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Abstract

Background: The set of indispensable genes that are required by an organism to grow and sustain life are termed
as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens,
not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal
gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as
a whole for their identification. The available experimental approaches capture some aspects but each method
comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful
prediction method to recognize this gene pool including rationalization of the known essential genes in a given
organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene
pool in a deadly pathogen, Mycobacterium tuberculosis.

Results: The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles
to identify the set of genes which show consistent and significant levels of expression in multiple samples of the
same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a
genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein
interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the
gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation
and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have
also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about
73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion
of the identified genes belong to the class of intermediary metabolism and respiration.

Conclusions: The multi-scale, multi-level approach described can be generally applied to other pathogens as well.
The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and
also serve as a ready shortlist for identifying drug targets.
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Background
An essential gene is defined as a gene necessary for the
growth and maintenance of an organism [1]. Identifying
a set of essential genes for a given condition, is of sig-
nificant importance for a number of reasons: (a) for un-
derstanding pathogen biology: identification will help
in prioritizing the set of genes for functional studies;
(b) from an evolutionary perspective: since a distinct
correlation is suggested between essentiality and extent
of conservation in a given family or class of organisms
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[2]; (c) in drug discovery: essential genes in a patho-
genic species form a ready shortlist of possible drug
targets [3]. Essentiality to the pathogen is in fact one of
the key criteria for defining a drug target [4]; (d) essen-
tiality also serves as a useful parameter in biomarker
identification, since by definition, an essential gene is
necessarily present in the pathogen [5]; (e) from a syn-
thetic biology perspective, an essential gene set should
overlap extensively with the minimal gene set required
for survival of the organism and hence an identification
of the essential set also forms a starting point for future
work towards synthetic reconstruction of the organism
Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:nchandra@biochem.iisc.ernet.in
http://creativecommons.org/licenses/by/2.0


Ghosh et al. BMC Systems Biology 2013, 7:132 Page 2 of 20
http://www.biomedcentral.com/1752-0509/7/132
[6]. As whole genome sequences of a large number of
species are being deciphered and omics data covering
various aspects are accumulated, a number of both experi-
mental and computational methods are being explored to
identify essential genes [7-11]. There are reports based on
functional genomics studies of several organisms, which
indicate that only 15 - 20% of the genes are essential to
the organism under a given condition [12].
Approaches used for identification of essential gene set

include classical forward genetic screens [13], genome-
wide RNA interference screens [14] and targeted gene
knockouts [15]. Typically, a given gene is deleted or inacti-
vated by one of the listed techniques and if the resulting
mutant strain leads to ‘loss of function’, in terms of the
loss of viability of the organism, the given gene is said
to be essential. Whole genome transposon mutagenesis,
which involves exploitation of transposon or mobile
DNA elements, as mutagens, so as to inactivate the
gene, has been applied to a number of organisms
[16-19]. The basic premise in these is that, the inability
of the bacterium to survive due to the disruption of
gene expression by the inserted transposon indicates es-
sentiality of the disrupted gene. Databases such as DEG
[20], and OGEE [21] have also been developed, that
combine information about essential genes in a number
of organisms based on extensive literature survey. While,
each of these methods has tremendous advantages, they
come with their own limitations as well and hence cannot
be expected to identify essential genes comprehensively.
Even when successful, these techniques do not provide
any mechanistic insights about why a particular gene is
essential.
Computational methods to probe essentiality have

mainly involved identification of orthologs in related or-
ganisms and assessing phyletic retention. Sequence fea-
tures such as GC-content, codon usage, and localization
signals have also been used for inferring essentiality,
although these have been found to be less accurate
[1,22]. Rio and coworkers have reported a method for
identification of essential genes from large interaction
networks and report significant prediction accuracy by
using a combination of network parameters and central-
ity measures [8]. Plaimas and coworkers [11] apply a
machine learning approach to identify essential genes in
bacterial metabolic networks, wherein features charac-
terizing network topology, sequence information and
co-expression profiling were utilized for training, which
was further applied to identify drug targets in Salmon-
ella typhimurium. Constraint-based metabolic modeling
approaches such as flux balance analysis have been used
to analyse genome-scale metabolic networks in several
organisms such as Staphylococcus aureus, Helicobacter
pylori, Mycoplasma genitalium and Pseudomonas aeru-
ginosa. Simulation of virtual knockouts of genes in these
networks is helpful in inferring essentiality [23-26]. Very
recently Karr et al. [27] have built a whole cell computa-
tional model of the life cycle of Mycoplasma genitalium,
wherein the cell was divided into different modules based
on the functional capacity of each module. Each module
was then independently modeled using mathematical tools
that best suits the model: FBA for metabolism, Poisson
processes for RNA and protein degradation. The built
model thus could accurately reproduce experimental data
and provide insight into many biological processes. Such
studies highlight the importance of integrating different
mathematical or computational aspects for different bio-
logical processes. Different computational methods cap-
ture different aspects that define why a gene is essential
and hence, no method individually is sufficient to provide
a powerful predictive tool, warranting exploration of
newer approaches for studying essentiality.
Essentiality is inherently a systems property [28]. A

gene known to have an important function may not be
essential in the whole system due to genetic redundancy
or functional pleiotropy [29]. The loss of some genes
can be compensated by alternate pathways to reach the
same biochemical goal. In other cases the function of
the gene may not be essential for growth or survival, but
may have some specialized function such as imparting
virulence [30]. A systems approach, therefore, becomes
necessary to address these issues.
There are nearly two million deaths every year, translat-

ing to one death every 15-18 seconds, due to tuberculosis
[31]. Tuberculosis (TB) has unfortunately retained the
status, for number of decades, as being the leading killer
among all infectious diseases. The strong synergy of the
causative organism Mycobacterium tuberculosis (M.tb)
with the deadly virus HIV has made the problem more
acute. Although a handful of drugs and vaccines are
available for the treatment of this disease, the problem
has remained acute due to difficulties in diagnosis, long
periods of treatment, inability to tackle latent forms of
the bacteria and more importantly the emergence of
drug resistant varieties of M.tb such as MDR, XDR and
TDR strains [32]. Further research to understand the
biology of the pathogen in a more wholistic approach
and to apply the knowledge for the identification of
newer and more efficient drug targeting strategies is
thus urgently required. The whole genome sequencing
of M.tb [30], about 15 years ago has triggered intense
functional genomics studies on M.tb, leading to the ac-
cumulation of several types of omics data. Several com-
putational studies are also available [33,34], adding to
the resource base, making it feasible to address complex
issues such as gene essentiality for this pathogen from
an integrated perspective. Methods to integrate various
omics data into networks are also beginning to be de-
scribed in literature [35].
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Here we seek to study gene essentiality at multiple levels
and at multiple scales of spatial resolution, to identify with
high confidence, a set of essential genes in M.tb. The study
uses a range of models at each level, including genome-
scale interactome, metabolic network, individual pathways
and biochemical reactions and finally individual amino
acid residues in the proteins. Computational approaches
at systems, structural and sequence levels have thus been
employed.

Results
A new multi-level approach has been used to study gene
essentiality. In brief, experimentally derived gene ex-
pression data from literature has been analysed to iden-
tify genes exhibiting consistent expression patterns in
about 39 different sets of the same condition. Next, flux
balance analysis (FBA) of a genome-scale metabolic
model integrated with gene expression values, has been
carried out to identify essential genes through system-
atic, in silico gene knockouts (KOs). Further, a directed,
weighted genome-scale protein-protein interactome has
been constructed and analysed to identify key points
controlling the topology of the network. A large-scale
sequence analysis has been carried out to test for those
genes that have high phyletic retention in genomes of
the same genus. The workflow followed in this study is
illustrated in Figure 1 and describes the different
methods and filters that have been employed to derive
Figure 1 Workflow of the method used in this study. The figure repres
essential genes. Four different methods have been applied independently
have been integrated using Boolean logic to obtain a final list of essential
gene. The numbers in the bracket represents the initial number of genes a
essentiality. The set of essential genes so identified are
analysed, using multiple sequence alignment, of the corre-
sponding protein sequences, to obtain conserved amino
acid residues which are then mapped on the functional
sites in the protein to determine the basis of essentiality.
Put together, this study helps in addressing essentiality at
the levels of modules in the network, pathways and at
the level of individual proteins. To our knowledge, such
an integrated approach has not been extensively explored
earlier.

Microarray data analysis
Microarray analysis provides a global picture of the ex-
pression profiles of all the genes in an organism under a
given condition. It is reasonable to assume that an es-
sential gene ought to be expressed in the cell in suffi-
cient quantities. Although, expression by itself does not
dictate function in a bacterial cell, consistent expression
patterns of individual genes can be considered to pro-
vide a rough indication of the functional capacity of that
gene in the cell. In this study, genes that exhibit consist-
ent and high expression patterns in many samples of
the same wild type (WT) growth condition are grouped
into a shortlist of probable candidates for essentiality.
This is based on the premise that a cell expends its limited
energy and resources towards protein synthesis only if the
protein has certain functional significance for the survival
of the cell [36].
ents the pipeline that has been followed in this study to identify
to filter probable candidates for essentiality. The results thus obtained
genes. In addition, integrated scores have also been assigned to each
nalysed using the different methods, which are further filtered.
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Microarray based gene expression dataset considered
for the present study consists of a total of 39 samples of
the same WT condition, with 3923 genes in each sample
[37]. A scoring scheme was devised for all the genes in
the genome that forms a continuous scaling measure
(Equation 4). The score captures consistent expression
in the 39 different microarrays used for the study and
for a given expression level, those which show consistent
expression, will have the highest scores. It is important
to note here, that while high expression is not a necessary
condition for the gene to be termed essential, consistent
expression across biological samples of the same kind is
required for a gene to be considered for essentiality.
Jeong et al. [38] have earlier shown the importance of
consistency in gene expression data for predicting gene
essentiality in yeast, Saccharomyces cerevisiae.
In this work, genes which appear up to the 50th percent-

ile in the ranked list (based on Equation 4) were selected
for further analysis. At this stage, since the intention is
to obtain a shortlist for further analysis in the pipeline,
a lenient cut-off of 50th percentile was chosen so as to
avoid any false negatives. As many as 2968 genes (listed
in Additional file 1: Table S1) out of 3923 genes were
identified by this criteria indicating that a large number
of genes showed consistent and significant levels of
expression. Although it is theoretically possible to miss
some genes that may be consistently expressed at very
low levels, the rather broad cut-off used at this stage im-
plies that whatever maybe missed will only be a small
fraction, since of the 955 genes eliminated, most (97.5%;
932 out of 955) showed generally low expression and large
variations (SD > 0.5).
These 2968 genes were further classified into different

Tuberculist [39] functional classes. As can be seen from
Additional file 2: Figure S1, genes involved in metabolism
and respiration form a major portion of the pie-chart
(24%). M.tb is known to have developed sophisticated
mechanisms for cell-wall synthesis which is also reflected
in the figure, with 20% of the genes falling in this category.
24% of this set is formed of conserved hypotheticals,
highlighting the knowledge gaps that exist for M.tb. About
10% of the genome from this list is dedicated for PE and
PPE families of proteins, which are unique to mycobac-
teria [30]. The functions of some of these are now
understood and it is believed that they are important for
virulence and antigenic diversity of the pathogen [40].
Variable patterns of gene expression for these genes
during infection have been discussed earlier [41,42].
These set of proteins are involved in the modulation of
antigen processing and presentation and thus very suc-
cessful in evading immune responses. These set of genes
have been reported as immune-dominant antigens and
are ideal drug targets. About 4% of the shortlisted genes
belonged to this functional category.
Flux balance analysis
Metabolism is a fundamental requirement in an organ-
ism to sustain life. Flux balance analysis (FBA) captures
the metabolic state of a system at steady state condition.
This is achieved by reconstructing a genome-scale meta-
bolic network [43] and computing the relative fluxes of
individual biochemical reactions within the constraints
of mass balance and defined stoichiometric coefficients
of the network, so as to obtain maximal growth. The
method enables systematic perturbations through simu-
lation of KOs of individual genes in the model. An essen-
tial gene and hence the protein can easily be identified
through simulations that lead to zero or reduced
growth [44].
Genome scale metabolic reconstruction for M.tb H37Rv

used here consists of 661 genes and 939 reactions [45] and
is referred to as iNJ661. Gene expression values were
incorporated into this model to guide the bounds of the
individual reaction fluxes. The method of incorporating
gene expression values is based on E-Flux reported in the
literature [46]. Bounds for each reaction were assigned
based on the Gene-Protein-Reaction relationships (GPRs)
provided with the model. Integrating expression data into
FBA makes the network much more biologically realistic,
since dynamics of a metabolic network would also depend
on the protein concentrations available for the reaction to
occur. Fluxes are calculated through each reaction so as to
maximise the biomass function. The objective value ob-
tained for the original model was 0.0398 hr-1, while for the
modified model it was 0.0039 hr-1. Around 46 - 47% non-
zero flux reactions were obtained in both the cases. Single
gene deletions were performed by systematically deleting
each gene in the model and calculating the optimal fluxes
using the same biomass function. The ratio of the object-
ive value of the KO and WT (grRatio) was calculated and
plotted for the original and the modified model. The value
of grRatio determines the importance of a particular gene
for the growth of the organism and hence can be used to
predict essentiality.
In the original model that did not consider expression

data, KOs of 230 genes affected the optimal objective
function, out of which 188 were lethal and the remaining
showed transitional effect. By adding microarray data,
the result did not change much, except for an increase
in the number of genes affecting the objective function.
A total of 260 genes were affected, with 188 lethal KOs
and the rest showing reduced growth as compared to
the wild type (Figure 2a).
iNJ661 and GSMN-TB [47] are two metabolic net-

works reported almost simultaneously, both sharing a
high amount of similarity. Besides these, newer models
have been developed recently for the same organism with
more number of reactions and genes. One such model is
iNJ661v [48] which contains 663 genes, 838 metabolites,



Figure 2 Flux Balance Analysis for the metabolic model. Single gene deletion profile of the gene expression integrated FBA model. X-axis
represents the gene index and the y-axis is the ratio of the objective value in KO to the WT (grRatio). The gene index is sorted based on the ratios
obtained for a) iNJ661 model and b) iNJ661v model.
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and 1,049 reactions that incorporates reactions from
both iNJ661 and GSMN-TB, and shown to be more
sensitive towards predicting essentiality. The objective
value obtained for the model was 0.07 hr-1, with 49.85%
of the reactions showing non-zero fluxes. Therefore, in
addition to iNJ661 model, iNJ661v model was also con-
sidered for analysis. The method for predicting gene
essentiality was similar to the iNJ661 model, and this
lead to the addition of 59 more genes to the already iden-
tified 260 genes. The grRatio for KO simulations for this
model is shown in Figure 2b and a comparison of the
impact of gene deletions in the two models is shown in
Additional file 3: Figure S2.
The genes obtained were further classified into func-

tional groups using the scheme provided in Jamshidi et al.
[45]. As seen in Additional file 4: Figure S3(a), genes from
membrane metabolism (12%) and fatty acid metabolism
(9%) were significant, reiterating the importance of lipid
metabolism and cell wall synthesis in M.tb. Purine metab-
olism (10%) and redox metabolism (7%) also contribute
significantly to this set of genes.
Apart from the single gene deletions, which charac-

terised genes required for the survival of the organism,
double gene deletions were also performed to look for
pairs of genes which when knocked out simultaneously
are lethal or unfavourable to the organism. 110 such
gene pairs (Additional file 5: Table S2) were obtained and
could serve as potential drug targets. Additional file 4:
Figure S3(b) gives the pathway classification of the
genes identified from double KO analysis. In this case,
genes belonging to fatty acid metabolism (19%) account
for higher contribution, followed by citric acid cycle path-
way (14%) and purine metabolism (8%) while glutamate
metabolism and glycine, serine, threonine metabolism
account for 7% of the total list. About 6% of genes are
involved in redox metabolism and 5% of genes contributed
to pyruvate metabolism and transport respectively.
From this analysis, 319 genes (hypergeometric

p-value < 0.0001) which showed lethal or unfavourable
growth on performing single gene deletions for the gene
expression integrated models were selected as candidate
essential genes (Additional file 1: Table S1). The hyper-
geometric test was performed to establish the signifi-
cance of the subset of genes identified as essential from
all the genes analysed using FBA. The genes identified
as essential through this approach were later cate-
gorised into different functional classes based on the
schema provided by Palsson and co-workers [45].

Network analysis
Protein–protein interaction networks are known to cap-
ture global as well as the local behaviour of a system,
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despite having the limitation of being static in nature.
This can be resolved to some extent by integrating gene
expression data into the network and then deriving vari-
ous insights through calculation of network properties
[38]. Shortest paths between all pairs of nodes in a net-
work serve as useful pointers to understand the overall
topology of the network and the extent of interaction
between the nodes [49]. Adding weights based on expres-
sion level of a node leads to construction of response net-
works and hence identification of biologically significant
paths [50].
An extensively curated, weighted and directed protein–

protein interaction network was generated using standards
described in the methods section. It consisted of a total of
1240 nodes and 7844 edges (Additional file 6: Table S3).
This was a high confidence network and an interaction
was included only if sufficient evidence was available for
that interaction in literature and databases. To make the
network more biologically significant, microarray data was
integrated into the network as node weights. Each edge
was assigned a weight that was a function of the between-
ness centrality of that edge and the node weights connect-
ing that edge (Equation 5). Shortest paths were exploited
to study the importance of each protein by performing
systematic KOs in the network. Importance of a gene or
protein is then simply a measure of the number of shortest
paths disrupted upon knockout of that node in the net-
work. Number of disrupted paths also indicates whether a
given protein causes a global disruption to the network or
whether it brings about a local effect.
For each KO performed, the number of completely

broken paths as well as the number of paths perturbed
as a result of increased path cost was calculated. A path
cost is taken as the summation of the edge weights defin-
ing that path. Perturbed paths are indicative of the alter-
nate paths that emerge as a result of that KO and
invariably have a higher path cost as compared to the WT.
An example of this is illustrated in Figure 3. Figure 3b
demonstrates an example of the shortest path between
Rv3441c (mrsA) and Rv1240 (mdh) in a WT network.
This path includes genes Rv3436c (glmS) and Rv2332
(mez) and has path cost equal to 6.36 × 10-5. All the four
genes are involved in cellular metabolism according to
Tuberculist [39] and KEGG [51] annotations. Detailed list
of annotations are provided in Additional file 7: Table S4.
Upon KO of Rv3436c (glmS), the simulation indicates that
the next best theoretically possible path (Figure 3c), is
much longer than the original path and also has a higher
path cost, 2.6 × 10-4 which is about 10 times higher than
the WT path cost. Such a significant increase in the path
cost indicates that this alternate path may be biologically
infeasible and thus the node Rv3436c would be essential
to maintain original function. The perturbed path com-
prise 13 nodes (Rv3441c (mrsA) → Rv1151c → Rv3667
(acs) → Rv2495c (bkdC) → Rv2496c (bkdB) → Rv1617
(pykA) → Rv3457c (rpoA) → Rv0707 (rpsC) → Rv0703
(rplW) → Rv2347c (esxP) → Rv2346c (esxO) → Rv2498c
(citE) → Rv1240 (mdh)), including the source and
destination.
Broken path analysis was performed to study the effect

of gene deletion on the network. Systematic knockout
was performed to obtain percentage disruption by each
gene. A total of 323 genes (Additional file 1: Table S1)
when knocked out showed broken paths in the network.
To obtain the significance of these KOs p-values were
calculated using random networks. Generation of random
network is described in the methods section. It was ob-
served that for a majority of the 323 genes, the p-values
were < 0.05, while few were in the range of 0.1 to 0.5. The
percentage disruption of each of these 323 genes, as calcu-
lated by equation 6 in the methods section, is plotted in
Figure 4, and the gene indexes are sorted by p-value on
the x-axis. It is also noted that the number of paths per-
turbed for each KO may not necessarily correlate linearly
with an increase in total path cost for that KO. This is
quite understandable since the impact of perturbation of
different paths is not uniform. To capture the relative im-
portance of a perturbation due to a KO, we have ranked
nodes based on number of paths perturbed. Some KOs
are seen to cause as much as 34% disruption in the net-
work. Such nodes are considered to be critical control
points in the network. A significant portion (63.5%) of
these belongs to the functional category of intermediary
metabolism and respiration.

Phylogenetic analysis
Conservation of a protein across species can also broadly
imply essentiality as they have been retained through
evolution. BLAST [52] searches were performed for all
the M.tb H37Rv sequences against a genus-specific dataset
of 63 species, representing a set of evolutionarily related
organisms. The dataset was prepared by considering all
Mycobacterium species, whose whole genome sequences
were available, excluding all the M.tb strains. Thus,
this dataset includes species that are pathogenic, non-
pathogenic, fast and slow growers as well as those
pathogenic to non-human hosts. Sequences with iden-
tity ≥ 30% with sequence coverage ≥ 70% and e-value
of ≤ 0.001, with respect to the query protein were
chosen for studying essentiality.
Proteins showing high phyletic retention were short-

listed. Quantitatively, a score was assigned to each protein
based on Equation 7, explained in the methods section.
Those with a score ≥ 50 were selected to be essential,
which in turn implied that the gene is conserved in at least
50% of the species in the mycobacterial genus. 1902
sequences were thus identified and are listed in Additional
file 1: Table S1.



Figure 3 Network topology of protein-protein interactome and an example gene KO analysis. a) Shows the overall topology of the
protein-protein interaction network used in this study. The network consists of 1240 nodes and 7844 edges. Essential genes were identified by
systematic KO of each node in the network and by calculating the number of paths perturbed; b) illustrates the path between Rv3441c (mrsA)
and Rv1240 (mdh) in the WT network. Nodes involved in the path are coloured green. c) Represents an alternate (but unlikely to be feasible) path
between Rv3441c (mrsA) and Rv1240 (mdh), when Rv3436c (glmS) is knocked out. The purple triangle shows the node which is knocked out.
Green nodes represent the original path in the WT network and red nodes are the reprogrammed alternate path that the system takes upon KO.
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A functional classification of this set was also performed
based on Tuberculist classification scheme (Additional
file 8: Figure S4) and it is observed that large number of
genes belong to intermediary metabolism and respiration
(29%), conserved hypotheticals (23%), cell wall and cell
processes (19%) and lipid metabolism (11%).

Deriving the final list of essential genes (EGs) and
comparison with experimental datasets
Different methods in this study capture gene essentiality
with different perspectives as illustrated in Figure 5. FBA
provides information based on metabolite flow, while
phylogenetic analysis captures essentiality based on evo-
lutionary conservation. Topological networks provide
an overview of connectedness among various proteins
while microarrays add quantitative information about
the relative abundances of different genes. Integrating
them together will enable us to address essentiality from
all these perspectives simultaneously. Towards this, set
theory was applied as follows:

EG ¼ F∩Nð Þ∪ F∩Pð Þ∪ P∩Nð Þð Þ∩M ð1Þ

Where,
EG = essential genes,
F = genes identified using gene expression integrated

FBA,
N = genes identified using network,



Figure 4 Broken Path Analysis of the protein- protein interaction network. Effect of a KO in the network was determined by calculating the
percentage disruption in the network based on the number of paths perturbed. The plot represents the% disruption of each gene knockout on
the y- axis, while x - axis represents the gene index sorted based on p values. Also shown is the significance star for the genes based on the
p values calculated using random networks.
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P = genes identified using phyletic retention,
M = genes identified using microarray,

The Boolean logic (Equation 1) selects those genes that
were predicted as essential by at least two of the three
methods (FBA, phyletic retention and network analysis) in
addition to the necessary condition of consistent expres-
sion pattern. The rule considers expression data as an es-
sential but not a sufficient condition to predict essentiality.
If a gene is considered essential, it is important that it
expresses sufficiently and consistently. A final set of 283
genes were identified using Equation 1 and is provided
in Additional file 9: Table S7.
An earlier study had experimentally identified a set of

654 genes, of which 614 were considered as essential
while 40 more were found to disrupt the growth of the
organism using transposon site hybridization method
[18]. The same group has subsequently used high density
mutagenesis and deep sequencing methods to identify a
set of 774 genes (p < 0.05) as essential [16]. The latter is
reported to be a more sensitive method and apart from
identifying those reported by the former approach, it adds
many new ones. A recent study by Zhang et al. [19], that
identified essential genes by dividing the whole-genome
sequence into windows of different length and studied es-
sentiality by performing TraSH analysis have also become
available. Thus, the set of 283 genes obtained from our
study is compared to these datasets, from which we observe
an agreement for 182 genes. A few other datasets of experi-
mentally identified EGs under different conditions or using
different approaches are also available [17,53-60]. From
these, an agreement is observed for another 26 genes. Put
together, the agreement with our analysis is around 73.5%.
It must be noted that the experimental approaches too
have their limitations and fail to capture essentiality in
some situations. Despite these limitations, it is encour-
aging to observe a high correlation with these datasets.
Functional classification of the identified 283 genes was

carried out using the Tuberculist scheme and is shown in
Figure 6a. About 69% (24%) belonged to metabolic path-
ways while 12% (6.9%) and 10% (19.44%) was obtained for
lipid metabolism and cell wall processes respectively, ac-
counting for the importance of these classes. The values
in parentheses reflect the percentage of these functional
classes in the whole genome. Increase in percentage for
metabolic pathways and lipid metabolism highlight the es-
sentiality of these pathways. Proteins involved in metabolic
pathways were further analysed using the scheme provided
in Jamshidi et al. [45], to obtain a finer classification.
Based on this (Figure 6b) four major classes emerged,
amino acid biosynthesis pathways (30%), glycolysis (7%),
purine metabolism (10%) and redox metabolism (8%).
The importance of these pathways for maintaining
active metabolism in a cell has been well understood
through various biochemical studies [61-64]. Indeed
proteins belonging to these pathways have been reported
to be essential in other organisms as well [10,65,66].
To understand the functional roles of the 283 set of es-

sential genes, they were viewed in context of the protein-
protein interaction network used in this study (Figure 7).
Of the 7844 edges present in the network, 641 edges are
contributed by essential genes where both nodes contrib-
uting to an edge are essential as predicted by Equation 1.
It is interesting to note that although these 641 edges form



Figure 5 Integration scheme used in this study. Different levels of abstractions used in this study to obtain essential genes are shown.
Different methods are highlighted with different colours as shown in the top panel, phylogenetic analysis (blue), transcriptome profiling (yellow),
protein-protein interaction (green) and metabolic analysis (red). All the methods are integrated using set theory to obtain a list of high confidence
essential genes as shown in the Venn diagram. The final set of essential genes is further analysed to probe into residue level conservation and
binding site analysis (lower panel).
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only 8.2% of all connections in the network, many of them
form a connected sub-network by themselves. Each edge
in the network indicates either a binding interaction or a
functional linkage or both between a pair of proteins. The
set of essential genes along with their inter-connections
shown in Figure 7 can be regarded to form a core compo-
nent of the cellular network, essential for that organism.

Sequence and structural analysis
Biological function to any essential protein is imparted
by its amino acid sequence and structure. Strong inter-
dependence exists between protein essentiality, its func-
tion and the corresponding sequence and structural
details of the protein. Therefore, an in-depth residue and
structural level analysis is carried out for the final list of
283 proteins to obtain structural and sequence level in-
sights that impart function and hence essentiality to the
protein product of the gene.

Residue level conservation
Certain residues in a protein are highly conserved across
species. Such residues are conventionally taken to be
functionally or structurally important for the protein
[67]. Using multiple sequence alignments obtained from
ClustalW [68], residue-wise conservation scores were
calculated for each protein using a home-grown algo-
rithm [69], as described in the methods section. This
was carried out for each of the 283 proteins identified as
essential. Sequence conservation analysis was obtained
for 283 proteins, while structural analysis was obtained



Figure 6 Functional classification of essential proteins identified. a) Shows the functional classification of the final list of essential gene
based on Tuberculist. (b) About 69% of the genes belong to metabolism which has been further classified using the scheme given in [45].

Figure 7 A network view of the identified set of essential genes in Mycobacterium tuberculosis. The set of 283 essential genes are mapped
on the protein-protein interaction network to study the connectedness of the essential genes. The nodes are coloured based on the functional
categories as provided in Tuberculist (blue: virulence, detoxification and adaptation; red: lipid metabolism; cyan: information pathways; dark green:
cell wall and cell processes; light green: intermediary metabolism and respiration; pink: regulatory protein; grey: conserved hypotheticals). About
65% of the essential genes make a larger sub-network while the other nodes form smaller sub-networks.
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for 269 proteins, based on the availability of structural
models. Figure 8 illustrates the nature of the analysis for
these 269 proteins, by taking an example of Rv3436c
(glmS), a glucosamine-fructose-6-phosphate aminotrans-
ferase. In each protein, the set of residues with a conser-
vation score of ≥ 50% were considered for structural
analysis.
Figure 9 (blue bar) shows the frequency distribution of

the essential genes based on the percentage of residues
conserved. As can be seen from the figure, more than
85% of the EGs have 70 – 100% residues conserved.
Individual multiple sequence alignments in which con-
served residues are highlighted are made available at
http://proline.biochem.iisc.ernet.in/MtbEssentialGenes.
Structural analysis
Binding sites in a protein structure are important for
the function of the protein. Residues in a binding site
are usually conserved and have functional importance
attached to them. Using algorithms previously devel-
oped in the laboratory [70] binding sites were identified
in the structural models for the set of EGs identified
here. The models were obtained from M.tb structural
proteome database, available in the laboratory [33].
Structural models were available for 269 of the 283
identified EGs, in which a total of 919 binding pockets
were identified. The conserved residues identified from
sequence conservation analysis were mapped on the
binding sites or pockets. Figure 8c shows an example of
binding pockets for Rv3436c and mapping of the con-
served residues on it.
Figure 8 Sequence and structural level details of Rv3436c (glmS). a) S
Conservation scores for each residue in a protein are calculated using in-ho
the predicted conserved residues are mapped. A colour scale (from blue to
pockets of Rv3436c is shown and conserved residues that lie in the site are
forming the pockets are shown as stick model.
From this analysis, it was observed that all the 269
proteins had at least some conserved residues in their
binding sites, amounting to 810 of the 919 sites stud-
ied. The binding sites were selected based on a consen-
sus method that considered geometry, conservation as
well as energy based cut-offs. This ensures that the
identified pockets have sufficient volume and geometry
to recognize a meaningful biological ligand. Figure 9
shows that more than 70% of the binding sites contain
conserved residues. Considering the fact, that the set
of sites studied includes crystallographically known
binding sites as well as consensus site predictions, the
extent of conservation is remarkable indeed. This was
also verified statistically by calculating the quantile
variation of conservation scores in the protein as a
whole as compared to the binding sites alone in each
case. The conservation of residues in the binding sites
was significantly higher than for other regions in the
protein (p-value < 2.2 e-16). The p-value was calculated
between the conservation score distribution of the res-
idues in the whole protein and that at the binding sites.
Identification of these sites also provides a list of im-
portant residues and hence important interactions for
the function of that protein. Our definition of essenti-
ality implies that a given gene is essential if it has an
essential function, which is conserved across other
members in its close ecological niche. This means that
the functional site residues that impart a function to a
protein ought to be closely conserved. Hence the set of
conserved residues in conserved pockets in the set of
EGs indicate a basis for the conservation of function
and hence for the essentiality of that protein.
napshot of MSA of this gene over the Mycobacterium genus is shown.
use algorithm; b) shows the protein structure of Rv3436c on which
red denoting highest to the least) is used. c) One of the binding
indicated. The pocket is shown in CPK representation and the residues

http://proline.biochem.iisc.ernet.in/MtbEssentialGenes


Figure 9 Distribution of essential proteins based upon percentage of conserved residues seen in the protein sequence (blue bar) and
those forming binding pockets (red bar). X-axis represents the percentage of residues conserved (residues with conservation score≥ 50, see
Equation 8) in the protein (gene) or binding pockets and y-axis represents the frequency of these proteins in the final set studied (269 for struc-
ture analysis (red), 283 for sequence analysis (blue)). Essential genes are shown to be composed of high percentage of conserved residue and the
corresponding pockets (red) are also shown to have more number of conserved residues.
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Discussion
The complexity of living organisms can be probed by
understanding which genes play an essential role for the
growth and survival and which are conditionally essential.
Essentiality is studied here at multiple levels, at the levels
of modules in the topological network of protein-protein
interactions, at the pathway level by identifying essential
metabolic, regulatory and signalling pathways, at the gen-
ome level, first by identifying high expression in multiple
arrays of the same condition and second, by selecting
genes that are evolutionarily conserved.
Consistent expression at a genome-scale level is used

for weighting both the genome-scale metabolic network
as well as the topological interactome, making the models
resemble the actual experimental parameters more closely.
An often asked question is whether gene expression levels
can be used to understand protein abundance. While,
gene expression may not always translate to correspond-
ing protein abundances, there are many studies which
show significant correlation between gene expression and
protein abundances [71,72]. In any case, given the paucity
of proteome-wide protein abundance data, this issue is
difficult to address. In this study, we have tried to re-
solve this issue by considering multiple transcriptome
profiles of essentially the same condition, simply to aug-
ment confidence levels. This is based on the premise
that if a gene is consistently expressed across multiple
profiles, it is unlikely to vary significantly in that condi-
tion and hence can be expected to correlate reasonably
well with protein abundance. It should however be
noted that focussing only on consistently expressed
genes may not capture all genes that are essential for
the organism, but in a systematic genome-scale study
such as this, the decision has been to minimise false
positives, with the belief that the subset of genes identi-
fied as essential should be of high confidence even if a
few genes are missed out.
Two different types of systems approaches are used

here, the interactome architecture analysis and the flux
balance analysis of the genome-scale metabolic model,
both integrating functional genomics data in terms of
expression levels. The topological analysis utilizing graph
theoretical methods of a weighted directed network ex-
plore the inherent organization of the connectedness of
the individual molecular players in the cell and provide a
basis to understand dynamics and the flow of chemical
information using those connections. These approaches
provide insights into the emergent properties arising in
the system as a whole comprising specific interactions
among the large number of components in a cell.
Four different computational approaches, each cap-

turing a different piece of information are utilized in
this study. The results from each are then compared to
the three different experimental datasets available in
literature. Table 1 provides the agreements between
different pairs of methods and also among their
combinations. The second and third column of Table 1
represent the coverage of each method. Comparison
between individual methods is provided as a matrix in
the same table (column 5-11). Rows 8-11 represents
the comparison of individual methods with the three
different Boolean logics used (Equations 1, 2, 3) as well as
integrated approach. The values which are bold and itali-
cized indicate the comparison between the experimental



Table 1 Detailed comparison of the various methods used to predict essentiality

Sr. No. Coverage Shortlisted MA FBA PPI PR S G Z

1 3923 2968 MA 2968

2 663 319 FBA 256 319

3 1240 323 PPI 271 128 323

4 3923 1902 PR 1490 173 164 1902

5 3923 654 S 544 160 143 340 654

6 3923 774 G 654 200 169 427 464 774

7 3923 688 Z 535 167 137 367 390 530 688

8 3923 283 Eq 1 283 195 198 224 127 170 135

9 3923 51 Eq 2 51 51 51 51 31 38 30

10 3923 139 Eq 3 139 51 139 139 55 72 55

11 3923 608 IS 556 264 158 498 208 256 211

The table indicates comparison between different experimental and theoretical methods used for the study.
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and theoretical methods. (MA = transcriptome, FBA =
metabolic networks, PPI = protein-protein interaction net-
work, PR = phyletic retention, IS = Integrated score, and
experimental datasets are obtained from S = Sassetti et al.
[18], G =Griffin et al. [16], Z = Zhang et al. [19]). Please
note that conditional essentiality has not been mapped in
this table.
The three experimentally determined methods have

identified 654 [18], 774 [16] and 688 [19] EGs. It must
be noted that the set of EGs common to them are only
362, which corresponds to a commonality of only 47%,
indicating lacunae with the experimental methods as
well. Nevertheless for lack of any other comprehensive
data, union of the EGs from these three methods,
amounting to 1093 EGs are used for comparison with
the predictions made in this study. The accuracies ob-
served with individual methods are, 30.7% for phyletic re-
tention analysis, 73% with FBA, 29.3% for gene expression
and 62.2% with network analysis.
Various combinations of other Boolean operators were

also implemented as shown in Additional file 10: Figure
S5. When an intersection of positively identified proteins
from all methods (Equation 2) was considered, only 51
EGs (Additional file 11: Table S6) could be identified as
essential. Of these, 42 were found to be essential in the
experimental datasets, while 3 of them were identified
as essential under specific conditions, resulting in an
accuracy of about 88.2%.

EG ¼ F∩P∩N∩M ð2Þ

Keeping in mind that the FBA model contained only
a small set of genes (663), all belonging to metabolic
class, an alternate Boolean logic was also implemented
using only phylogenetic analysis, networks and micro-
array so as to remove the bias on metabolic genes
caused by including FBA in the calculation and is
described below,

EG ¼ P∩N∩M ð3Þ

139 genes were identified by this method and are listed
in Additional file 11: Table S6. This set showed 60% cor-
relation with experimental dataset. Overall, on comparing
EGs identified by the different Boolean logics, Equation 1
described in the results, fares better as it a) has higher
coverage as compared to Equation 2 and b) it is indeed
not skewed towards any one method as seen from the
analysis of Equation 3. Finally, the 283 EGs derived from
Equation 1 were chosen as the final list from this study,
which had an overall accuracy of 73.5%.
A detailed comparison of these Boolean logics with indi-

vidual methods is also provided in Table 2. It is clear from
the table that integrating different approaches into a meta-
prediction yields better prediction capabilities than any of
the individual methods. Thus the meta-prediction demon-
strates the usefulness of combining systems architecture,
metabolic dynamics and evolutionary insights along with
gene expression. It is also interesting to note that some of
the genes that are identified as essential from double
knockout analysis using FBA, appear in the final list of
EGs, as these were identified by phylogenetic and network
analysis.
Further, as a way of removing reliance on any cut-off

by any method, all 3923 genes in the genome were
assigned a score based on an integrated scoring scheme
(listed in Additional file 12: Table S5) devised to quantify
the results obtained from different approaches to infer
essentiality. 608 genes as obtained from the integrated
score correspond to the top 50th percentile were also
compared with individual experimental and theoretical
method and is listed in Table 1. The highest confidence



Table 2 Summary of datasets used in the study

Dataset Short description

Boshoff et al. [37,81] Transcriptome profiling of M.tb under different combinations of drug treatment using
whole genome microarrays.

(GSE1642 from GEO)

(transcriptome, FBA and network analysis)

KEGG [51] Database for linking genomic, proteomic and pathway level information. Also hosts
resources for metabolites and ligands.

(network analysis)

Reactome [85] Open-source database for pathway information. It is manually curated and peer-reviewed.

(network analysis)

STRING [84] Provides a list of protein-protein interactions based on computational, high-throughput
experiments and literature survey.

(network analysis)

Wang et al. [86] Protein – protein interactions were identified based on high-throughput bacterial two
hybrid method.

(network analysis)

Vashisht et al. [34] M.tb interactome pathway re-annotated and reconstructed, containing a total of 1434
proteins linked through 2575 functional relationship.

(network analysis)

Jamshidi et al. [45] Reconstruction of metabolic network of the in silico strain of M.tb. Consists of 661 genes
and 939 reactions. FBA was performed and essential genes were identified.

(FBA)

Fang et al. [48] Reconstruction of metabolic network of the in silico strain of M.tb. Consists of 663 genes
and 1049 reactions. FBA was performed and essential genes were identified.

Anand et al. [33] Structural models were obtained and validated for 70% of the M.tb genome. Fold based
functional annotations were assigned and novel binding sites identified.

(binding site analysis)

Sassetti et al. [18] Transposon site hybridization was carried to identify set of essential genes.

(Validation)

Griffin et at. [16] High density mutagenesis and deep sequencing carried out to identify essential genes.

(Validation)

Zhang et al. [19] Identification of essential genes by dividing the whole genome sequence into windows
of different length and performing TraSH analysis.
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set of 51 EGs from Equation 2 were indeed the top 51
ranks based on the integrated score. Moreover, the final
list of 283 genes identified by Boolean logic 1 (Equation 1)
were also observed to have high ranks in this list, again
demonstrating that there was no bias from any one
approach.
Conditional essentiality has not been explicitly ad-

dressed in this study since the main focus was to identify
those that are consistently essential in the WT condition.
The same framework and techniques with small modifica-
tions can however be utilized, to probe condition-specific
essentiality, when sufficient data becomes available. Yet, it
is interesting to note that some of the EGs identified here
are reported in literature to be conditionally essential
genes based on individual experimental studies (indicated
in Additional file 9: Table S7).
The final list of 283 genes was further compared to an

earlier study by Raman et al. [73] that identified drug
targets for M.tb based on an integrated pipeline approach.
It is observed that about 31.4% of the essential genes iden-
tified in this study can also be used as drug targets for the
pathogen. The subset of genes in M.tb belonging to fatty
acid metabolism, purine metabolism, amino acid metabol-
ism and redox metabolism are seen to dominate the list of
essential genes.
Some of the genes belonging to the PE/PPE class are

reported to be essential for M.tb H37Rv [16,17]. In this
study, genes from this class were identified as essential
from microarray analysis; however these were not iden-
tified by other methods. This is because, i ) FBA studies
genes belonging to metabolic pathways only, ii) these
class of genes are not evolutionarily conserved across
the species and iii) no high confidence interaction data
was available for these genes and thus was not included
in the network. As a result, these genes were filtered out
on applying the Boolean logic.
Extensive lists of essential genes identified using experi-

mental whole-genome approaches are available in litera-
ture for several organisms such as Staphylococcus aureus
[9,74], Helicobacter pylori [75], Mycoplasma genitalium
[76], and Pseudomonas aeruginosa [77]. There are reports
of such lists identified through computational approaches
as well [8,78,79]. Such studies have primarily involved
phylogenetic comparisons [1,9,22]. There are also a few
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reports recently, where flux balance analysis and related
methods are used to study essential genes and reactions in
metabolic networks [19,23,26,66]. However, apart from
studies such as [27], there have not been sufficient efforts
in the direction of integrated studies to infer essentiality.
This study bridges perspective from several levels by con-
sidering the set of genes that are required for maintaining
interactome integrity, maintaining metabolism and enab-
ling growth as well as conservation through evolution of
various organisms in the genus.
The set of genes identified have been probed further

to predict amino acid residues that are important for the
function of the gene product again by utilizing evolu-
tionary information at a finer scale and integrating with
the three dimensional structural information of protein
molecules combined with the functional information of
ligand binding pockets. The methodology used here can
serve as a generic framework for identifying essential
gene lists in other pathogens as well. The set of genes
identified have the potential to be applied in drug discov-
ery, taking target identification to a much more rational
and wholistic level.
Conclusion
A robust methodology to identify essential genes in
Mycobacterium tuberculosis has been developed that in-
tegrates data obtained from different levels of abstrac-
tion. Towards this, microarray data has been used for
essential gene prediction, knockout analysis using FBA to
identify essential genes from metabolic networks, phylo-
genetic analysis to identify evolutionarily conserved genes
and systematic knockout analysis of protein-protein inter-
action network has been performed. The results are vali-
dated using experimental datasets. Structural analysis of
the proteins of the predicted essential genes is further ana-
lysed at the sequence and structural level to provide a
basis for essentiality. Overall, the method recognises the
importance of a multi–scale analysis and provides a frame-
work for prediction of essential genes.
Methods
Multiple approaches at different levels of abstraction are
utilized in this study, as described in Figures 1 and 5.
Methods for systems level analyses include flux balance
analysis and topological analysis using graph theoretical
methods of the protein-protein interaction network.
Genomic microarray data from multiple sets has been
analysed using microarray analysis. Sequence analyses
and database searches are carried out using standard se-
quence alignment tools while structural analysis is carried
out using algorithms previously developed in the labora-
tory. A summary of the datasets used in these analyses is
given in Table 2.
Microarray data analysis
An exhaustive transcriptome profiling for M.tb under
many different conditions is publicly available in Gene
Expression Omnibus (GEO) [80,81]. The GEO series,
GSE1642 was selected for this study [37]. The authors
have deposited the transcriptome profile of the pathogen
under various drug treated and culture conditions. Of the
430 microarray sets available from this study, 39 samples
that represented the control or WTconditions were hand-
picked and the control chip (Cy3) was selected for the
analysis. Since the focus here is to study gene essentiality
under normal growth conditions, expression data from
only the control samples were used. Cultures grown in
MiddleBrook 7H9 media were considered as control and
used for the analysis. Expression values for 3923 genes
were available from this study.
A scoring scheme was formulated to score each gene

in this dataset. Scores were defined so as to give high
weightage to genes with high and consistent expression
values. Thus the following equation was derived,

SiMA ¼
X39

j¼1
xj

� �

A
� 100 ð4Þ

Where;
i = gene index
j = sample index
x = log2 normalised intensity value
A ¼ maxi∈all genes SiMA

� �
The shortlisted genes were further classified into

functional classes using Tuberculist.

Flux balance analysis
Genome-scale reconstructions of M.tb metabolism have
been reported earlier [45,47]. The iNJ661 model was ob-
tained from BiGG database [82], while the iNJ661v
model was obtained from the study done by Fang et al.
[48]. Fluxes through each reaction were calculated using
the COBRA toolbox and glpk solver interfaced with
MATLAB [83]. Single and double gene deletions were
calculated using the COBRA toolbox. To make the com-
putational model closer to the actual scenario, an inte-
grated flux balance approach known as E-Flux was
utilized [46]. In this, the median of gene expression values
are used to bound the fluxes of each reaction in the model.
Thus the relative ratios of the steady-state fluxes would in-
directly take into account differences in protein abun-
dances. The reaction fluxes, effects of single and double
gene deletions were then computed using the COBRA
toolbox.

Network reconstruction
A weighted directed protein-protein interaction network
was reconstructed consisting of 1240 nodes and 7844
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edges. Data for protein-protein interaction was obtained
from KEGG [51], STRING [84] and Reactome [85] data-
bases and were manually curated to infer directions. The
data used to build the network is provided in Additional
file 6: Table S3. KEGG was mainly used to identify inter-
actions among enzymes in the protein-protein networks.
Any two proteins that shared a product-substrate rela-
tion were connected in the direction of the succeeding
reaction and in cases of reversible reactions; edges were
constructed in both directions. STRING uses a variety
of computational and experimental methods to detect
protein-protein interactions each of which is assigned a
confidence score. To ensure minimum false positives,
interactions with confidence score greater than 700 were
included in the network. This criterion was relaxed for the
experimentally verified interactions, where interactions
greater than 500 were also included in the network. If
the interacting partners formed a complex, bi-directional
edges were constructed; else directions were defined based
on inhibition/activation. Interactions were also obtained
from a high-throughput experimental bacterial-2-hybrid
study [86]. In order to minimise false-positive interactions,
only a subset of this data that was reported by the authors
to be experimentally verified by an independent method
has been considered. Microarray data was integrated into
the network using the median intensity value as the node
weights in the network. The edge weights were calculated
using the formula:

Eij ¼ 1

Bij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni �Nj

p ð5Þ

Where,
Eij = edge weight between node i and j
Bij = betweenness centrality of Eij
Ni = node weight of node i
Nj = node weight of node j

Visualization of the network and calculation of
betweenness centrality for each edge was done using
Cytoscape [87].

Random network generation
To study the statistical significance of gene knockout
analysis, random networks were generated using the
‘Random Network’ plugin in Cytoscape (apps.cytoscape.
org/apps/randomnetworks). The networks were gener-
ated such that the degree distribution of the network
was preserved. 100 such random networks were gener-
ated each with the same number of nodes (1240) as
used in the original network. A second degree of ran-
domness was added to the network, by weighing each
node in the network with gene expression data ran-
domly. For each random network, edge weights were
calculated by randomising node weights and systematic
knockout analysis performed to calculate the statistical
significance (p-value) of gene knockout in the original
network.

Broken path analysis
Floyd–Warshall algorithm [88] was implemented in
MATLAB using MatlabBGL toolbox to calculate all-pair
shortest paths. All pair shortest paths were also calcu-
lated after systematic deletion of each node to study the
effect of gene deletion on the network topology. Shortest
paths for each perturbed network was compared to that
of the WT to identify perturbations that led to the max-
imum disruption of the network. Disruption in the net-
work was quantified based on the number of shortest
paths through the given node that were completely
broken (path length tends to infinity) or those where the
path cost substantially increased. The total number of
paths perturbed is calculated as follows:

Di ¼
X

PPi

#pathsWT
� 100 ð6Þ

Where,
Di = Disruption caused by KO of gene i
PPi = Paths perturbed upon KO of gene i
#pathsWT = Total paths in the WT network

Multiple sequence alignment
Protein sequences for all known mycobacterial species
were obtained from the database UniProtKB (http://www.
uniprot.org/help/uniprotkb), which resulted in a dataset of
the genus Mycobacterium consisting of 63 different spe-
cies and 195054 different proteins. Database searches
using BLAST [52] was carried out for all proteins in M.tb
H37Rv against the database of all mycobacterial species
but by omitting all M.tb strains. Hits with identity ≥ 30%,
sequence coverage ≥ 70% and e-values ≤ 0.001 were parsed
for each query sequence. Multiple sequence alignments
for each set were computed using ClustalW [68]. Phyletic
retention scores were computed as follows:

SiP ¼ BLAST hitsi
N

� 100 ð7Þ

Where,
BLAST hitsi = number of unique species for which hits

were obtained
N = number of species in the dataset = 63

Residue conservation
These alignments were further used to obtain sequence
level residue conservation scores. Calculation of a con-
servation score is similar to positional Shannon entropy

http://www.uniprot.org/help/uniprotkb
http://www.uniprot.org/help/uniprotkb
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evaluation, which is further normalized to scale from 0
to 100. Positional entropy is calculated as

S jð Þ ¼
X

i∈ AAf g
−pi jð Þ � log pi jð Þ ð8Þ

Where,
S(j) = entropy calculated at sequence position j, where

the sequence position is defined with respect to the
multiple sequence alignment,
i = amino acids, in case of a gap insertion in the sequence

alignment each amino acid is given equal count, while
evaluating the frequency.
pi(j) = probability of occurrence of amino acid i in

position j. This is calculated based on the MSA obtained
The above calculation is further normalized as provided

in [89],

s jð Þ ¼ 100� 1−0:334� S jð Þð Þ ð9Þ

Structural analysis of ligand binding pockets
Crystal structures where available for the shortlisted
proteins were obtained from PDB [90]. For others, high
confidence structural models for the essential genes
were obtained from the M.tb Structural Proteome data-
base, where available [33]. The database provides puta-
tive binding sites or functional residues of M.tb protein
structures, derived from a consensus approach using
three different algorithms - (i) LIGSITEcsc [91], that
utilizes solvent exposed surface conservation informa-
tion, (ii) PocketDepth [70], an in-house geometric-
based algorithm to detect cavities on protein surface
and, (iii) SiteHound [92], a probe-based energy calcula-
tion method. A total of 269 structures were thus con-
sidered for this analysis.
All the pockets predicted by PocketDepth that were

within the radius of 5 Å from LIGSITEcsc prediction
and had an overlap with SiteHound predicted clusters
were obtained. These pockets were further scanned to
study the overlap between the residues forming pockets
and the residues that are conserved as determined from
MSA to derive the residue level attributes of an essential
gene.
Integrated scores were also assigned to individual genes

as follows:
Equation 4 was used to assign scores to each gene

based on microarray data. For FBA, single gene deletions
were performed and the grRatios obtained were further
processed as described in Equation 10, to obtain scores
for each gene.

SiFBA ¼ 1−grRatioð Þ � 100 ð10Þ
Equation 7 was used as a score to rank genes based on
phyletic retention and for network the following score
was applied

SiN ¼
PPKO

#pathsWT
� 100

� �

A
ð11Þ

Where,
PPKO = number of paths perturbed upon knockout (in-

clusive of broken paths and paths with higher path cost)
#pathsWT = Total paths in the WT network A ¼

maxi∈nodesSiN
Integrated scores was thus generated using the formalism

given below

ISi ¼
X

j∈ all methodsf g
Sij ð12Þ

which is further normalized to obtain a percentile score.

Additional files

Additional file 1: Table S1. List of genes shortlisted to identify
essentiality from different methods.

Additional file 2: Figure S1. Functional classification of the set of 2968
genes shortlisted by microarray analysis. Classification is based on
Tuberculist annotations [39]. Different classes are indicated in the figure.

Additional file 3: Figure S2. Comparison of single gene deletion study
for iNJ661 (blue) and iNJ661v (red) models. X-axis represents only those
genes that show an impact upon deletion. Y axis represents the impact
of deletion (1 - grRatio). Value = 1 would mean no growth upon deletion
and = 0 means no effect upon deletion. The impact for both the models
are stacked on each other for a given gene index. It is noted that the
effect of impact may differ between the models as seen by the length of
the bar.

Additional file 4: Figure S3. Pathway level classification of essential
genes obtained from FBA analysis a) single gene deletion and d) double
gene deletion.

Additional file 5: Table S2. List of gene pairs identified as essential
using double knockout gene deletion analysis in FBA. Different sheets
contain genes obtained from the two models (sheet 2 and 3) and the
union of both the models (sheet 1).

Additional file 6: Table S3. Highly curated protein- protein interactions
used to reconstruct the network.

Additional file 7: Table S4. Detailed list of associations of all the nodes
that forms the shortest path between Rv3441c and Rv1240 in WT (sheet 1)
and KO (sheet 2) networks.

Additional file 8: Figure S4. Functional classification of the set of 1902
genes shortlisted by phyletic retention analysis.

Additional file 9: Table S7. List of genes identified as essential in this
study and their comparison with those identified from experimental data
reported in literature. M.tb proteins are identified by their Tuberculist
accession numbers (for e.g. Rv0046c refers to gene-name, which is
followed by agreement or lack of it, first from Sassetti et al. dataset (S)
and then by Griffin et al. dataset (G) and finally with other datasets which
identified condition dependent essentiality (C) (see text). A tick mark
indicates that the gene is essential by the given experimental approach
while a cross indicates that the gene is not essential by that method. S
indicates that the gene is shown to cause reduction in growth rate (slow
grower) [17]. * refers to genes that are shown to be essential under
certain conditions. The table is colour coded based on the integrated
scores assigned to each gene (see text). Shades of blue are used to

http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S1.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S2.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S3.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S4.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S5.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S6.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S7.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S8.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-7-132-S9.xlsx


Ghosh et al. BMC Systems Biology 2013, 7:132 Page 18 of 20
http://www.biomedcentral.com/1752-0509/7/132
classify genes with high, medium and low integrated scores, with dark
blue representing genes that fall in the top 75th percentile, and
decreasing intensity of the shade represent 75th to 50th percentile and
50th to 25th percentile respectively.

Additional file 10: Figure S5. Other Boolean logic equations applied
to study essentiality; a) represents the most constrained and identified
only 51 genes as essential; b) represents methods other than FBA and
identifies only 139 genes. Figures are drawn using [93].

Additional file 11: Table S6. List of genes identified as essential using
Equation 2 (sheet 1) and Equation 3 (sheet2). In the case of Equation 2,
out of the 51 genes shortlisted, 42 correlated with experimental dataset
while 3 showed conditional essentiality. The remaining 6 are written in
bold and italicised.

Additional file 12: Table S5. Integrated score for each gene is
provided. The list also contains the scores obtained from individual
methods. The last column indicates the correlation with experimental
dataset.
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