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Abstract

Background: The concept of mean first-passage times (MFPTs) occupies an important place in the theory of
stochastic processes, with the methods of their calculation being equally important in theoretical physics, chemistry
and biology. We present here a software tool designed to support computational biology studies where Markovian
dynamics takes place and MFPTs between initial and single or multiple final states in network-like systems are used.
Two methods are made available for which their efficiency is strongly dependent on the topology of the defined
network: the combinatorial Hill technique and the Monte Carlo simulation method.

Results: After a brief introduction to RaTrav, we highlight the utility of MFPT calculations by providing two examples
(accompanied by Additional file 1) where they are deemed to be of importance: analysis of a protein-protein docking
funnel and interpretation of the free energy transduction between two coupled enzymatic reactions controlled by
the dynamics of transition between enzyme conformational states.

Conclusions: RaTrav is a versatile and easy to use software tool for calculating MFPTs across biochemical networks.
The user simply prepares a text file with the structure of a given network, along with some additional basic parameters
such as transition probabilities, waiting probabilities (if any) and local times (weights of edges), which define explicitly
the stochastic dynamics on the network. The RaTrav tool can then be applied in order to compute desired MFPTs. For
the provided examples, we were able to find the favourable binding path within a protein-protein docking funnel and
to calculate the degree of coupling for two chemical reactions catalysed simultaneously by the same protein enzyme.
However, the list of possible applications is much wider.
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method, Hill's method, Complex networks, Chemical kinetics, Protein-protein binding funnel, Protein-protein
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Background

The theory of stochastic Markov processes has many
applications in theoretical physics, chemistry and biol-
ogy [1-5]. If a system allows transitions in time between
various discrete states, we may model the system in the
general language of networks and assign dynamics prop-
erties to the nodes and edges of such networks [6]. In
early attempts to understand the dynamics of stochas-
tic networks the term random walk’ was introduced [7],
which describes the displacement of a point on a network
after a sequence of random moves. Equally important to
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measuring displacement is the quantity called mean first-
passage time (MFPT), which is defined as the time needed
to reach the final state by a statistical ensemble of net-
work walkers [8]. According to the alternative definition,
this time is equivalent to the reciprocal steady-state flux
resulting in a network in which a single walker returns
instantly to the initial state every time it reaches the final
state [9].

MEFPTs have been successfully used in a variety of bio-
chemical studies, for example: the study of protein folding
times [10], protein helix unfolding rates under mechani-
cal forces [11], studies of DNA-based nanoscale walkers
called molecular spiders [12], studies of polymer translo-
cation [13], calcium spark activation times [14], metastatic
cancer progression [15], and the analysis of temperature
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and detection-wavelength dependence of the electron
transfer rates in the initial stages of photosynthesis [16].

In general, time for random walks upon a network may
be discrete or continuous. The RaTrav tool works with dis-
crete time. To our best knowledge, there is currently no
open source software available which is able to perform
MFPTs calculations on a discrete time and space network
of any arbitrary size. In this article we present RaTrav, an
open source software tool. First, we introduce the formu-
lation of MFPT calculations and provide details on the
implementation and usage of RaTrav (Methods section).
Then we focus on two biological applications and demon-
strate how various biological questions may be answered
using the RaTrav software tool (Results and discussion
section).

Methods

Mean first-passage times

When considering the Markov processes, MFPT is
defined as the average time (in number of steps or other
units of time) for a statistical sample of random walks
starting in some initial state on a network of states to reach
for the first time the desired final state or any state from
a collection of final states. In formal terms, the stochastic
continuous time Markov process realized on a given net-
work of states is described by a system of coupled master
equations

p®O=Y_ [wupr® — wrpi(®)] 1

14

which jointly describe the time variation of the probabili-
ties p;(¢) of the hypothetical random walker being in some
state [ at time ¢, where the over-dot denotes a time deriva-
tive. In Eq. 1, wy; is the transition probability per unit time
along the edge from state (node) [ to I, which in general
needs not satisfy the detailed balance condition. Further-
more, the transition probabilities wy; from a given state /
to its nearest neighbours /' need not sum up to unity. On
establishing a discrete time ¢ =ntp, where # is the number
of steps measured in some unit of time 7y, the differential
Eq. 1 is to be recast as the difference master equation

i+ D=pm) + Y [wypr(m) —uppi(m] , ()
l/

in which, as opposed to Eq. 1, the transition probabilities
up;=towy; from the node [ to the node I’ sum up to unity:

Z up=T1o Z wy=1. (3)
I I

Let us note that in general the above sum includes
also the waiting probabilities u;; on a given node / before
a random walker performs a jump to a neighboring
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node /. They have efficient applications in many bio-
logical and physical problems. For example, a protein-
protein complex residing in the bound conformational
state while performing its function and before proceeding
to the dissociation state, or the components of the com-
plex becoming trapped in a local minimum of the free
energy landscape before finding their optimal docked, and
fully functional, conformational state. Moroever, the long-
living metastable states are detected in various excited
atomic or molecular systems before they relax to the
lower-lying energy states.

In developing the RaTrav code we have ensured that
the definitions for the input data are as general as possi-
ble. Therefore, we have made a distinction between the
exit probability from a node and the transition time to its
nearest neighbour. More generally, on defining the various
local times 7y, individually for each transition along a link
with the probability u;, we have the alternative expression
for the transition probabilities per unit time in Eq. 1:

urj

> T

14

(4)

wri=

In the particular case for all ty; = 19 we reconstruct the
transition probabilities that fulfill the conditions in Eq. 3.
The local times can be related to the reaction coordi-
nates, for example, when employing molecular dynamics
simulations to move between well defined protein confor-
mational states, which might be measured on the order of
microseconds.

By virtue of its generality, Eq. 4 has been directly imple-
mented only in the Hill combinatorial technique [9]. Nev-
ertheless, as regards Monte Carlo simulations, it ensures a
determination of the same unit of time for the both meth-
ods. The description and benchmark of the combinatorial
Hill and stochastic Monte Carlo methods on basic net-
works (equal exit probabilities towards each neighbour,
equal weights of edges) may be found in our previous
paper [17]. In comparison to the previous results, newly
developed C++ code is provided, which allows for the def-
inition of multiple final states, different transition prob-
abilities and local times along network edges. Moreover,
the networks can be connected or disconnected structures
represented as basic graphs, as directed graphs, as multi-
graphs and as multi-component graphs or their mutual
mixtures. In order to compare MFPTs generated by these
two methods we have run a series of tests on a number of
network topologies studied previously [17]: hypercubes of
various dimensions, Sierpinski gaskets of various orders,
Bethe lattices with various number of shells and random
tree-like networks; with equal and randomly chosen prob-
abilities, with identical and different local transition times,
and with single and multiple final states. For most of the
cases, the difference between MFPTs calculated from the
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Hill and Monte Carlo methods, calculated as 100% (|H—
MC|/H), was smaller than 0.2% when using 107 walkers.

Both methods mentioned above have their benefits and
drawbacks. For instance, the advantage of Hill's over the
Monte Carlo method is its speed and precision of calcu-
lation when the network is an acyclic graph, or includes a
low number of cycles. On the other hand, for particularly
knotted networks, the Monte Carlo method is the logical
choice, providing reliable MFPT estimations in a reason-
able turnaround time. The best strategy to follow using
the Monte Carlo method is to start with a lower number
of walkers; even if the obtained results are not particu-
larly accurate, this helps to estimate the running time with
the desired higher number of walkers and avoids the sit-
uations where calculations are indicated to be intractable
in a finite time. Some indication of running times may be
found in Tab. 4 of [17].

Implementation of the Monte Carlo simulation method
The Monte Carlo method relies on the simulation
of random walks on a network of interest, driven
by a pseudorandom number generator. Random num-
bers were generated in the Monte Carlo method
using the Boost C++ Libraries components (http://
www.boost.org) — Mersenne Twister mt19937 ran-
dom number generator (with a standard seed) and a
uniform real distribution function.

In our implementation (see source code), there is an
outer for loop over the number of simulations and an
inner for loop over the number of walkers in each simu-
lation. Each walker is placed in an initial state (node on the
network) and its first passage time set to 0. For each iter-
ation, a random number is generated. Exit probabilities
from each node sum up to one but do not have to be equal,
thus forming a ranges of transition probabilities to each
neighbour. Each transition is chosen as an effect of casting
a random number. After a walker undergoes a transition
it is placed in a new state (or stays in the same state if the
waiting probability exists and the random walker chooses
this transition) and its first passage time is increased by
the weight of edge (local time) it passed. The walker
performs its random walk until it reaches the final state
or one state from the set of final states. When all random
walkers finish their walk, the mean first-passage time is
calculated based on first passage times for each walker.
If the user chooses to perform more simulations with
the given number of walkers, mean first-passage times
are averaged further and standard deviation of this mean
over the number of simulations, with the given number
of walkers, is calculated. Please notice that if the number
of walkers is large enough (in fact the user should per-
form some initial simulations to be sure the number of
walkers is sufficient for a new network), MFPTs obtained
from each simulation will be similar. However, because of
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the random movement of walkers, the first passage time
of a single walker cannot be predicted based on e.g. first
passage time of another walker.

In terms of efficiency of the calculations, because the
current step of a walker determines its next step, a single
random walk cannot be parallelized. However, the cal-
culation of mean first-passage time may be parallelized,
because the walkers in the statistical ensemble are inde-
pendent. We have shown that using parallel processing
methods (Message Passing Interface), the efficiency may
be increased over 90% using more than 10 CPUs or by
using a few cores on a single CPU [18]. However, to keep
the RaTrav software as portable as possible, we haven’t
implemented MPI parallel processing methods in the cur-
rent version of the software.

Implementation of the combinatorial Hill method

The Hill method relies on the idea that instead of an
ensemble of walkers one can consider only a single walker
that after traversing a network of states (nodes) appears
instantly at the starting node every time it reaches the tar-
get node. Because this procedure is repeated many times
the Hill method shows that the MFPT t between these
two nodes corresponds to the reciprocal one-way station-
ary flux J, = =7 - resulting in a modified network in
which the transitions to the target node have been redi-
rected to the starting node. The steady-state flux has the
following form

J= Z wupy (5)
l/

where wyy stands for the transition probabilities per unit
time from a set of /' nodes adjacent to the target node
[ and occupied by the walker with probabilities p?,t. We
can calculate these probabilities solving the system of the
stationary master equations in Eq. 1 for p;(t) = 0, or
equivalently using the Hill algorithm [9] that we have now
implemented in the RaTrav tool. The algorithm proceeds
according to the following steps:

1. Determine two nodes on the original network (graph)
in order to calculate the MFPT between them.

2. Modify this graph through the identification of the
initial node with the final node, combined with
elimination of the latter.

3. Construct for such a modified graph G the complete
set of its subgraphs, called maximal trees T. The
maximal tree is a connected graph which contains all
nodes of the graph G and no cycles.

4. Make each possible maximal tree T to be a directed
graph. It is obtained from T by directing all its edges
(links) towards the node 1. Each directed tree T,
contributes a weight W;(T,) as the product of
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transition probabilities per unit time w;; from the
node j to the node i.

5. Calculate the sum of these weights, Wy =3, 7.
W (T,), which run over all maximal trees Ty
directed to a given node L

Then, the steady-state occupation probability of the node
[ in the network (graph) G becomes

Wi
Zn WVI '

st
Py =

where the expression in the denominator obeys a summa-
tion over all sum of weights generated for the graph G to
ensure that ), p$ = 1. The construction of these proba-
bilities is fundamental for the calculation of the stationary
flux in Eq. 5 and finally the MFPT. To this end we have
applied the algorithm which for a given set of elements
(the graph edges) generates its subset in lexicographical
order.

Input file and control keywords
The user is required to prepare a text file with the struc-
ture of a given network. Upon completion of the compu-
tations, an output file is produced with computed MFPTs
along with, in case of the Monte Carlo method, their
estimated errors. The user needs to choose between the
Hill's and Monte Carlo methods, between using basic (just
neighbouring nodes) or advanced (with transition proba-
bilities and local times along edges), between calculating
all the MFPTs or only a selection, and whether to define
multiple final states.

Let us start with a very simple square network for which
the input file in RaTrav format takes the following form:

WALK 1000000
SIMU 1

NODE
NODE
NODE
NODE

w N P O
P O wN
N W o

Keyword NODE is followed by the node number (the
first numerical column, entries are counted from 0; it is
important to maintain an increasing numeric order of
node identities and gaps in numbering are not permitted).
Subsequent numbers are the identities of neighbouring
nodes and their order does not matter. In the case of
performing a Monte Carlo simulation there is the require-
ment for WALK and SIMU keywords (number of walk-
ers, number of simulations with WALK walkers). Entering
SIMU > 1, the user will receive error estimates for each
MEPT calculation (standard deviation of average MFPT
over the number of simulations run). To establish waiting
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probabilities on, for example the 9th node, the NODE 9
input line may be defined as:

NODE 9 3 9 9

i.e. the node number is repeated. This means that the
node labelled as 9 in a graph connects directly to the node
labelled as 3 and to itself twice, so the transition proba-
bility from node 9 to node 3 is 1/3, whereas the waiting
probability on the node 9 is 2/3. If the user chooses to use
Hill’s algorithm, WALK and SIMU keywords won'’t be used
even if present in the input file.

In advanced file format the user can define transition
probabilities and weights of edges. To minimize round-
ing errors, in addition to the decimal format, it is possible
to define the transition probabilities and weight of edges
as common fractions. The same square can be defined
as follows (node number, followed by a triplet contain-
ing: identity of neighbouring node, transition probability,
weight of edge):

NODE 0 2 1/2 1.0 1 1/2 1.0
NODE 1 3 1/2 1.0 0 1/2 1.0
NODE 2 0 1/2 1.0 3 1/2 1.0
NODE 3 1 1/2 1.0 2 1/2 1.0

With transition probabilities equal to 1/2 and weights of
edges equal to 1.0, this format is equivalent to the basic
file format. However, in advanced file format it is possible
to use different combinations of probabilities and weights.
Requirements are that the probabilities in each line have
to sum up to 1.0, and in the case of Hill's method, at
least one local timescale (weight of edge) must be differ-
ent from 0. The last condition does not apply to the Monte
Carlo method. Thus, on account of some specific prob-
lem, the advanced input file may take the following form:

NODE 0 2 1/2 2.0 1 1/2 1.0
NODE 1 3 1/3 0.5 0 2/3 0.1
NODE 2 0 3/5 3.0 3 2/5 0.2
NODE 3 1 3/4 5.0 2 1/4 4.0

In the above please note the different values of weights
possible for two-way transitions between the same pair
of nodes, for example, 1 and 3. We assume in general
that a passage in either direction along a given edge does
not need to correspond to the same weight or transition
probability.

Optional use of the MFPT keyword allows definition of
selected MFPTs the user wants to be computed, e.g.: MFPT
0 1 means the MFPT between states 0 and 1 will be cal-
culated, MFPT 0 1 2 means the MFPT between initial
state 0 and two final states will be calculated — either state
1 or 2 has to be reached (it is possible to define any number
of final states).
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The INFO keyword allows the user to pass any com-
ments which will be copied to the output files.

Compilation and usage

There is a Makefile attached so under Linux it is sufficient
to simply call make. However, two variables have to be
set before doing so:

CXX=1icc
BOOST=-1 PATH_TO_BOOST/boost/ include

The first variable is used to choose the compiler, e.g.
icc for Intel C Compiler or g++ for GNU C Compiler.
The Monte Carlo method uses Boost C++ Libraries
(http://www.boost .org) which have to be down-
loaded and installed. The second variable is used to set
the path to the Boost C++ Libraries so the user must
change PATH TO_ BOOST to the local path. Alternatively
the RaTrav tool may be compiled without the Makefile,
e.g. with ICC, as follows:

ice -o RaTrav -I PATH TO BOOST/boost/
include MC.13.09.16.cpp HI.13.09.16.cpp
RaTrav.13.09.16.cpp

The general usage is as follows:

RaTrav input output METHOD INPUT FORMAT
MODE

The five parameters have the following meaning: input
is a name of the input text file which defines the network;
output is a name of the output text file generated by
RaTrav; the METHOD parameter that should be set equal to
0 to use the Monte Carlo method or 1 for Hill’s method;
the INPUT FORMAT parameter should be set equal to 0
for a basic input file or 1 for an advanced input file; the
MODE parameter should be set equal to 0 when all MPFTs
are to be calculated or 1 when selected MFPTs are to be
calculated (MFPT keyword needed as introduced above).

For example: to use the Monte Carlo method, with
a basic input file and for all MFPTs to be calculated,
the user runs RaTrav input.txt output.txt 0
0 0; to use Hill's method, with an advanced input file
and for selected MFPTs to be calculated, the user runs
RaTrav input.txt output.txt 1 1 1.

A basic example

To better explain the functionalities of the RaTrav tool, we
present in Figure 1 a simple irregular network with nine
nodes (black dots) and nine edges (links between nodes).
It has one cycle (edges coloured in green); nodes have
different exit probabilities u;y (probabilities of passing
defined as common fractions; coloured in black, in case of
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Figure 1 Dynamics on a network. A simple network with nine
nodes and its properties (transition probabilities (black), local times
scales (red), cycle (green), probability of waiting (cyan), initial (S) and
final (E1, E2) states). See text for more details.

a cycle in green, in case of waiting on a node in cyan), and
local time scales 7y (the cost of passing defined as decimal
fractions with arrows; coloured in red). For some nodes
there are waiting probabilities (i.e. transitions to the same
node; cyan circular arrows); sometimes the transition
probability from an edge node is set equal to one, instead
of a waiting probability with an associated waiting time
(weight of self transition). Both variables u;y and 7y may
be symmetric or asymmetric. The weight of an edge is the
time required for transition between states, whereas the
waiting time is the lifetime of the molecule in a particular
state. These times can be related to experimental values,
for example, the half-life of a complex can be calculated
from its dissociation rate Koff, T1/2 = In(2)/kogt [19].

The network presented in Figure 1 (input and output
files may be found in Additional file 1) is represented in
RaTrav format as follows (nodes are numbered from the
left to the right, and from top to bottom, so S=0, E1=7,
E2=8):

NODE 0 1 1.0 1.4

NODE 1 0 1/5 3.1 2 2/5 2.3 4 1/5 0.5 5
1/5 2.5

NODE 2 1 1/2 3.2 2 1/2 1.0

NODE 3 4 1/3 0.8 3 2/3 1.0

NODE 4 3 1/4 0.2 1 1/2 0.3 5 1/4 1.0
NODE 5 4 1/4 10.0 1 1/4 0.1 6 1/2 6.0
NODE 6 5 1/3 1.5 7 1/3 8.0 8 1/3 1.0
NODE 7 6 3/4 3.3 7 1/4 1.0

NODE 8 6 1.0 0.7

Please note that node numbers must be written in
increasing order, but the neighbours of each node may be
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written in any order. If we add the following lines to the
input file:

WALK 1000000
SIMU 1
MFPT O
MFPT O
MFPT O

~N 00 J

the output using Hill's method (WALK and SIMU not used)
is:

===== QUTPUT =====

MFPT | Time in seconds

MFPT FROM 0 TO 7: 80.300 0.0
MFPT FROM 0 TO 8: 83.233 0.0

FROM 0 TO 7,8:

61.556 0.0

and with the Monte Carlo method (WALK and STMU used)
is:

===== QUTPUT =====

| Time in seconds

FROM 0 TO 7: 80.437 0.9
FROM 0 TO 8: 83.121 0.9
7,8: 61.581 0.7

For the presented network, the MFPT between S and E1
is calculated to be 80.300, between S and E2 to be 83.233,
and between S and E1 or E2 (multiple final state) to be
61.556. Two observations can be made: for the submitted
network Hill's method is faster and gives exact results;
using the Monte Carlo method, with 1000000 walkers,
gives similar results. In case of reducing the number of
walkers to 100000 but increasing the number of simula-
tions to 10:

WALK 100000
SIMU 10

the following results with Monte Carlo can be obtained:

===== QUTPUT =====
MFPT | Error | Percentage error | Time
in seconds

MFPT FROM 0 TO 7:
MFPT FROM 0 TO 8:
MFPT FROM 0 TO 7,8:

80.437 0.054 0.067
83.121 0.074 0.089
61.581 0.056 0.092

In this case the program also returns the standard devi-
ation for each MFPT; comparing each MFPT, and its
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associated error, with the equivalent but exact result from
Hill's method, we may notice that one standard deviation
may be insufficient to denote each MFPT pair to match;
however, within three standard deviations each MFPT
pair should match. This may not always be the case for
more complicated networks, since if the number of walk-
ers in each simulation is too low, every node may not be
visited by a walker from the ensemble (ergodicity issues).

Important remarks

1. When using the Hill method the final state must be
different from the initial state. However, when using
the Monte Carlo method one can identify such states
and obtain the MFPT, which is in fact a return time
to the origin.

2. For the Hill method the number of final states cannot
exceed N-2, where N is the total number of states
(nodes in a graph). However, for the Monte Carlo
method one can define such a configuration of states,
eg MFPT 0 1 2 3 forasquare.

3. By choosing the Monte Carlo method the user is able
to define ultrafast transitions between all or selected
states, for which the local passage time along an edge
between such states is set equal to zero. For the Hill
method at least one local time scale must be different
from zero.

4. A network does not have to be compact. If there is no
path between states, RaTrav will return MFPT as
‘Infinity (not accessible)’.

Results and discussion

In this section we provide two applications for which the
use of the RaTrav tool dedicated to MFPT calculations
provides meaningful results. Each subsection includes a
theoretical introduction to the problem, followed by a
guide for the reader as to how to construct the appropriate
RaTrav input files, and finally a discussion of the RaTrav
results. The files accompanying the examples are available
in Additional file 1.

Analysis of conformational pathways within a
protein-protein binding funnel

In the molecular machinery of life proteins are responsible
for a diverse array of functions. However, the great major-
ity of biological functions are mediated not by isolated
proteins but by their interactions. In addition to predict-
ing the correct geometry of protein-protein complexes (in
3D) from their unbound components, for which a num-
ber of fully automated servers now exist, see for example
the SwarmDock server [20] or the ClusPro server [21],
of equal importance is to study the dynamics of binding,
i.e. how the binding partners, upon complex formation,
sample the binding funnel.
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Studying the topological properties of protein-protein
binding funnels will enable us to understand how to
change the dynamics of protein-protein association in a
controlled way. The importance of being able to do this
relates to rational drug design, where funnel sampling
becomes particularly important when designing a series
of similar protein ligands (such as proteins with a few key
point mutations), or blocking peptides, and ascertaining if
they are likely to be more effective in inhibiting a particu-
lar receptor protein-binding site more than the wild-type
protein ligand.

Automatic generation of protein-protein conforma-
tional space networks (in RaTrav formatted files), for any
protein receptor/ligand pair, was recently incorporated
into our docking tool, the SwarmDock Server [20]. For
this study, we chose the vitamin D-binding protein/actin
complex (Brookhaven protein database code, 1IKXP) [22],
which was previously studied by us in terms of confor-
mational occupation probabilities and their usefulness to
filter away non-funnel like protein-protein energy struc-
tures, thus improving the ranking of the correct docking
poses [23]. The above study, based on state occupancies,
was useful in distinguishing between true positive and
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false positive binding funnels. In the example described
below we focus on the properties of the true positive bind-
ing funnel and calculate mean first-passage times between
distinct conformational states within the funnel, i.e. we are
interested in finding the favourable transition path from
the top to the bottom of the binding funnel.

The initial network of 32 conformational states, gener-
ated by the SwarmDock server, is depicted in Figure 2.
The assigned quality of each state, that is its similarity
with the final bound complex state, was based in accor-
dance to the CAPRI (Critical Assessment of PRediction
of Interactions) criteria [24], on three quantities: fraction
of native contacts (fnat), interface root mean square devi-
ation (IRMSD) and ligand root mean square deviation
(LRMSD). These values are used to classify the confor-
mations as incorrect (fnat < 0.1 or (LRMSD > 10A and
IRMSD > 4A)), acceptable ((fnat > 0.3 and LRMSD >
5A nd IRMSD > 2A) or ((fnat > 0.1 and fnat < 0.3) and
(LRMSD < 10Aor IRMSD < 4A))), medium quality
((fnat > 0.5 and LRMSD > 1A and IRMSD > 1A)
or ((fnat > 0.3 and fnat < 0.5) and (LRMSD < 5A or
IRMSD < 2A))) or high quality (fnat > 0.5 and (LRMSD <
1A or IRMSD < lA)), relative to the conformation of the
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Figure 2 The true positive binding funnel. The true positive binding funnel for the vitamin D-binding protein/actin complex (1KXP [22])
generated with the SwarmDock Server [20] by docking unbound receptor/ligand pair included in Benchmark 4.0 [25]. The protein-protein
conformational states are numbered from ID 0 to 31. The letter indicates the quality of solution in accordance to CAPRI [24] classification as:

M = medium quality (blue), A — acceptable quality (green), | - incorrect solution (red). Favourable paths are marked in red. Figure created with Gephi
[26] based on Example1/1KXP.gml file (Additional file 1). See text for more details.
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native bound complex (i.e. the conformation at the bottom
of the binding funnel).

Similarly to the previous study [23], the transition prob-
ability for states with ligand RMSD above 6A was set
to zero. For the remaining states, transition probabili-
ties were assigned based on energy value (the OPUS-PSP
potential [27]): if the energy of the state in question was
higher than the neighbouring state, the exit probability
was set to 1.0, otherwise it was set to exp(—AE), where
AE is the difference in the energy between the two con-
formations. The exit probabilities for each node were nor-
malized. In the present study, the weights of each edges
are set equal to 1.0 (global time scale, we assume that con-
formational states are sampled uniformly in time), and if
the transition probability is smaller than 107 for a par-
ticular edge it is removed. PDB files (Examplel/*.pdb),
the RMSD matrix file (Examplel/1KXP.rmsd), the MFPT
matrix file (Examplel/1KXP.mfpt) and characteristics of
the conformational states file (Examplel/1KXP.info) are
deposited in Additional file 1. Here we are interested in
finding the favourable path(s) between incorrect confor-
mational states (ID 9 and 30; states on the edge of the
binding funnel) and the best state found by SwarmDock
(the state closest to the bottom of the binding funnel; the
native complex state). The state identified as being the
closest to the native complex state, based upon the CAPRI
criteria described above, is M21 (see Figure 2 and Exam-
ple1/1KXP.info for details).

The RaTrav tool was run on this network (Exam-
plel/1KXP.ratrav) with 10° random walkers. To speed up
the computations we parallelized the calculations by cre-
ating a separate input file for each pair of states and
by using the MFPT keyword (see Methods). We ran the
calculations on our computational cluster (HP ProLiant
BL460c) in parallel for 992 MFPTs (32 * 32 — 32) for
a maximum walltime of 14 days. A total of 291 MFPTs
were reported to be not accessible; links between nodes
with transition probabilities smaller than 107°. Of the
remaining 701 MFPTs a total of 372 were reported back
by RaTrav, the remainder, 329 were still in the process of
being computed and assumed to be essentially infinite;
that is a substantial number of the network walkers were
stuck in dead ends.

Using the initial network (Examplel/1KXP.ratrav), we
assigned weights to edges based on calculated MFPTs; we
removed links if MFPTs haven’t been calculated. On this
MFPT weighted network (all weights are positive) we ran
the Dijkstra algorithm [28] to find the favourable trajecto-
ries (shortest paths in units of mean first-passage times)
between conformational states on the edge of the binding
funnel (I9 and 130) and the medium quality structure near
the bottom of the funnel (M21).

The Dijkstra algorithm identified the following short-
est paths: 9 — 20 — 22 — 21 (sum of MFPTs equals
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4,624,065 steps) and 30 — 20 — 22 — 21 (sum of MFPTs
equals 4,243,494 steps).

We analyzed the trajectory in terms of changes in inter-
face and ligand RMSD, number of native and non-native
contacts and energy of each conformational state. We
summarize the calculations in Table 1 and the values
for all states are present in Additional file 1 (Examplel/
1KXP.info).

The final state is accessed slightly faster from the edge
state I30 which has fnat = 25% than the edge state 19 with
the slightly lower fnat = 22%. The difference in paths is
only due to the MFPT for the first transition, to the state
A20. Interestingly, the initial transitions (IDs 9 — 20 or
30 — 20) are down an energy gradient, at least in terms
of the OPUS-PSP potential used to score protein-protein
interactions. However, the next two transitions, A20 —
M22 — M21 are movements to slightly increased energy
states, indicating that the most time efficient pathways do
not necessarily follow a decreasing energy gradient. More-
over, in terms of MFPTs, the transition between states
A20 and M22, which looks in Figure 2 to be a bottleneck
(kinetic trap), is not the limiting transition when compar-
ing MFPTs for the first transition (I9 or I30 to A20) or the
last transition in the pathway (M22 to M21).

In conclusion, by exploring MFPTs between confor-
mational states within a protein-protein binding funnel,
dynamic information can be obtained that may provide
important complementary, and sometimes counter intu-
itive, information on the funnel’s physical properties,
which may facilitate rational design of competitive protein
ligand inhibitors.

Free energy transduction between two coupled enzymatic
reactions

As a second example of the utility of RaTrav, we describe
here a method that enables a user to determine the non-
equilibrium stationary fluxes in a system of interest on

Table 1 Conformational states in the favourable trajectory
from the edge of the binding funnel 19 or 130 to M21 near
the bottom of the funnel

Node ID IRMSD LRMSD  fnat  fnonnat = OPUS-PSP
(Figure 2) [27]
9 (59b.pdb) 441 1543 022 0.78 -335.113
or

30 (99c.pdb) 401 14.81 0.25 0.77 -385.907
20 (79a.pdb) 295 10.60 042 0.60 -441.811
22 (80c.pdb) 1.88 553 061 042 -405.242
21 (80a.pdb) 141 314 067 031 -406.366

Interface RMSD (IRMSD), ligand RMSD (LRMSD), number of native contacts
(fnat), number of non-native contacts (fnonnat) and OPUSPSP energy values are
reported. The first four values were computed comparing with the native
complex structure.
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the basis of MFPT calculations. To this end we consider
the action of a protein enzyme that converts the free
energy between two coupled chemical reactions [29,30].
Our primary task is to calculate the degree of coupling
between the free energy-donating reaction and the free
energy-accepting one, the parameter that characterizes
the efficacy of this chemo-chemical machine.

Let us consider the shaded box shown in Figure 3 which
represents the network of conformational substates of a
protein macromolecule that catalyses simultaneously two,
in general, reversible reactions: the free energy-donating
reaction R; <> P; and the free energy-accepting reaction
Ry <> P3. A model structure of such a network consist-
ing of two hundred nodes is depicted in Figure 4. A set
of distinguished transition states, called the gates, under-
scored by enlarged black nodes, corresponds directly to
the system of labels used in Figure 3. For the sake of
clarity, we have limited our calculations to a rather sim-
ple network of states displaying a tree-like topology, but
much more complex networks of states can also be taken
into account. In this context, the actual network can be
thought of as a spanning tree, a loopless subnetwork con-
sisting of edges with the highest transition probabilities
per unit time between conformational substates.

The steady-state reaction fluxes

Ji =[P:]/[Elo (6)

(i = 1,2) determine by definition the effective reaction
rates, where [E] is the total concentration of the enzyme
molecule and the over-dot means a derivative with respect
to time. The corresponding chemical forces

(R]

A; =InK;,— ,
p P

K, = , (7)

drive both chemical reactions. The symbols enclosed in
the square brackets denote the molar concentrations of

e1”

Tl M TZ
o1’ 2"

R1 2% P2

P1 R2

Figure 3 Chemo-chemical molecular machine. A scheme of two
coupled free energy-donating Ry <> P and free energy-accepting

Ry <> P> enzymatic reactions involving the intramolecular
conformational dynamics of the enzyme macromolecule. The
multitude of conformational transitions within the complex M is
represented by the shaded box. Both coupled reactions are assumed
to be gated by certain conformational substates distinguished here
as the black dots. The transitions between gates are characterized by
the external transition times 7y and 5.
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Figure 4 The model network of conformational substates. The
model network of stochastic transitions between conformational
substates (nodes) corresponding to the shaded box M in Figure 3. Its
structure displays both the scale-free topology, as well as the fractality
[31]. The distinguished nodes (enlarged dots) symbolizes the gates
which have been marked here in accordance with a system of labels
used in Figure 3.

the chemical compounds R; and P; in the steady state (no
subscript) or in the equilibrium state (the superscript eq).
Here, B = (kg T)~ 1, where kg is the Boltzmann constant
and T denotes the absolute temperature.

The protein enzyme acts as a mesoscopic molecular
machine, i.e. a system that enables two subsystems to per-
form work on one another, with the efficiency given by the
ratio

n=-hA2/1A1, (8)

of the output power A, to the input power J;A;. The
minus sign in Eq. 8 arises from the fact that the free
energy transduction can be realized only if the positive
flux J, > 0 corresponds to the negative chemical force
Ay < 0 or vice versa [9]. This contradicts the second
law of thermodynamics according to which the flux as
well as the force should be of the same sign. However,
if both reactions are coupled by the protein enzyme and
proceed simultaneously in a common cycle, then the first
reaction can change the direction of the second reaction.
Consequently, the free energy dissipation is minimized
at the expense of the free energy conversion, which can
be realised with higher efficacy in the system. The effec-
tiveness of this process is characterised by a degree of
coupling

e=h/h. &)

In the following, our main objective is to give some
instructive hints of how to calculate a degree of cou-
pling for the two chemical reactions controlled and gated
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by the network of conformational transitions depicted in
Figure 4. This network forms the content of the grey box,
representing the enzyme-substrate(s) complex M, shown
schematically in Figure 3. We assume that the stochas-
tic dynamics of conformational and chemical transitions
within the enzymatic protein is jointly described by the
system of master equations (see Egs. 1 or 2). For the iso-
lated network (without the chemical reactions) we assume
the transition probabilities per unit time from the confor-
mational substate [ to its k; directly adjacent substates /’
to be

wyr=p/k;. (10)

p determines the probability of transition to any con-
formational state neighbouring /. Following the detailed
balance principle

wiypy =wyp; (11)

the equilibrium occupation probability of the substate
(node) [

eq k;

p[ :Zkl/ )
Iz

(12)

where the summation runs over all nodes composing a
network of conformational substates.

The non-zero thermodynamic forces, Eqs. 7, drive the
system out of equilibrium breaking simultaneously the
detailed balance condition for external and in general
reversible transitions between gates (the transition states),
which for [ = 1,2 are characterised by the external tran-
sition times t; (cf. Figure 3). These parameters can be
compared to the longest MFPT within a network of states
(nodes), which usually refers to the passage time, counted
in the random walker steps, between the most distant pair
of nodes. Together with the equilibrium occupation prob-
abilities in Eq. 12 they determine the additional transition
probabilities between the gates in the forward direction
(exit from the gate ")

V—‘rl = —eq (13)
Tlpl//
and in the backward direction (exit from the gate /')
—BA;
pe
V= —_eq (14‘)
Tpy

The factor e P4! breaks the detailed balance symmetry.
Here, the index / = 1,2 and the appropriate selection of
primes and double primes is explained in Figure 4.

It follows from Eq. 13 and 14 that the probability p we
introduced in Eq. 10 determines the characteristic unit of
time which establishes an elementary time scale for the
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computer machine step. Thus, it should be firmly empha-
sized that the adequate determination of this quantity has
a decisive meaning for the computational purpose at hand.
To find p we select one gate [ for which the external tran-
sition probability v, is the highest. Then, assuming that
at this gate the sum p+vy,, =1, we obtain the appropriate
expression for p:

1

P @y (1
Consequently, in the case of the remaining nodes the
sum of internal and possibly external transition probabil-
ities must be complemented to unity, which means that
additionally the non-zero waiting probabilities have to be
taken into account on these states.

For the network of states depicted in Figure 4 (Exam-
ple2/ratrav_figd.in in Additional file 1) the longest MFPT,
Tmax, counted in random walk steps without external tran-
sitions, equals 3261 (see Example2/HI_ratrav_fig4.out in
Additional file 1); the transition state with the lowest
occupation probability corresponds to the gate [ = 1”
(although [ =1’ is another good choice), for which pif} =
1/398 (see Eq. 12 with ky» =1, Y ; k; =2 (N — 1) where
N = 200 is the number of nodes in the network). With-
out loss of generality we consider in what follows only
the case for 17 = 12. Selecting 7; = 40, which is far
below the maximal value T,x = 3261, we enforce the
chemical reactions to be completely controlled by the
internal dynamics of conformational transitions for which
p ~ 0.091 in Eq. 15. Moreover, assuming BA; = 10 we
require that the free energy-donating reaction proceeds
sufficiently far from equilibrium in the forward direction
1” — 1/, while becoming almost negligible in the backward
direction 1’ — 1”. In turn, we put A = 0 to provide the
detailed balance symmetry for the free energy-accepting
reaction. Such a choice of parameters t; and A; for [=1,2
assures the highest transition probability from the node
1=1".

We are now in a position to determine the steady-state
reaction fluxes for both chemical transitions. The net
fluxes are decomposed into one-way fluxes

Nh=J1—-J1
Jo=J2—J2,

(16)
(17)

where the signs plus and minus refer to the forward and
the backward directions, respectively. To find them we
must perform four independent calculations. Following
the Hill reasoning [9] described in Methods, instead of the
one-way steady state fluxes, it is enough to calculate the
MEPTs between correctly identified nodes in the modi-
fied network of states. The schemes illustrated in Figure 5,
explain in a pictorial form the direct relation between the
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Figure 5 Stationary reaction fluxes. Four modified versions of the network of conformational substates with the internal and external transitions
between them pictured in Figure 3. The considered schematic diagrams enable calculation, by using the Hill or Monte Carlo methods, the
steady-state fluxes for the input/output reactions in the forward (a)/(c) and the backward (b)/(d) directions. The successive external transitions
have been redirected to the additional node connected to the network and labeled here by the symbol, . For instance, the forward reaction flux (a)
is equivalent to the reciprocal MFPT from the gate 1’ to the node x, through the intermediate gate 1”.

MEFPT and a one-way stationary flux J;. According to the 6. The inverse of this MFPT determines the one-way

Hill algorithm stationary flux.
_ 1 18 Interestingly, the MFPTs in Eqgs. 18 and 19 turn out to be
Jri= (' = %) (18) split into two parts
1 -1
Jj=— (19) ' > x)=1(' > "+ (vu p}y) (20)
T(l" — %)

(" - %) =1(" — l’)—l—(v_lp;t)_1

21
where * is the additional target node connected to the net- .
work in a position where the intermediate nodes (gates)
" for Jyy, or I' for J_; are localised (see Figure 5). The
algorithm allowing a calculation of the one-way stationary
flux between two directly connected states (nodes) in the

arbitrary network of states proceeds in the following steps:

(see Theorem 2 in [30]). Here, the superscript ‘st’ indicates
the stationary occupation probabilities of the selected
gates which can be also computed by the RaTrav tool. A
method of how to calculate all quantities, for example,
on the rh.s of Eq. 20 for [ = 2 is explained graphically
in Figure 6. The relations in Eqgs. 20 and 21 offer a very

1. Create a network (graph) with connections (links) useful way in which all component MFPTs from states
between nodes in accordance with the RaTrav input I or I” to * and hence the stationary fluxes in Egs. 18
file format (see input files in Example2). and 19 can be calculated. Moreover, they are of particu-

2. Select two nodes connected directly by the link. In lar importance since they enable us to identify scales of
Figure 5a it is the reversible external transition two characteristic time contributions, distinguishing the
between the node 1’ and the node 1” characterized conformational dynamics within the protein enzyme (the
by the exit probabilities vij. first component) and between two coupled chemical reac-

3. Choose a direction in which the flux will be tions each of which is gated by a single transition substate
calculated. In Figure 5a the flux /41 is assumed to be (the second component). In this second case both com-
in the counterclockwise direction. ponents, Vilpil’ can be thought of as the counterparts of

4. Redirect one of the two (if reversible) transitions the reciprocal equilibrium rate constants supposed by the
along a link to the additional node added to the transition state theory.
original network. In Figure 5a the transition from the Input data used to compute all directed reaction fluxes
node 1” to the node 1" has been redirected to the in the network of states shown in Figure 4, accompa-
new node labeled there by the star. nied by the outputs, are to be found in Additional file 1.

5. Calculate the MFPT between the initial node (1') and ~ The MFPTs required for a determination of the steady-
the final node (x). state fluxes in Eqgs. 18 and 19 and obtained by using of
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.1’ 2//._» *
(a)

obtained for the original network (a).

(b)

Figure 6 Conformational dynamics and chemical kinetics. Calculation of the MFPT from the node 2’ through 2” to * on the network shown in
Figure 5c can be performed using Egs. 20 and 21as follows. First, it is sufficient to modify the initial network (a) by replacing the directed link from
the node 2” to the node x with the link redirecteded to the node 2”. Then, we calculate in a such prepared network (b) the MFPT from the node 2’
to the node 2 using Monte Carlo or Hill's method and simultaneously the steady-state occupation probability p%t,, of node 2", which we next
multiply by the transition probability v, 57 to *. The inverse of this product plus the MFPT between nodes 2" and 2”, sum up to the total MFPT

the Hill algorithm are as follows: 7(1’ — x) = 5050.17,
(1”7 — x) = 5086078.41, t(2’ — =) = 423.29 and
(2" — %) =461.62, whereas those obtained by applica-
tion of the Monte Carlo simulations for WALK=1000000
and SIMU=1 are: 7(1’ — %) = 504895, (1" — %) =
5081053.61, T(2' — %) =425.39 and 7(2” — %) =463.55.
Therefore, combining these numerical results, we con-
clude from Egs. 16, 17, 18, 19 and 9, that the degree of
coupling is

€=0.992, following the Hill method, and
€%0.978, following the Monte Carlo method.

It is worth emphasizing that both numbers are very
close to unity and this result requires sensible interpreta-
tion. Let us recall that the degree of coupling is defined
as the ratio of the free energy-accepting reaction flux and
the free energy-donating reaction flux. We have assumed
that both reactions are controlled (t =40 < Tax = 3261)
and simultaneously gated by the dynamics of stochastic
transitions within a network of conformational states. The
system of connections in this network is not arbitrary but
displays the scale-free topology and fractality. The frac-
tality results mainly from the effective repulsion between
the most connected nodes, so called hubs, which tend to
link to small degree nodes and not to each other. Two
main hubs are clearly visible in Figure 4. Their existence
enables the most distant separation between the pairs of
gates (transition states) for the output and input reactions.
As a consequence, the MFPTs between the gates shown
in Figure 4 become comparable and hence the degree of
coupling is very close to unity. We have examined that all
other configurations of the gates decreases the value of
this parameter. There is still an open question for scien-
tists of how to construct the effective networks of states
for the real-world protein machines to predict and explain
their basic functions. We hope, at least to some extent,
that our software contributes to manage this task.

Conclusions

There is a wide range of problems related to the the-
ory of stochastic processes where the mean first-passage
time quantity may be applied to describe the dynamics
of the networked system. RaTrav is a software tool for
calculating MFPTs on any arbitrary network or graph rep-
resenting a substrate for Markovian processes, defined by
the users in accordance with their requirements. MFPTs
may be calculated between a pair of states or between an
initial state and multiple final states. Moreover, exit proba-
bilities from the nodes as well as local time scales along the
edges may be assigned by the user. A choice between two
MEPT calculation methods is made available: a stochastic
Monte Carlo method and the combinatorial Hill method.
To highlight the usefulness of the RaTrav tool, we pre-
sented in this article two examples of biochemical pro-
cesses where the calculation of MFPTs plays an important
role. For the first example (analysis of a protein-protein
binding funnel), due to the large number of cycles within
the network, the Monte Carlo method was applied. For
the second, a tree-like network of conformational states
for an enzyme, the Hill algorithm was applied in order
to return results much faster and without any approxi-
mations. To our best knowledge, RaTrav is not only the
first open source computational package for computing
MEPTs, but as well the first computational tool to be
made available where the local transition times of the net-
work edges have been successfully introduced into Hill’s
method.

We are aware that there is a substantial gap between
physics and biology in terms of describing the network
properties such as the proper sampling of states, assign-
ment of transition probabilities and assignment of weights
of edges (local times) in line with a chosen reaction coor-
dinate. However, with further development in various
fields, we believe that RaTrav, as a general tool, can be
applied to a wide group of problems, where a biosystem or
a process can be represented as a complex network.
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Availability and requirements

Project name: RaTrav

Project home page: http://sourceforge.net/projects/
ratrav

Operating system(s): Platform independent
Programming language: C++

Other requirements: Boost C++ Libraries (http://www.
boost.org/)

License: GNU General Public License, version 3 (http://
opensource.org/licenses/GPL-3.0) for RaTrav. Boost Soft-
ware License (http://www.boost.org/users/license.html)
for Boost C++ Libraries.

The package contains full source code, binary version of
RaTrav and manual.

Additional file

Additional file 1: RaTrav examples file. File containing RaTrav input and
output data for the two case studies presented.
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