TF and its target gene determines how strongly the TF
activates or represses the corresponding target gene. We
used two criteria for defining strong interactions (i) A
CS of more than +1 (activation) or less than -1 (repres-
sion) (ii) Low variability across multiple NCA replicate
runs. The CS used for distinguishing strong from non-
strong interactions is arbitrary but allows a means for
distinguishing interactions between TFs and genes. For
example, LFY is strongly connected to ACR7, HB5I,
GRA1, UNK3, MYB17, TLP8 and weakly connected to
ASN1, BGLUI1S5, BZIP, LEA, UNK2, and SUS4 among its
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target genes. Other sets of strong interactions include the
following pairs: AG — CRC; SEP3 — AGL4; SEP3 — AGL3;
SEP3 — AGLS8; AP2 — HLHI1; AP2 — RD20; AGL15 —
AGL22; AGL15— LEA7; AGL15— RAV2, AGL15—
CSP4; AGL15— CBF2; HY5— HLHI; HY5— RAV2;
HY5 — RD20; HY5 — UNK4 and AP3/PI — FLO10.

Gene expression levels simulated by NCA agree well with

the originally measured gene expression levels

We obtained the gene expression values simulated by
NCA by multiplying the [CS] matrix with the [log;oTFA]
matrix for each of the four cell types (Eq. {1}). A compari-
son of the NCA-simulated gene expression levels with the
original measurements as obtained by Yadav et al. [38] by
microarray analysis, shows a good agreement between the
two sets (Figure 3). Some discrepancies were seen in the
NCA-simulated gene expression levels, which may be at-
tributable to residues arising in the least-squares mini-
mization during the NCA decomposition.

TF activities deduced for LFY, AG, HY5 and AP3/Pl agree

well with expression levels of genes encoding these TFs

NCA provides log-fold changes of the TF activities with
respect to a control condition. We compared changes in
the TF activity across the four cell types with respect
to a control by plotting the activities for the seven
TFs against the corresponding gene expression values
(Figure 4). For instance, the consistent gene expression
level of LFY across all four cell types agreed with the

40
39
38

37

36 32

35 g4 33

model for the genes are the same as those used in Figure 1].

Figure 2 Connectivity map of TF-gene interactions as deduced by NCA. Connections between 10 TFs (violet) important in floral
development and their 57 target genes (light blue), as deduced by NCA. Edges from TFs to genes indicate target genes of TFs: a solid green
edge with an arrow indicates gene activation by a TF, a dashed red edge with an arrow indicates gene repression by a TF and solid gray edges
indicate an undeterminable interaction. Edge thickness is proportional to the TF-gene CS deduced by NCA. [The gene abbreviations and gene

55 54
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Figure 3 Comparison between gene expression (mRNA) levels
calculated by NCA and (previously) measured by microarray
analysis. From measured gene expression values (matrix [log;,G])
across four cell types (conditions), NCA deduced the unknown TF
activities (matrix [logyoTFA]) and the TF-gene CS (matrix [CS]) in Eq. {1}
for seven NCA-compliant TFs. Based on this, the gene expression
values simulated by NCA were calculated as the product of the
TF-gene CS (matrix [CS]), and the TF activities (matrix [log;oTFAI). This
plot compares the NCA simulated gene expression values with
experimental gene expression levels for the four cell types. A good
match was seen between both (R> = 0.816) depicting the ability of
NCA model to account for the gene expression measurements. The
horizontal error bars are from replicates for the measured gene
expression across all 4 cell types, the vertical error bars are from the
corresponding replicates of NCA simulated gene expression values.

deduced TF activity for LFY, which was also consistent
across the four cell types (Figure 4a). AG exhibited a de-
creasing trend of TF activity across the four cell types with
CLV3n showing the highest activity. This trend also ap-
peared in its gene expression values (Figure 4b). For HY5,
the TF activity remained nearly unchanged across all
four cell types while the gene expression showed smaller
changes for CLV3n and FILp compared to CLV3p and
WUSp (Figure 4f). The AP3/PI TF had higher activity in
the CLV3n cells and a lower change in activity in the other
three cell types. Because AP3 and PI proteins co-regulate
the activity of some genes, we compared the activity of the
AP3/PI TF separately with the AP3 and PI genes (Figure 4g
& 4h). Interestingly, the TF activity trend of AP3/PI agreed
better with the gene expression of PI, whereas AP3 expres-
sion showed an opposite trend for the FILp cell type. The
TF activity of SEP3 showed agreement with its gene ex-
pression levels for two cell types (CLV3n and CLV3p), and
a discrepancy for the other two cell types (FILp and
WUSp) (Figure 4d). Two TFs, AP2 and AGL15, had differ-
ing trends in their TF activities and gene expression levels
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(Figure 4c & 4e). This may be explained by the large bio-
logical errors of the gene expression levels of both AP2
and AGLI5, which were comparable to the measurements.
Further, we analyzed the changes in TF activities across
the cell types statistically by comparing individual pairs of
cells using a p-value cutoff of 0.05. The TF activities de-
duced by NCA for AG and SEP3 showed variation across
multiple cell type pairs, while SEP3 and AP3 showed simi-
lar variation in their mRNA levels.

Normalized plots of TF activities and gene expression
values showed a good fit for LFY, AG, HY5 and AP3

Our comparison of NCA-simulated TF activities and ex-
pression levels of the genes encoding the TFs allowed a
qualitative comparison between the trends shown by the
computational NCA and the experimental transcriptome
analysis. To provide a better comparison between the TF
activity and gene expression values for corresponding TFs,
we normalized the values across all four cell types and
prepared a parity plot by using maximum and minimum
values across each set as the basis for normalization
(Figure 5). This plot shows that TF activities deduced by
NCA agreed well with expression levels of the TF-encoding
genes, with only AP2 and AGL15 being exceptions.

Discussion

TF-GRNs, which model interactions between TFs and
their target genes, are an important class of cellular net-
works that define regulatory programs leading to gene ex-
pression [2,12]. TF-GRNs provide Boolean information
about the regulation of genes by TFs, with meticulously
compiled data available in databases like RegulonDB,
YEASTRACT and AGRIS [13,16,19]. To deduce further
quantitative information about the connectivities between
TFs and their target genes, methodologies such as NCA
and REDUCE have been developed [26,29]. Given the
underlying network connectivity information, NCA can
provide information on the connectivity strength between
a TF and its target gene as well as the TF activity by using
gene expression data [26,30,40]. Through such nontrivial,
quantitative information, NCA can provide important pa-
rameters about a TF-GRN. In this study, we sought to
apply the NCA approach to analyze a network comprising
TFs important for floral development and their targets
using underlying connectivity information available in the
AGRIS database.

Floral development is one of the best characterized
processes in plants with multiple studies providing much
information at the molecular genetic level [41-43]. The
most widely used model for explaining the initial devel-
opment of the organs of a flower is the ABC model and
its variants [42]. The model predicts floral development
to result from the concerted action of multiple TF-
encoding genes. For this study, we constructed a plant
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Figure 4 Comparison between TF activities and expression levels of genes encoding the TFs. TF activities were deduced by NCA for seven
NCA-compliant TFs and compared with the expression levels of genes encoding the TFs across all four cell lines. For each TF panel (a) LFY (b) AG
(c) AP2 (d) SEP3 (e) AGL15 (f) HY5 (g) AP3 (h) PI, values are indicated in a different color with the cell lines CLV3n, CLV3p, FILp and WUSp shown
from left to right with decreasing shades. Good agreement between the direction of TF activity and mRNA change (relative to control) is apparent
for most TFs except AP2, AGL15 and SEP3.

TF activity
log,.(fold change versus control)

-2

2 -1 0 1 2
mRNA: log,,(fold change versus control)

Figure 5 Parity plot of normalized TF activities and expression
levels of genes encoding the TFs. TF activities were deduced by
NCA for seven NCA-compliant TFs and compared with the expression
levels of genes encoding the TFs across all four cell lines (Colors used
for TFs correspond to those used in Figure 4). Good correlation is
apparent for most TFs, but poor correlation is evident especially for
AP2 and AGL15. The general agreement between normalized TF
activity and expression level of the corresponding gene indicates the
strength of NCA for deducing TF activities.

TE-GRN consisting of ten TFs, known to be involved in
floral development, (LFY, AG, SEPALLATA3 (SEP3), AP2,
AGL15, HY5, AP3/PI, FD, WUS and BLR) and 57 target
genes with verified interactions obtained from AGRIS.
LFY is known to be a master TF that regulates important
events in the transition from vegetative to reproductive
growth, and has another important role in the activation
of floral homeotic genes [44-46]. Some of its downstream
targets are known to be TFs that are important in flower
morphogenesis. The other TFs included in our original
network are important factors in floral development: AG,
SEP3 and AGL15 are MADS domain TFs; AP2 belongs to
the AP2/EREBP (ethylene responsive element binding pro-
tein) class of TFs; HY5 and FD are basic leucine zipper
TFs that regulate flower development; AP3/PI is a mem-
ber of the NAC TF family that is expressed in floral prim-
ordia and WUS and BLR are homeobox TFs [47]. We
were unable to include some of the other TFs (AP1, FT
and AGL20) important in the process due to a lack of suf-
ficient confirmed targets for them in AGRIS for NCA
compliance. We used gene expression data from a study
by Yadav et al. [38] that analyzed the expression patterns
across four different types of cells (named CLV3n, CLV3p,
FILp and WUSp) isolated from shoot apical meristems of
A. thaliana. The study isolated protoplasts of the cells by
using fluorescent markers unique to them, and revealed a
strong expression of the LFY gene across all cell types.
During preparation for NCA, three of the TFs (FD,
WUS and BLR) and their corresponding gene connections
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had to be removed as they were not NCA-compliant. The
final NCA-compliant network consisted of the remaining
7 TFs and 55 genes. For the NCA, we assumed same con-
nectivity strengths for TF with their target genes across all
cell lines, which is a reasonable assumption. NCA pro-
vided CS for all TF-gene pairs. However, after NCA de-
composition, the CS needed to be checked for their signs
(a positive sign signifies activation and a negative sign sig-
nifies repression). This is done by comparing the CS with
the initial connectivity matrix, and especially the connect-
ivity directions of well-established TF-gene pairs. We
found that the TF activities and CS for the AG, HY5, SEP3
and AP2 TFs needed to be corrected for their signs. The
TE-gene pairs showing strong CS represent strong binding
between a TF and its target. However, many TF-gene pairs
showed very low CS, so that their documented regulatory
connection would be worth re-examining [26]. Interest-
ingly, AGRIS did not list the direction of interaction be-
tween AGL15 and four of the genes regulated by it
(AGL22, AGL25, EDF4 and RAV2). NCA deduced AGL15
to be a strong repressor of AGL22, strong activator of
RAV2, moderate activator for AGL25 and very weak re-
pressor for EDF4. Thus, given verified information about
the sign of a TF-gene interaction, NCA can deduce
whether the TF is an activator or repressor of other target
genes based on gene expression data. We should point out
though that the strength of NCA is the deduction of quan-
titative information about a TF-GRN based on verified in-
formation about the underlying connections and gene
expression data for the network. AGL22, also known as
Short Vegetative Phase (SVP) encodes a TF that can re-
press flowering time in addition to other genes AGLIS,
AGL18 and FLM [48-50]. Based on our NCA, we deter-
mined that AGL22 is repressed much more strongly by
AGL15 compared to SEP3. Interestingly, though, the gene
expression of AGL22 increased several-fold compared to
the control across all four cell types. This might be ex-
plained by the observation that even though the TF activ-
ity of SEP3 increases relative to the control, the TF activity
of AGL15 is reduced compared to the control by a similar
extent. As AGL15 controls the repression of AGL22
more strongly compared to SEP3, the gene expression of
AGL22 compared to the control increases. Two other
genes, HLHI and RD20, are regulated by the same TFs,
HY5 (activation) and AP2 (repression). NCA determined
HLH]I to have similar connectivity strengths to both HY5
and AP2 but of opposite signs while HLHI gene expres-
sion was found to be slightly higher compared to the con-
trol strain. This could be because of the slightly higher TF
activity of HY5 compared to AP2 as deduced by NCA.
RD20, on the other hand, was found to be mildly re-
pressed across the four cell types compared to the control.
This could be because it is more strongly repressed by
AP2 compared to activation by HY5.
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Of the different TFs included in our study, LFY plays
the role of master regulator during floral development.
Out of the direct targets of LFY included in our net-
work, MYBI7 or late meristem identity 2 is very import-
ant in meristem identity transition [51]. MYBI7 was
found to be very strongly activated by LFY. This, com-
bined with high TF activity of LFY would explain the
high expression levels seen for the MYBI17 gene from
mRNA analysis. We were unable to include AP1, which
is another important TF in the meristem identity path-
way that is known to interact in a positive feedback net-
work with LFY and MYB17. We can, however, deduce
that the AP1 TF would have higher activity across the
four cell types compared to the control based on strong
activities of LFY and MYB17. In fact, the reproductive
phase in Arabidopsis involves the transition of the SAM
to an inflorescence meristem and then to a floral meri-
stem [44]. The floral meristem identity proteins in Ara-
bidopsis [44] include the TFs that were found to be
upregulated from our analysis (LFY and SEP3) which
seems to indicate that the cells were isolated from a
floral and not a vegetative meristem.

We compared the TF activities obtained by NCA with
the expression values for their corresponding genes. TF
activities can in general be expected to be proportional
to the expression levels of the corresponding genes.
However, TFs that need to undergo extensive post-
translational modification to be active can be exceptions
to this expected trend. Our analysis showed that the
profiles of TF activities obtained from NCA compared
well with the expression levels of the genes coding for
these TFs in the case of the majority of TFs (LFY, AG,
HY5, AP3/PI and SEP3 (in two out of four cell types).
However AP2 and AGL15 are exceptions. The discrep-
ancy for AP2 and AGLI15 could quite possibly be be-
cause of the large error in the measurement of the
microarray replicates leading to problems with the NCA.
A repeat of the gene expression analysis with better con-
trol on the replicates may provide a better answer to
this. If a discrepancy is still observed, this would indicate
a change in TFs due to post-transcriptional and post-
translational modifications. NCA thus allows the gener-
ation of newer hypotheses relating to the conversion of a
gene product to an active TF based on how well the
gene expression results agree with the deduced activities
of their corresponding TFs. As a further step, we com-
pared normalized values for both, using maximum or
minimum values for TF activity or gene expression
across the four cell types to allow better comparison be-
tween them. We found a very good correlation for LFY;
decent matches for AG, SEP3, HY5 and AP3/PI; and
poor matches for AP2 and AGL15 from this analysis.

The application of NCA to microbial and mammalian
systems has provided interesting insights into gene
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regulation by TFs. As previously described, the applica-
tions of NCA to microbial systems include the following:
(i) investigation of TF changes during cell cycle regula-
tion in S. cerevisiae [26] (ii) analysis of changes in TF
activities in E. coli during the change from a glycolytic
carbon source (glucose) to a gluconeogenic carbon
source (acetate) [27] (iii) studying the effects of reactive
nitrogen species on a TF network in E. coli [31,32] (iv)
identification of TFs important in the isobutanol re-
sponse network in E. coli [33] and (v) determining TF-
gene interactions in B. subtilis during a carbon source
transition from glucose to malate and vice-versa [34],
Applications of NCA to mammalian systems are more
recent (i) studying the effects of overexpression of the
glycerol kinase gene in rat hepatoma cells [35] and (ii)
identifying TFs with altered activity in response to PTEN
expression [37].

These studies of TF-GRNs have revealed the strengths
of NCA in providing insights about the regulatory as-
pects of a system given the basic structural information
about the underlying network. In the case of plants,
there is lesser information available about TF-gene inter-
actions. The AtRegNet database from AGRIS, which is
the most comprehensive resource for such information,
contains 768 confirmed TF-gene interactions for 46 TFs
in A. thaliana, which is estimated to contain more than
1700 TFs [52]. In our NCA of a network derived from
AGRIS, the original network consisting of 10 TFs and 57
genes reduced to 7 TFs and 55 genes for NCA compli-
ance. This is because of the absence of sufficient regula-
tory information about the three TFs that had to be
removed. NCA requires that any TF in a network regu-
late at least two genes. The availability of more informa-
tion about TF-gene interactions would overcome this
issue of NCA non-compliant TFs.

NCA uses gene expression data and underlying net-
work connectivity during its analysis; consequently, the
quantitative measures provided by NCA are dependent
on the accuracy of the underlying network. For example,
many of the genes considered in this study have uncon-
firmed interactions with other TFs. If any of these inter-
actions were confirmed, the current NCA could be
rerun to account for the effect of additional TFs on ex-
pression of the target genes. Thus, having correct prior
connectivity information about a network would in-
crease the accuracy of NCA substantially. Such informa-
tion on TF-gene interactions is obtained mainly through
ChIP-CHIP or ChIP-SEQ experiments that allow the de-
tection of binding patterns of TFs with DNA sequences.
In fact, a lot of the confirmed interactions between TFs
and genes listed on AGRIS are derived from such papers
investigating binding targets for particular TFs [19].

Another limitation of NCA is its inability to model
feedback and feedforward regulations between TFs.
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TF-GRNs are cascades of TFs regulating genes where the
product of many genes are TFs that regulate downstream
genes. However, for NCA, if a TF is included as a regulator
in a network, the gene corresponding to it cannot be in-
cluded in the network. As a result, NCA cannot determine
how strongly other TFs influence the expression of the
corresponding gene. In our original network, AG was in-
cluded as a TF and also present as a gene regulated by
LFY, AG, SEP3, AP2, WUS and BLR. We had to remove
the AG gene during the NCA because of the presence of
AG as a regulatory TF. This limits the application of NCA
to non TF target genes in many instances.

Additionally, the NCA decomposition suffers from some
variability in estimating CS and TF activity from gene ex-
pression data. This is because the NCA decomposition is
unique to a scaling factor which can be different for each
TF and vary during different data decomposition of the
same set of gene expression values and initial connectivity
matrix. NCA uses a two-step least squares approach to
minimize the difference between experimental and NCA
reconstructed gene expression data. As a result, based
on the scaling factor chosen, the same gene expression
data and initial connectivity matrix could give slightly dif-
fering TF activities and CS. In addition, the decomposition
process might introduce some variability in estimating TF
activities and CS. For the NCA decomposition of the floral
TE-GRN used in this study, we found differences in TF ac-
tivities and CS during repeat runs (Additional file 3). For
this network, the LFY TF shows very little variability
across the different runs while the other TFs have greater
degree of variability. Thus, while the TF activity and CS
obtained from NCA decomposition provide quantitative
measures for the underlying network, they should be
treated not as absolute but relative parameters.

Another drawback that all approaches for modeling gene
expression of eukaryotic organisms suffer from, is the in-
ability to include all the factors that regulate gene expres-
sion [53]. Most of the current modeling approaches depict
gene expression to result from the effect of some of these
factors alone, which is not the case [5]. For example,
microRNAs play a very important role in gene regulation
at the post-transcriptional level similar to the TF regulation
at the transcriptional level [54-56]. In humans, microRNAs
have been found to use two modes for gene regulation —
the first mode is rapid and modulated by homoclusters;
the second is delayed and mediated by heteroclusters of
microRNAs. Of the two, heteroclusters have been found to
indirectly influence gene regulation in tandem with TFs
[54]. In addition to microRNAs, other factors including
chromatin structure and nucleosome sliding would
affect gene expression especially in eukaryotes [53]. Con-
sequently, an accurate model for depicting gene regulation
in eukaryotes would have to include all these interactions
to capture the true picture of genetic regulation.
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Despite these limitations, NCA can provide very inter-
esting hypotheses and insights about regulatory signals
in a TF-GRN. Previous applications have shown its util-
ity in understanding microbial systems whose regulatory
networks are well characterized, and mammalian sytems
to some extent. Plants and eukaryotes operate more
complex regulatory mechanisms. Additionally, compli-
cated post-translational modifications can alter the activ-
ity of a TF compared to its mRNA transcript level.
Consequently, the application of NCA to plant systems
would provide interesting insights about these. Hence,
there is a need for applying significant efforts in obtain-
ing information about interactions between TFs and
genes in plants for constructing TF-GRNs. Such in-
formation coupled with NCA would allow the deter-
mination of underlying properties of the system and
establish paradigms for predicting cellular behavior.

Conclusions
In this work, we applied constructed a plant TF-GRN im-
portant in flower development using regulatory informa-
tion from the AGRIS database. The initial network
consisting of 10 TFs and 57 genes was found to be NCA-
compliant for 7 TFs and 55 genes. We applied NCA to the
reduced network to obtain CS between TEF-gene pairs and
TF activities. The CS showed strong connectivity between
certain TF-gene pairs including LFY — MYB17, LFY —
TLP8, AP2— HLHI, AP2— RD20, AGL15— AGL22,
AGL15 — RAV2, HY5 — HLH1 and HY5 — RD20, among
others. For some of the co-regulated genes, we were able
to determine the extent of transcriptional control of differ-
ent TFs on a target gene using the CS. Additionally, we
were able to determine TF activities for all TFs. Good
agreement was seen for the changes in TF activities for
multiple TFs and their corresponding gene expression
levels. However, for some of the TFs (AP2, SEP3 and
AGL15), the change in TF activities did not match with
changes in gene expression levels. There could be multiple
reasons for this discrepancy including post translation
modifications which significantly alter the activity of a TF;
noisy data or the small size of the network among others.
Our study is the first application of NCA to a plant
TF-GRN and demonstrates the power of NCA for deter-
mining nontrivial information about a network based
solely on gene expression data and underlying network
connectivity. NCA has been widely used to decipher in-
teresting insights about microbial TF-GRNs. However,
since NCA relies on underlying network connectivity,
incomplete information about the network hinders the
accuracy of NCA. Plant TF-GRNs are poorly docu-
mented with sparse data about specific sets of TFs and
processes. As more information about TF-GRNs is un-
covered in plants, similar analysis using NCA would
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provide profound insights regarding the role of TFs in
various cellular processes.

Methods

TF-gene network reconstruction

We obtained TF-gene connectivity information from
AGRIS (http://arabidopsis.med.ohio-state.edu) [19]. For
the GRN analysis, we selected 10 TFs known to be import-
ant in floral development and listed in AGRIS. We selected
57 genes that were documented in AGRIS to be the targets
of these TFs (Additional file 1, Sheet: AGRIS TF-gene veri-
fication). We constructed an initial connectivity matrix to
map the TF-gene interactions documented in AGRIS
(Additional file 1, Sheet: Initial connectivity matrix). En-
tries in this matrix were 1 (indicating a documented activa-
tion interaction), —1 (indicating a documented repression
interaction) or 0 (indicating no documented interaction).
Documented TF-gene interactions for which the type of
interaction (activation or repression) were not known were
assigned an entry of 1 (highlighted cells).

Gene expression data

We used the Botany Array Resource (http://www.bar.
utoronto.ca) [39] for obtaining gene expression data per-
tinent to the TFs and genes in our network during floral
development. This database provided gene expression data
from the study by Yadav et al. [38] that provided expres-
sion levels of the genes of interest across four SAM cell
types. The original and log transformed gene expression
data are summarized in Additional file 1 (Sheet: Original
microarray data, and Sheet: Log transformed microarray
data, respectively).

NCA

We used the NCA toolbox (http://www.seas.ucla.edu/
~liaoj/downloads.html) [26,30] in conjunction with the ini-
tial TF-gene connectivity matrix (Additional file 1, Sheet:
Initial connectivity matrix) for decomposing the gene ex-
pression data. We independently analyzed the gene ex-
pression dataset corresponding to each biological replicate
of each cell line. On completion, NCA provided TF activ-
ities for each replicate of each cell line (Additional file 2,
Sheet: TFA and mRNA) as well as TF-gene CS common
to all cell lines (Additional file 2, Sheet: Connectivity
strengths).

Additional files

Additional file 1: Input data for NCA. Gene reference sheet: Gene
models for the genes analyzed in this study, their common names and
the number used to represent them in Figures 1 and 2. Initial
connectivity matrix sheet: Matrix of connectivity information obtained
between TFs and target genes from AGRIS. AGRIS TF-gene verification
sheet: Data retrieved from AGRIS for constructing initial connectivity
matrix. Original microarray data sheet: Microarray data retrieved for all the
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genes in this study across four different cell types (named CLV3n, CLV3p,
FILp and WUSp) derived from shoot apical meristems of A. thaliana using
the Botany Array Resource.

Additional file 2: Output data from NCA. NCA-compliant network
sheet: TFs and genes compliant for NCA obtained by initial NCA feasibility
analysis. Connectivity strengths sheet: CS obtained by NCA. As NCA may
invert the sign for the CS during the decomposition, CS for some of the
TFs had to be corrected based on well-established TF-gene connectivity
information. Gene expression sheet: Log;o fold expression changes of
genes obtained from microarray data and NCA simulated expression data.
TFA and mRNA sheet: Log;, fold changes in TF activities compared to
control obtained by NCA and corresponding changes in mRNA values for
all four cell types included in the study. Activities for some of the TFs had
to be corrected in their sign based on the changes for the CS previously
mentioned. Normalized TFA and mRNA sheet: Calculation of normalized
TF activity and mRNA levels from the average TF activities and mRNA
levels across all four cell types (expressed as log;o fold changes compared
to control).

Additional file 3: Identifiability of NCA results: variability in
estimating TF and CS from same gene expression data and initial
connectivity strengths. TF activities and CS obtained in five
independent executions of NCA from the same gene expression data
and initial connectivity matrix used in this study.

Competing interests
The authors declare no financial or non-financial competing interests.

Authors’ contributions

AM and GS conceived the study. AM collected and analyzed the data, AM
and GS compiled and interpreted the results. AM and GS drafted the
manuscript. GS revised the manuscript. Both authors read and approved the
final manuscript.

Acknowledgments

The authors wish to thank Sam Prager (Department of Chemical and
Biomolecular Engineering, University of Maryland) for his assistance with the
data analysis. This work was funded by the U.S. National Science Foundation
(award number 10S-0922650).

Author details

'Department of Chemical and Biomolecular Engineering, University of
Maryland, College Park, MD 20742, USA. *Current affiliation: DBT-ICT Centre
for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.

Received: 24 August 2013 Accepted: 5 November 2013
Published: 14 November 2013

References

1. van Someren E, Wessels L, Backer E, Reinders M: Genetic network
modeling. Pharmacogenomics 2002, 3:507-525.

2. Karlebach G, Shamir R: Modelling and analysis of gene regulatory
networks. Nat Rev Mol Cell Biol 2008, 9:770-780.

3. Markowetz F, Spang R: Inferring cellular networks - a review.

BMC Bioinformatics 2007, 8(Suppl 6):S5.

4. Moreno-Risueno MA, Busch W, Benfey PN: Omics meet networks - using
systems approaches to infer regulatory networks in plants. Curr Opin
Plant Biol 2010, 13:126-131.

5. Schlitt T, Brazma A: Current approaches to gene regulatory network
modelling. BMC Bioinformatics 2007, 8(Suppl 6):59.

6. De Jong H: Modeling and simulation of genetic regulatory systems:

a literature review. J Comput Biol 2002, 9:67-103.

7. Bezerianos A, Maraziotis IA: Computational models reconstruct gene
regulatory networks. Mol Biosyst 2008, 4:993-1000.

8. Li Z Shaw SM, Yedwabnick MJ, Chan C: Using a state-space model with
hidden variables to infer transcription factor activities. Bioinformatics
2006, 22:747-754.

9. Long TA, Brady SM, Benfey PN: Systems approaches to identifying gene
regulatory networks in plants. Annu Rev Cell Dev Biol 2008, 24:81-103.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Page 11 of 12

Mussel C, Hopfensitz M, Kestler HA: BoolNet-an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics 2010,
26:1378-1380.

Baldan P, Cocco N, Marin A, Simeoni M: Petri nets for modelling metabolic
pathways: a survey. Nat Comput, 9:955-989.

Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure
and evolution of transcriptional regulatory networks. Curr Opin Struct Biol
2004, 14:283-291.

Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado
L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes
A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores
I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-
Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-
Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J:
RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12
integrated within genetic sensory response units (Gensor Units).

Nucleic Acids Res 2011, 39(Database issue):98-105.

Makita Y, Nakao M, Ogasawara N, Nakai K: DBTBS: database of transcriptional
regulation in Bacillus subtilis and its contribution to comparative genomics.
Nucleic Acids Res 2004, 32(Database issue):.D75-D77.

Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak |,
Rodionov DA: RegPrecise: a database of curated genomic inferences of
transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res
2010, 38(suppl 1):D111-D118.

Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenco AB, dos
Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL,
Sé-Correia |, Freitas AT: YEASTRACT: providing a programmatic access

to curated transcriptional regulatory associations in Saccharomyces
cerevisiae through a web services interface. Nucleic Acids Res 2011,
39(suppl 1):D136-D140.

Middleton AM, Farcot E, Owen MR, Vernoux T: Modeling regulatory
networks to understand plant development: small is beautiful.

Plant Cell Online 2012, 24:3876-3891.

Alvarez-Buylla ER, Benitez M, Davila EB, Chaos A, Espinosa-Soto C, Padilla-
Longoria P: Gene regulatory network models for plant development.
Curr Opin Plant Biol 2007, 10:83-91.

Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E: AGRIS
and AtRegNet. A platform to link cis-regulatory elements and transcription
factors into regulatory networks. Plant Physiol 2006, 140:818-829.

Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R:
Transcriptional regulation by the numbers: models. Curr Opin Genet Dev
2005, 15:116-124.

Zhao Y, Granas D, Stormo GD: Inferring binding energies from selected
binding sites. PLoS Comput Biol 2009, 5:21000590.

Turner D, Kim R, Guo J: TFinDit: transcription factor-DNA interaction data
depository. BMC Bioinformatics 2012, 13:220.

He X, Samee MAH, Blatti C, Sinha S: Thermodynamics-based models of
transcriptional regulation by enhancers: the roles of synergistic
activation. Cooperative binding and short-range repression.

PLoS Comput Biol 2010, 6:21000935.

Geertz M, Maerkl SJ: Experimental strategies for studying transcription
factor-DNA binding specificities. Briefings Funct Genomics 2010, 9:362-373.
Prabakaran P, An J, Gromiha MM, Selvaraj S, Uedaira H, Kono H, Sarai A:
Thermodynamic database for protein-nucleic acid interactions (ProNIT).
Bioinformatics 2001, 17:1027-1034.

Liao JC, Boscolo R, Yang Y-L, Tran LM, Sabatti C, Roychowdhury VP: Network
component analysis: reconstruction of regulatory signals in biological
systems. Proc Natl Acad Sci U S A 2003, 100:15522-15527.

Kao KGC, Yang Y-L, Boscolo R, Sabatti C, Roychowdhury V, Liao JC: Transcriptome-
based determination of multiple transcription regulator activities in Escherichia
coli by using network component analysis. Proc Nat/ Acad Sci 2004, 101:641-646.
Kao KC, Tran LM, Liao JC: A global regulatory role of gluconeogenic genes
in escherichia coli revealed by transcriptome network analysis. J Biol Chem
2005, 280:36079-36087.

Roven C, Bussemaker HJ: REDUCE: an online tool for inferring cis-regulatory
elements and transcriptional module activities from microarray data.
Nucleic Acids Res 2003, 31:3487-3490.

Galbraith SJ, Tran LM, Liao JC: Transcriptome network component analysis
with limited microarray data. Bioinformatics 2006, 22:1886-1894.

Hyduke DR, Jarboe LR, Tran LM, Chou KJY, Liao JC: Integrated network
analysis identifies nitric oxide response networks and dihydroxyacid


http://www.biomedcentral.com/content/supplementary/1752-0509-7-126-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-7-126-S3.xlsx

Misra and Sriram BMC Systems Biology 2013, 7:126
http://www.biomedcentral.com/1752-0509/7/126

32,

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

45,

46.

47.

48.

49.

50.

51

52.

dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci 2007,
104:8484-8489.

Jarboe LR, Hyduke DR, Tran LM, Chou KJY, Liao JC: Determination of the
Escherichia coli S-Nitrosoglutathione response network using integrated
biochemical and systems analysis. J Biol Chem 2008, 283:5148-5157.
Brynildsen MP, Liao JC: An integrated network approach identifies the
isobutanol response network of Escherichia coli. Mol Syst Biol 2009, 5:277.
Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling
B, Kleijn RJ, Chat LL, Lecointe F, Mader U, Nicolas P, Piersma S, Riigheimer F,
Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM,
Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR,
Hecker M, Hubner S, Hultschig C, et al: Global network reorganization
during dynamic adaptations of Bacillus subtilis metabolism. Science 2012,
335:1099-1103.

Sriram G, Parr LS, Rahib L, Liao JC, Dipple KM: Moonlighting function of
glycerol kinase causes systems-level changes in rat hepatoma cells.
Metab Eng 2010, 12:332-340.

Sriram G, Martinez JA, McCabe ERB, Liao JC, Dipple KM: Single-gene
disorders: what role could moonlighting enzymes play? Am J Hum Genet
2005, 76:911-924.

Tran LM, Chang C-J, Plaisier S, Wu S, Dang J, Mischel PS, Liao JC, Graeber
TG, Wu H: Determining PTEN functional status by network component
deduced transcription factor activities. PLoS One 2012, 7:€31053.

Yadav RK, Girke T, Pasala S, Xie M, Reddy GV: Gene expression map of the
Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci
2009, 106:4941-4946.

Toufighi K, Brady SM, Austin R, Ly E, Provart NJ: The botany array resource:
e-northerns, expression angling, and promoter analyses. Plant J 2005,
43:153-163.

Chang C, Ding Z, Hung YS, Fung PCW: Fast network component analysis
(FastNCA) for gene regulatory network reconstruction from microarray
data. Bioinformatics 2008, 24:1349-1358.

Weigel D, Meyerowitz EM: The ABCs of floral homeotic genes. Cell 1994,
78:203-209.

Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years of
ABCs. Semin Cell Dev Biol 2010, 21:73-79.

TheiRen G: Development of floral organ identity: stories from the MADS
house. Curr Opin Plant Biol 2001, 4:75-85.

Siriwardana NS, Lamb RS: The poetry of reproduction: the role of LEAFY in
Arabidopsis thaliana flower formation. Int J Dev Biol 2012, 56:207-221.
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D: Genomic
identification of direct target genes of LEAFY. Proc Nat/ Acad Sci U S A
2004, 101:1775-1780.

Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM: LEAFY
controls floral meristem identity in Arabidopsis. Cell 1992, 69:843-859.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H,
Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C,

Zhang P, Huala E: The Arabidopsis Information Resource (TAIR): gene structure

and function annotation. Nucleic Acids Res 2008, 36(suppl 1:D1009-D1014.
Adamczyk BJ, Lehti-Shiu MD, Fernandez DE: The MADS domain factors
AGL15 and AGL18 act redundantly as repressors of the floral transition
in Arabidopsis. Plant J Cell Mol Biol 2007, 50:1007-1019.

Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S,
Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L,
Coupland G, Kater MM: Identification of pathways directly regulated by
Short Vegetative Phase during vegetative and reproductive
development in Arabidopsis. Genome Biol 2013, 14:R56.

Gregis V, Sessa A, Colombo L, Kater MM: AGAMOUS-LIKE24 and SHORT
VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
Plant J 2008, 56:891-902.

Pastore JJ, Limpuangthip A, Yamaguchi N, Wu M-F, Sang Y, Han S-K,
Malaspina L, Chavdaroff N, Yamaguchi A, Wagner D: LATE MERISTEM
IDENTITY2 acts together with LEAFY to activate APETALA1. Development 2011,
138:3189-3198.

Riechmann JL, Ratcliffe OJ: A genomic perspective on plant transcription
factors. Curr Opin Plant Biol 2000, 3:423-434.

Page 12 of 12

53. Wilczynski B, Furlong EEM: Challenges for modeling global gene
regulatory networks during development: Insights from Drosophila.
Dev Biol 2010, 340:161-169.

54. Wang J, Haubrock M, Cao K-M, Hua X, Zhang C-Y, Wingender E, Li J:
Regulatory coordination of clustered microRNAs based on microRNA-
transcription factor regulatory network. BMC Syst Biol 2011, 5:199.

55, Lin C-C, Chen Y-J, Chen C-Y, Oyang Y-J, Juan H-F, Huang H-C: Crosstalk
between transcription factors and microRNAs in human protein
interaction network. BMC Syst Biol 2012, 6:18.

56.  Croft L, Szklarczyk D, Jensen LJ, Gorodkin J: Multiple independent analyses
reveal only transcription factors as an enriched functional class
associated with microRNAs. BMC Syst Biol 2012, 6:90.

doi:10.1186/1752-0509-7-126

Cite this article as: Misra and Sriram: Network component analysis
provides quantitative insights on an Arabidopsis transcription factor-
gene regulatory network. BMC Systems Biology 2013 7:126.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	NCA deduces the strengths of TF-gene interactions
	Gene expression levels simulated by NCA agree well with the originally measured gene expression levels
	TF activities deduced for LFY, AG, HY5 and AP3/PI agree well with expression levels of genes encoding these TFs
	Normalized plots of TF activities and gene expression values showed a good fit for LFY, AG, HY5 and AP3

	Discussion
	Conclusions
	Methods
	TF-gene network reconstruction
	Gene expression data
	NCA

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

