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Abstract

Background: The models in this article generalize current models for both correlation networks and multigraph
networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is
straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the
underlying correlation matrix and generate informative network statistics such as the module eigenvector. However,
correlation networks only capture the connections between numeric variables. An open question is whether one can
find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph
networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust
current statistical methods to detect the clusters inherent in many data sets.

Results: Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a
network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes
correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic
multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an
edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the
parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data

(OMIM).

and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man

Conclusions: The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph
network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order
relationships between clusters, and d) it suggests novel clustering algorithms. The CPBA of a network is implemented
in Fortran 95 and bundled in the freely available R package PropClust.
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Background

The research of this article was originally motivated by
two types of network models: correlation networks and
multigraphs. After reviewing these special network mod-
els, we describe how structural insights gained from them
can be used to tackle research questions arising in the
study of general networks specified by network adjacen-
cies and more generally to unsupervised learning scenar-
ios modeled by similarity measures.
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Background: adjacency matrix and multigraphs

Networks are used to describe the pairwise relationships
between n nodes (or vertices). For example, we use net-
works to describe the functional relationships between #
genes. We consider networks that are fully specified by an
n x n adjacency matrix A = (4;), whose entry A;; quan-
tifies the connection strength from node i to node j. For
an unweighted network, A;; equals 1 or 0, depending on
whether a connection (or link or edge) exists from node i
to node j.

For a weighted network, A; equals a real number
between 0 and 1 specifying the connection strength from
node i to node j. For an undirected network, the connec-
tion strength A;; from i to j equals the connection strength
Aj; from j to i. In other words, the adjacency matrix A is
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symmetric. For a directed network, the adjacency matrix
is typically not symmetric. Unless we explicitly mention
otherwise, we will deal with undirected networks. In this
paper the diagonal entries A;; of the adjacency matrix A
have no special meaning. We arbitrarily set them equal to
1 (the maximum adjacency value); other authors set them
equal to 0 [1].

In an (unweighted) multigraph, the adjacencies A;; =
n;j are integers specifying the number of edges between
two nodes. A general similarity matrix (whose entries are
non-negative real numbers possibly outside [0,1]) can be
interpreted as a weighted multigraph. In each of the
network types, the connectivities

ki=) Ay ©)
J#i
are important statistics pertinent to finding highly con-

nected hubs. In an unweighted network (a graph), k; is the
degree of node i.

Background: correlation- and co-expression networks
Network methods are frequently used to analyze exper-
iments recording levels of transcribed messenger RNA.
The gene expression profiles collected across samples can
be highly correlated and form modules (clusters) corre-
sponding to protein complexes, organelles, cell types, and
so forth [2-4]. It is natural to describe these pairwise cor-
relations in network language. The intense interest in co-
expression networks has elicited a number of new models
and statistical methods for data analysis [3,5-11], with
recent applied research focusing on differential network
analysis and regulatory dysfunction [12,13].

A correlation network is a network whose adjacency
matrix A = (A;) is constructed from the correlations
between quantitative measurements summarized in an
m x n data matrix X = (x;;). The m rows of X correspond
to sample measurements (subjects), and the # columns of
X correspond to network nodes (genes). The jth column
xj of X serves as a node profile across the m samples. A
correlation network adjacency matrix is constructed from
the pairwise correlations Corr(x;, x;) in either of two ways.
An unweighted gene co-expression network is defined by
thresholding the absolute values of the correlation matrix.
A weighted adjacency matrix is a continuous transfor-
mation of the correlation matrix. For reasons explained
in [5,14], it is advantageous to define the adjacency A;
between two genes i and j as a power § > 1 of the absolute
value of their correlation coefficient; thus,

Ay =| Corr(x;, x7)P.

Weighted gene co-expression networks have found
many important medical applications, including identify-
ing brain cancer genes [14], characterizing obesity genes
[15,16], understanding atherosclerosis [17], and locating
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the differences between human and chimpanzee brains
[9]. One of the important steps of weighted correlation
network analysis is to find network modules, usually via
hierarchical clustering. Each module (cluster) is then rep-
resented by the module eigengene defined by a certain
singular value decomposition (SVD). Suppose Y denotes
the expression data of a single module (cluster) after the
appropriate columns of X have been extracted and stan-
dardized to have mean 0 and variance 1. The SVD of Y is
the decomposition Y = UDV?, where the columns of U
and V are orthogonal, D is a diagonal matrix with non-
negative diagonal entries (singular values) presented in
descending order, and the superscript ¢ indicates a matrix
or vector transpose. The sign of the dominant singular
vector u; (the first column of U) is fixed by requiring a
positive average correlation with the columns of Y; u; is
referred to as the module eigenvector or eigengene. One
can show that u; is an eigenvector of the m x m sam-
ple correlation matrix %YYt corresponding to the largest
eigenvalue. The eigenvector u; explains the maximum
amount of variation in the columns of Y.

Let d; be the ith singular value of Y. The eigenvector
factorizability

| |*
Z,’ |07f’j|4

measures how well a network factors [18]. This measure
is very similar to the proportion of variation explained,
d%/ > djz. One can prove [18] that when EF(u;) ~ 1, the
correlation matrix Y approximately factors as

EF(u1) =

Corr(x;, %j) ~ Corr(x;, u1) Corr(x), u1).

In co-expression networks, modules are often approxi-
mately factorizable [18,19]. For a network comprised of
multiple modules, it should come as no surprise that when
the eigenvector factorizabilities of all modules are close to
1, the correlation network factors as

Aj ~ | Corr(x;,u)|P| Corr(aj, u))|P| Corr(ul,ul)|?

pipjrCiC/y

R

(2)

where u{’ is the module eigenvector of the module con-
taining i, p; = | Corr(x;, uii )|# measures the intramodular
connectivity (module membership) of node i with respect
to its module, and r¢,;; = |Corr(uii, uij )| measures the
similarity between clusters c; and c;. The quantity

KME; = Corr(x;, u7') 3)

is called the module membership measure or confor-
mity [18,19].
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Unlike general networks, correlation networks allow
assessment of the statistical significance of an edge (via a
correlation test) and generate informative network statis-
tics such as the module eigenvector. But correlation net-
work methods can only be applied to model the corre-
lations between numeric variables. An open question is
whether correlation network methods can be generalized
to general networks by defining a suitable decomposition
of a general network similarity measure. In the following,
we will address this question.

Results and discussion

CPBA is a sparse approximation of a similarity
measure

Consider a general n x n symmetric adjacency matrix A,
for example one generated by a multigraph. Because the
diagonal entries of A are irrelevant, A is determined by
its (g) upper-diagonal entries. We now describe a low-
rank matrix approximation to A based on partitioning the
n nodes into K clusters labeled 1,...,K. Motivated by
(Eq. 2), our approximation of a general similarity relies
on three main ingredients. The first is a cluster assign-
ment indicator ¢ = (¢;) whose entry ¢; equals a when
node i belongs to cluster a. The cluster label 2 = 0 is
special and is reserved for singleton nodes outside any
of the “proper” clusters. The clusters are required to be
non-empty except for the improper cluster 0. The second
ingredient is a K x K cluster similarity matrix R = (r,3)
whose entries quantify the relationships between clusters.
The third and final ingredient is the propensity vec-
tor p = (p;) whose components quantify the tendency
(propensity) of the various nodes to form edges. The goal
of cluster and propensity based approximation (CPBA) is
to construct an approximation to A by optimally choosing
the cluster assignment indicator ¢, the cluster similarity
matrix R, and the propensity vector p. CPBA assumes that
the adjacency matrix A;; can be approximated as

Aij & TeiciPibj- (4)

The right-hand side with (12<) + n parameters can
be interpreted as a sparse parametrization of the left-
hand side with (;) parameters. In a weighted correlation
network, the propensity p; of node i is approximately
IKME;|?. The cluster similarity r,p, defined by the corre-
lation | Corr(uf, uﬁ’ )|? between eigengenes, is an intuitive
measure of the interactions between modules. The diago-
nal entries r,, of R are identically 1.

Objective functions for estimating CPBA

In practice, CPBA parameters c, p, and R of a general sim-
ilarity are unknown and must be estimated by optimizing
a suitably defined objective function. In this article, we
describe estimation methods that are based on optimizing
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two superficially different objective functions. Our first
objective is just the squared Frobenius matrix norm

Frobenius(c, p, R) = Y > (Aj — re;pipy)”. (5)
i j#Ei

Our second objective is the Poisson log-likelihood

Yoo Di ,)A,’,‘e*rcl-c,'l’ipi
Poisson(c, p, R) = Z Z In |:( co PPy

i j Ay
= Z Z [Aij ln("qc,ﬁil’j) _rc,'cfpipj_ln(Aij! )] .
i j#i

(6)

Our later multigraph example interprets Poisson(c, p, R)
in this traditional sense. The functional form of the
Poisson log-likelihood even applies when the A;; are non-
integer. The factorial A;!, which is irrelevant to maxi-
mization in any case, can then be defined via the gamma
function. In practice maximization of the Poisson log-
likelihood and minimization of the Frobenius norm yield
very similar numerical updates.

In the Methods section, we describe a powerful MM
algorithm for optimizing the objective functions and esti-
mating its parameters. We now pause and briefly describe
a few major applications. First, the sparse parametriza-
tion can be used to derive relationships between network
statistics; our previous research highlights this possibility
[18,19]. For example, the connectivity index (Eq. 1) can be
approximated by

ki=>"Aj ~ piy regp @)
J#i J#i

Second, since our optimization algorithms also strive to
choose the best cluster assignment indicator ¢, they nat-
urally give rise to clustering algorithms. Cluster reassign-
ment is carried out node by node in a sequential fashion.
For the sake of computationally efficiency, all parame-
ters are fixed until node reassignment has stabilized. If
parameters are updated as each node is visited, then the
computational overhead seriously hinders analysis of net-
works with ten thousand nodes. Our limited experience
suggests that more frequent re-estimation of parameters
is less likely to end with an inferior optimal configuration.
Hence, the tradeoff is complex.

Other major uses depend on the underlying model. In
the Frobenius setting, the model can be used to gener-
alize conformity-based decomposition of a network as
shown in Example 2. In the Poisson log-likelihood set-
ting, our model suggest a new clustering procedure. In
contrast to other clustering procedures, the CPBA mod-
els provide a means of relating clusters to each other via
the cluster similarities r,. Furthermore, likelihood based
objective functions permit statistical tests for assessing
the significance of an edge. For example, in the multigraph
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model, the significance of the number of connections
between two nodes can be ascertained by comparing the
observed number of connections to the expected number
of connections under the Poisson model. Finally, likeli-
hood based objective functions provide a rational basis for
estimating the number of clusters in a data set.

In the following three examples, we illustrate how
to generalize a variety of network models to include
clustering.

Example 1: Generalizing the random multigraph model
We recently explored a random multigraph model [20]
that allows multiple edges to form between two nodes and
edges to form with different probabilities. Edges still form
independently. Under the random multigraph model, each
node i is assigned a propensity p;. The random number
of edges between nodes i and j is then assumed to fol-
low a Poisson distribution with mean p;p;. This model
relies entirely on propensities and ignores cluster similar-
ities. We will refer to it as the Pure Propensity Poisson
Model (PPP) to avoid confusion with CPBA. Thus, the
PPP log-likelihood is

Pure Propensity Poisson(p)

(pipj)tie Pt

e
8
- Z Z [4j In(pip) — pipj — In(A;!)] (8)
y
- Z Z [ In@ipy) — pipy — In(nz)],
i

where A; = n; is the number of edges between nodes
i and j. While future work could explore alternatives to
the Poisson distribution, it is attractive for several rea-
sons. First, it is the simplest model that gives the requisite
flexibility. Second, a Poisson random variable accurately
approximates a sum of independent Bernoulli random
variables. A binomial distribution also serves this pur-
pose, but it imposes a hard upper bound on the num-
ber of successes. Third, the Poisson model is convenient
mathematically since it yields nice MM updates in maxi-
mum likelihood estimation of the model parameters[20].
Fourth, a likelihood formulation permits testing for statis-
tically significant connections between nodes.

Although the parametrization (Eq. 8) of PPP is flexible
and computationally tractable, it ignores cluster forma-
tion. To address this limitation, we propose to exploit the
CPBA parametrization. This extension is natural because
many large multigraphs appear to be made up of smaller
sub-networks, often referred to as modules, that are highly
connected internally and only sparsely connected exter-
nally. For example, consider a co-authorship multigraph
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where an edge is placed between two scientists when-
ever they co-author an article. Scientists working at the
same institution and in the same department tend to be
highly connected. Similarly, scientists tend to collabo-
rate with other scientists working on the same research
topics. Cluster structure is also inherent in biology. For
instance, genes often function in pathways, and proteins
often cluster in evolutionary families. Thus, when a net-
work exhibits clustering, the propensity to form connec-
tions within a cluster is usually higher than the propensity
to form connections between clusters. This phenomenon
cannot be modeled using our original PPP model [20]
and provides the motivation for injecting cluster similar-
ity into the multigraph model. Our hope is that the CPBA
based multigraph model will better account for differ-
ences in intracluster and intercluster connections and lead
to better identification of significant connections. In the
absence of an explicit model for clustering, the PPP model
is likely to falter on a dataset that exhibits clustering.
The most likely result is a host of significant connections
between nodes in the same cluster since they all exhibit
more edges than expected by chance. These types of sig-
nificant connections are often uninteresting. In the above
mentioned co-authorship network, the cluster structure
may reflect institutional affiliations. In this case, it may
be more interesting to identify pairs of researchers who
publish more (or less) than is expected based on their
workplace location.

To keep the number of parameters to a minimum, the
cluster similarity matrix R = (r,) is assumed to be
symmetric with a unit diagonal. Thus, our new random
multigraph model, CPBA, adds just (12< ) parameters for K
clusters. As previously postulated, the number of edges
between nodes i and j in clusters c; and ¢; is Poisson
distributed with mean TeiPibj-

Example 2: Generalizing the conformity-based
decomposition of a network

To demonstrate the value in our clustering model and
tap into the wealth of data on weighted networks [21],
we propose a clustering extension. Because weighted net-
works by definition have edge weights in [0, 1], we drop
the Poisson assumption and instead minimize the Frobe-
nius criterion (Eq. 5). A major benefit of this model is
that it generalizes the conformity-based decomposition of
a network [21]. An adjacency matrix A = (A4;) is exactly
factorizable if and only if there exists a vector f = (f;) with
non-negative elements such that

Aij =f(ﬁ )

for all i # j. In this setting, f; is often called the confor-
mity of node i. Although the term factorizable network
was first proposed in [19], numerous examples of these
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types of networks can be found in the literature. A physi-
cal model for experimentally determined protein-protein
interactions is exactly factorizable [22]. In that model, the
affinity A;; between proteins i and j is the product of
conformities f; = exp(—«;), where «; is the number of
hydrophobic residues on protein i. Since it can be shown
that f is uniquely defined if the network contains n > 3
nodes and all A; > 0 [19,21], it is easy to see that the
propensity vector matches the conformity vector, p = f,
when all r,; = 1. Even when a network is not factorizable,
our method can estimate conformities while simultane-
ously clustering the nodes into more factorizable modules.
In addition, the entries of the cluster similarity matrix R
can be interpreted as adjacencies between modules. Thus,
the cluster similarity matrix represents a network whose
nodes are networks themselves. In correlation network
applications, we proposed a similar measure [23], and for
gene networks we defined a measure of the probability
of overlap between gene enrichment categories. Although
these measures are useful in their respective contexts, they
cannot be generalized to other networks. In contrast, by
incorporating cluster similarity into our model, we have a
standard way of calculating these measures for any type of
network.

MM algorithm and R software implementation

Our software implementation of CPBA is freely avail-
able in the R package PropClust. On a laptop with a
2.4 GHz i5 processor and 4 GB of RAM, PropClust
can estimate the parameters for 1000 nodes for a given
cluster assignment in 0.1 seconds. For 3000 nodes, the
same analysis takes 1 second. In practice, initial clus-
ters are never perfect and must be re-configured as well.
PropClust adopts a block descent (or ascent) strat-
egy that alternates cluster re-assignment and parameter
re-estimation until clusters stabilize. Block descent takes
under 10 rounds on average if initial cluster assignments
are good. Note that all parameters are fixed in cluster
re-assignment, and all clusters are fixed in parameter re-
estimation. Furthermore, both steps decrease the value of
the objective function. Early versions of PropClust re-
estimated parameters as each node was moved. This tactic
proved to be too computationally burdensome on large-
scale problems despite its slightly better performance in
finding optimal clusters.

Judicious choice of the initial clusters is realized by
a divide-and-conquer strategy. First, hierarchical cluster-
ing coupled with dynamic branch cutting [24] is used
to cluster nodes into manageable blocks of user-defined
maximum size, for instance at most 1000 nodes each.
Second, the CPBA algorithm is applied to each block
to arrive at clusters within blocks. Our co-expression
network application shows that this initialization proce-
dure works well even in large data sets. Another way to
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accelerate clustering is exploit parallel processing in the
MM algorithm. Parallelization of the MM algorithm is
easily achieved since the parameters separate in the sur-
rogate function and updating the propensities via (Eq. 12)
and (Eq. 15) requires only the previous parameter val-
ues. Cluster re-assignment avoids continuous optimiza-
tion altogether and is very fast.

Simulated clusters in the Euclidean plane

Our first simulated dataset suggests a geometric inter-
pretation of propensities and cluster similarities. For
this dataset we simulated four distinct clusters on the
Euclidean plane by sampling from a rotationally sym-
metric normal distribution with covariance matrix I and
means corresponding to the four cluster centers shown
in Figure 1A. The numbers of points in the four clusters
were 50, 100, 150, and 200, respectively. The adjacency
between two points is defined as 1—[dist/max(dist)]?,
where dist denotes Euclidean distance between the points
and max(dist) denotes the maximum distance between
any two points. Thus as depicted in Figure 1B, points
closer together have a higher adjacency than those further
apart. As anticipated, the MM algorithm provided the cor-
rect cluster assignments. Figure 1C also makes it evident
that the estimated propensity of a point is significantly
correlated to the Euclidian distance between the point and
its cluster’s center. This result is expected since a con-
nectivity k; is related to a propensity p; through equation
(Eq. 7). Within a module, connectivity is also related to its
cluster’s center through the formula

ATV ATV
nllx; — x|1* + 3 [l — x|

max(dist)

kk=m—1)— (10)

where 7 is the number of nodes in the cluster, x; is the
position of node i, and % is the position of the cluster cen-
ter [21]. This formula also explains why there is a separate
line for each cluster in Figure 1C. Finally, Figure 1D shows
that the cluster similarity ry; of clusters k and / is signifi-
cantly correlated to the distance between the centers of k
and /. In summary, a propensity can be viewed as a mea-
sure of the centrality of a node, while a cluster similarity
reflects the distance between two cluster centers.

Simulated gene co-expression network

To illustrate how CPBA generalizes to weighted cor-
relation networks, we simulated gene expression data
using the simulateDatExpr5Modules function in
the WGCNA package in R [25]. Given the simulated
expression data, we calculated Pearson’s correlation coef-
ficient for each pair of genes and formed an adjacency
matrix. Applying CPBA based clustering to the simu-
lated data led to clusters that overlap perfectly with the
simulated clusters. As Figure 2 depicts, the estimated
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Figure 1 Four clusters were simulated in the Euclidean plane by sampling from the rotationally symmetric normal distribution with
means corresponding to the different cluster centers and variance matrix I. The numbers of points in the clusters were 50, 100, 150, and 200
for the black, red, green, and blue clusters, respectively. A) A plot of the points is shown colored by cluster. B) Heatmap that color-codes the ordered
adjacency matrix, calculated using the formula A(/,j) = 1 — [EuclideanDistance(i/j)/ max(EucIidean.Distance(f,j))]z. In this plot red indicates a high
adjacency, and green indicates a low adjacency. As expected, the adjacency within clusters is very high, and the adjacency between the blue and
black clusters is the lowest since they are the furthest apart. C) The scatter plot between propensity (y-axis) and whole network connectivity (row
sum of the adjacency matrix, Eq. 7) shows that the propensity is related to the distance between a point and its cluster’s center (given Eq. 10) in this
example . D) Scatter plot between cluster similarity (y-axis) calculated using CPBA and the Euclidean distance between cluster centers (x-axis) shows

D cor=-1, p<ie-200

Cluster Similarity
0.5 06 0.7 08 09

04

0.3

10 15 20 25
Distance Between Centers

propensities p; are very significantly correlated to the node
connectivities k;. This strong relationship reflects (Eq. 7).
Furthermore, as seen in Figure 2, cluster similarity is sig-
nificantly correlated to true eigengene adjacency, namely,
Teiep & | Corr(uii, uij )|8. In both simulations several differ-
ent cluster assignment initializations were tried and all led

to the same, correct, result.

Real gene co-expression network application to brain data
In this real data example, we demonstrate that CPBA gen-
eralizes weighted correlation network analysis and can
deal with fairly large data sets. The human brain expres-
sion data in question were measured on the Affymetrix
U133A platform [4]. Following Oldham et al. 2008 [4], we
restrict our analysis to the roughly 10* probes that were

highly expressed in brain tissue. The biological modules
discovered by Oldham et al. 2008 [4] via WGCNA are
fairly well understood and correspond to cell types such
as astrocytes, oligodendrocytes, and neurons enriched
for specific cell markers. In re-analyzing these data, we
defined initial clusters as sketched in our discussion of the
R software implementation of CPBA. This strategy obvi-
ates the need to pre-specify the number of clusters present
in a data set. The results of PropClust are depicted
in the second color band of Figure 3A. Overall, we find
that CPBA yields modules very similar to those identified
by WGCNA. The overlap with the well annotated mod-
ules of Oldham et al. [4] shows that the two clustering
procedures yield meaningful and nearly equivlaent mod-
ules. CPBA has the advantage of giving cluster similarities.
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Figure 2 Gene expression simulation results. Gene expression data were simulated using the simulateDatExpr5Modules function under
the WGCNA package in R. An adjacency matrix was then calculated from the Pearson correlation coefficients for the expression levels of each pair of
genes. These plots reveal the relationship between the intramodular propensity and the true module membership, kME in (Eq. 3), first in all the
clusters combined (top left) and then in each of the five clusters individually. Note the strong correlation and significant p-value in all cases.

Intermodular Adj.

Figure 3B shows that eigengene based network adjacency
(defined as the correlation between eigengenes raised
to the soft-thresholding power 4) is highly correlated
(r=0.93) with the cluster similarity parameter calculated
by CPBA. For genes within a given module, Figures 3C-E
demonstrate that the node propensities estimated under
CPBA are highly correlated with the module membership
measures kKME raised to the soft thresholding power 4.
Finally, Figures 3I-] show that the connectivities k; in the
correlation network are highly correlated (r=0.96) with the
connectivities calculated under the CPBA approximation
and with the corresponding CPBA propensities (r=0.88).
Figure 3K shows that there is a high correlation (r=0.93)
between CPBA based connectivity (i.e. the row sum of the
CPBA matrix) and the propensity parameter.

These results demonstrate that CPBA is roughly equiv-
alent to WGCNA in a typical co-expression network.
We expect that CPBA will also be helpful in under-
standing network topology. For example, Figure 3F shows
that the weighted co-expression network satisfies the
approximate scale-free topology (SFT) property. Future
research should aim to characterize the general fit of
CPBA parameters to the SFT property. In this example,
the CPBA based connectivities and propensities shown in
Figures 3G and 3H agree well.

OMIM disease and gene networks

Here we present an application that is not amenable to
correlation network models but is arguably well suited for
multigraph models. Specifically, we consider a bipartite
multigraph between genes and diseases based on curated
data from the reference Online Mendelian Inheritance
of Man (OMIM), which tracks published links between
diseases and corresponding genes [26]. These data were
previously studied in detail by Goh et al. [27], who showed
that diseases and their associated genes are related at
higher levels of cellular and organ function. In the current
application we validated their functional clustering using
the CPBA model.

Following Goh et al. [27], we analyzed the data in two
ways. First we created a disease network by placing an
edge between two diseases for each gene they were both
linked to. Only the links labeled as high quality by OMIM
were considered. This construction yielded a multigraph
of 2552 diseases with 1401 diseases connected to at least
one other disease. We created a second, complementary
multigraph by placing an edge between two genes for
each disease they were both linked to. For this multigraph,
there were 4045 genes with 1978 genes connected to at
least one other gene. As suggested by the Medical Subject
Headings (MeSH) list [28], we applied the CPBA model
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Figure 3 Human brain expression data illustrate how CPBA can be interpreted as a generalization of WGCNA. A) Hierarchical cluster tree
based on WGCNA. Color bands show the WGCNA modules (first band), CPBA modules identified by propensity clustering (second band), and the
modules identified by Oldham et al [9]. CPBA yields modules very similar to those identified by WGCNA. The overlap with the well annotated
modules of Oldham et al [4] confirms that these clustering procedures yield meaningful modules. B) The intermodular adjacency calculated using
CPBA (y-axis) is stronly correlated (r = 0.93) with its WGCNA counterpart, the correlation between eigengenes raised to the soft thresholding power.
C) For nodes restricted to module 1 (turquoise in the color bands in panel A), CPBA propensity is highly correlated with its WGCNA counterpart, the
module membership, kME (Eqg. 3) raised to the soft thresholding power. D) and E) show analogous scatter plots for modules 2 (blue) and 3 (brown),
respectively. F) The co-expression network exhibits approximate scale free topology (SFT). Specifically, the x-axis corresponds to equal width bins of
the logarithm (base 10) of the connectivity kj = Z/#AU (Eg. 1), and the y-axis reports the corresponding logarithm of the frequency. The
approximate straight line relationship (linear model fitting index R> = 0.91) indicates that SFT fits very well. G) evaluates SFT for CPBA connectivity
defined by the right-hand side of Eq. 7. H) evaluates SFT for the propensity p; only. I) The CPBA connectivity (y-axis) is highly correlated (r = 0.96)
with connectivity k; in the correlation network (x-axis). Genes are colored according to module assignment (PropClust color band in panel A.

J) There is a high correlation (r=0.88) between k; (x-axis) and propensity (y-axis). K) There is a high correlation (r=0.93) between CPBA based
connectivity (x-axis) and propensity (y-axis).
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with K = 10 clusters for the gene network and K = 14
clusters for the disease network, leaving out irrelevant
categories.

We categorized the diseases using MeSH with little suc-
cess. Nearly half of the diseases (47%) were not mapped to
any category, and another 36% were mapped to multiple
categories. Using the clustering obtained from the CPBA
analysis of the disease network, we looked at whether
any MeSH categories were overrepresented in a cluster.
Ignoring diseases present in multiple MeSH categories, we
found 8 significant categories at P < 0.01, including neo-
plasms, musculoskeletal diseases, and eye diseases (See
Table 1). Although significant results were obtained, only
a handful of diseases in each cluster contributed to the
statistic. Upon closer inspection of the clusters, we found
that many seemingly well-defined diseases were either not
mapped or multiply mapped. For example, the eye disease
cluster contains morning glory disc anomaly, coloboma,
best macular dystrophy, cone-rod retinal dystrophy, and
iris hypoplasia which are all clearly eye diseases, but not
classified as such by MeSH. The eye disease cluster is
depicted in Figure 4.

Additionally, we found 540 significant connections
between diseases at P < 0.01 and 148 significant
connections at P < 0.001. The top 10 connections are
listed in Table 2. The disease pair Adrenoleukodystrophy
and Zellweger syndrome came in first; these two dis-
eases are two of only three peroxisome biogenesis diseases
belonging to the Zellweger spectrum [29]. It is also inter-
esting to look for highly connected hub clusters, namely,
clusters with high similarity to several other clusters. To
define a measure of cluster connectivity, one can use the
row sum of the cluster similarity matrix R. The neoplasm
cluster has the highest row sum and is the cluster with the
highest cluster connectivity. This makes sense given the
complexity and diversity of cancers within the cluster.

Looking at the complementary gene network, we
checked for overrepresentation of Gene Ontology (GO)

Table 1 Over-represented MeSH categories in the disease
network

Name MeSH num. -Log10(P)
Hemic & lymphatic diseases ci15 832
Eye diseases cn 7.78
Cardiovascular diseases C14 423
Nervous system diseases C10 4.04
Neoplasms c4 337
Musculoskeletal diseases 5 291
Endocrine system diseases C19 2.04
Congenital, hereditary, &
neonatal diseases & abnormalities cle 2.03
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terms using BinGO on Cytoscape [30]. We found that each
cluster had an overrepresentation of many GO terms. In
the cluster with the well-known tumor suppressor pro-
tein TP53, we found 875 statistically significant GO terms
at P < 0.01. Of these, 585 terms are still significant at
P < 0.001 after accounting for multiple testing. The top
10 GO terms include both positive and negative regula-
tion of cellular and biological processes, regulation of cell
proliferation, anatomical structure development, regula-
tion of apoptosis, and others that are clearly associated
with TP53. Finally, we found 1316 significant connections
between genes at P < 0.01 and 418 at P < 0.001. The
top 10 connections are listed in Table 3. Many of these
gene pairs are known to interact from other support-
ing evidence. For example, interaction between the top
ranking pair, Hemoglobin Alpha 1 globin chain (HBA1)
and Hemoglobin Subunit Beta (HBB), is confirmed by
their co-crystal structure in x-ray crystallography [31] and
by automated yeast two-hybrid (Y2H) interaction mating
[32]. Figure 5 depicts the full gene network derived from
OMIM.

Empirical comparison of edge statistics

In this section we compare our current CPBA model with
our original Pure Propensity Poisson (PPP) model on two
real datasets: the OMIM disease network and the compli-
mentary OMIM gene network. On the whole we find that
the CPBA model produces more plausible P-values for the
edge-count tests. Conditioning on clusters enables CPBA
to detect significant intercluster connections often missed
by the PPP model. It also produces more reasonable P-
values within clusters since propensities are not artificially
deflated by the lack of connections between nodes from
different clusters. We now consider how these trends play
out in the OMIM disease network and the OMIM gene
network.

In the disease network we find that, among the 20
most significant connections under the CPBA model, 5
are intercluster connections (See Table 2). Under the PPP
model in contrast, none of the 20 most significant con-
nections link different CPBA clusters (See Table 4). In
fact, none of the top 50 connections of the PPP model
occur between different CPBA clusters. The significant
connection between Usher syndrome and retinitis pig-
mentosa would have gone completely unnoticed under
the PPP model. This would be a shame because retini-
tis pigmentosa is a major symptom of Usher syndrome
[33]. Another missed intercluster pairing, Waardenburg
syndrome and Craniofacial-deafness-hand syndrome, also
deserves recognition since both syndomes involve deaf-
ness and common facial features [34,35].

Comparing the intracluster connections, we find that
CPBA and PPP produce similar results, with 8 connec-
tions present in both lists. However, the P-values of these
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connections differ sharply under the two models. Since
the PPP model essentially assumes a single cluster, esti-
mated propensities trend lower in response to the lack of
connections between nodes from different clusters. This
results in lower means for the Poisson distributions and
more extreme P-values. This phenomenon is especially
evident in the pairing between Adrenoleukodystrophy
and Zellweger syndrome; in the CPBA model the test for
excess edges has —Log,,(P) = 8.57, whereas in the PPP
model —Log,,(P) = 12.06.

The same story holds for the gene network. Among the
20 most significant connections under CPBA, 7 are inter-
cluster connections (Table 3). Under the PPP model the

corresponding number is 0 (Table 5). One of the more
interesting missed connections occurs between BDNF
(brain-derived neurotrophic factor) and HTR2A (sera-
tonin receptor 2A). Both genes are associated with atten-
tion in schizophrenia [36]. As for intracluster connections,
all intracluster connections found in the CPBA list are also
found in the PPP list. However, the P-values for the most
significant pair (HBB and HBA) differ by almost 5 orders
of magnitude.

To summarize, the CPBA model was able to find sig-
nificant intercluster edge counts that the PPP model
missed. Indeed, the PPP model was unable to find a sin-
gle signficant intercluster pair in either data set. Although
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Table 2 Disease network top 20 significant connections CPBA
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Disease 1 Disease 2 C1 c2 -Log10(P)
1 Zellweger syndrome Adrenoleukodystrophy 14 14 8.57
2 Muscular dystrophy-dystroglycanopathy Muscular dystrophy-dystroglycanopathy (congenital) 2 2 7.05
(limb-girdle)
3 Ullrich congenital muscular dystrophy Bethlem myopathy 14 14 648
4 Iminoglycinuria Hyperglycinuria 14 14 6.48
5 Alport syndrome Hematuria 14 14 531
6 Colorblindness Blue cone monochromacy 14 14 531
7 Refsum disease Zellweger syndrome 14 14 5.05
8 Usher syndrome Retinitis pigmentosa 8 6 504
9 Seckel syndrome Microcephaly 14 14 4.96
10 Leukoencephalopathy with vanishing white Ovarioleukodystrophy 14 14 4.96
matter
11 Omenn syndrome Severe combined immunodeficiency 14 14 4.90
12 Tuberous sclerosis Lymphangioleio-myomatosis 14 14 4.60
13 Cone-rod dystrophy Macular degeneration 6 10 4.60
14 Bronchiectasis with or without elevated Pseudohypoaldoste-ronism 11 11 447
sweat chloride
15 Leri-Weill dyschondrosteosis Langer mesomelic dysplasia 14 14 4.10
16 Multiple pterygium syndrome Myasthenic syndrome 14 14 4.00
17 Craniofacial-deafness-hand syndrome Waardenburg syndrome 3 11 377
18 Nicotine addiction Epilepsy 3 8 3.76
19 Hirschsprung disease Pheochromocytoma 11 2 3.70
20 Langer mesomelic dysplasia Short stature 14 14 362

conditioning on clusters resulted in less impressive intr-
acluster P-values, the CPBA model was still able to
detect most of the significant intracluster pairings found
by the PPP model. Figure 6 provides a scatterplot of
—Log,,(P) for all significant connections obtained under
either model. Points are colored red if they represent
a pairing within a cluster and black if they represent a
pairing between different clusters. The figure justifies our
contentions that the CPBA model is more sensitive to
intercluster connections and less sensitive to intracluster
connections than its less nuanced competitor. So while
there will be fewer significant intracluster connections,
they will arguably be more interesting. Most likely these
virtues of the CPBA model carry over to other data sets.

Simulations for evaluating edge statistics

To drive home the last point, we took a block diagonal
adjacency matrix containing 1’s in its diagonal blocks
and O’s in its off-diagonal blocks and introduced a few
off-block connections. In our initial matrix with three
diagonal blocks of 100, 200, and 500 nodes, we changed
60 off-block entries from 0’s to 1’s. Each pair of node sets
accounted for 20 of these switches. We then analyzed the
modified matrix under both the CPBA and PPP models.

Figure 7 plots —Log;,(P) versus true adjacencies for the
modified entries. Based on its identification of clusters,
the CPBA model yields a better fit to the data. Compari-
son of —Log;,(P) values under the two models shows that
CPBA is more adept at finding significant intercluster
connections. The evidence from the receiver operating
characteristic (ROC) curve is very convincing on this
point. The area under the ROC curve for the CPBA model
was 0.95 compared to just 0.38 for the PPP model.

Hidden relationships between fortune 500
companies

To illustrate the utility of CPBA in a non-biological set-
ting, we briefly describe a multigraph model of cross-
company management. Specifically, we took the Fortune
500 Companies of 2011 and put an edge between two
companies for each shared member on their boards of
directors. The original data is found in Freebase [37].
As discussed below, the use of the Bayesian Information
criterion (BIC) or the Akaike Information criterion for
estimating clusters is problematic. For example, the BIC
suggests an optimal number of clusters K around 10, while
the AIC gives a less plausible value of K > 20. In the
following, we assume K = 10 clusters. It is noteworthy
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Table 3 Gene network top 20 significant connections CPBA

Rank Gene 1 Gene 2 Cluster 1 Cluster2  -Logqo(P)
1 HBB HBA1 2 2 9.05
2 SHOXY SHOX 10 10 7.36
3 BDNF HTR2A 5 4 7.07
4 SH2B3 JAK2 2 8 7.05
5 TSC2 TSC1 10 10 6.28
6 FOXC1 PITX2 7 7 573
7 MAPT PSENT 4 6 5.66
8 OPNTMW  OPNTLW 10 10 5.58
9 COL4A4 COL4A3 10 10 5.58
10 RAG2 RAG1 10 10 5.56
1 SCNN1G SCNN1B 5 5 525
12 HBB KLF1 2 10 5.09
13 COL6AT COL6A3 10 10 5.08
14 COL6A2 COL6A3 10 10 5.08
15 SLC6AT9 SLC36A2 10 10 5.08
16 SLC6A20 SLC36A2 10 10 5.08
17 SLC6A20 SLC6AT9 10 10 5.08
18 COL6A2 COL6AT 10 10 5.08
19 GPC3 OFD1 8 7 4.75

20 LTBP2 CYP1B1 10 7 473

that most companies do not cluster into groups of related
industries. This makes sense because conflict of inter-
est norms preclude companies in the same field from
sharing board members. Overt clustering is consequently
discouraged.

Based on the underlying probability model, we ascer-
tained the significance of the edge counts for company
pairs. Table 6 lists the 10 most significant connections
under the 10-cluster model. Several connections stand
out. The significant pairing between Fidelity National
Financial and Fidelity National Information Services is
rather obvious. The same holds for the pairing between
Autozone and AutoNation Inc. Other connections are
less obvious. The pairing between General Motors and
DuPont may reflect the fact that Pierre du Pont, the
founder of DuPont, at one point owned a third of all
General Motors stock. This remained true until federal
antitrust prosecutors filed suit, and the Supreme Court
ruled against DuPont, forcing the company to dispose all
of its GM shares in 1961 [38]. Although the shares are
gone, it seems that some ties persist.

Relationship to other network models and future
research

Because so much effort has been devoted to the math-
ematical and statistical explication of complex networks,
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we can only touch on the relationship of the CPBA
parametrization to other network models. Complex net-
works can be described by random graphs (the Erdos
and Rényi model [39]), small-world models (the Watts
Strogatz model [40]), scale-free networks (the preferen-
tial attachment model of Barabasi and Albert [41,42]),
and other growing random network (GRN) models. These
models involve graphs rather than multigraphs, so the
number of edges per node pair equals 0 or 1. The CPBA
has interesting ramifications for random graphs with arbi-
trary connectivity distributions [43]. If the edges are
placed randomly in a network with such connectivities,
then the probability P; of observing an edge between
nodes i and j is exactly factorizable. In fact, P; = k; 3/<j_3,
where k; is the connectivity (degree) of node i [42,44].
Thus, Pj; can be well approximated by CPBA with propen-
sities p; = k; 3 and cluster similarities r,, = 1. The
Erdos and Rényi (ER) model, which assumes uniform edge
probabilities, is too restrictive for realistic networks. The
CPBA parametrization adapts well to random graphs if
we replace the mean edge count with the edge formation
probabilities

_ Pibjreg
" 14 pipjree
This reformulation of the model is consistent with con-
struction of an MM algorithm for parameter estimation
[45]. Future research should explore the topological prop-
erties of such models.

Growing random networks (GRNSs) are also of inter-
est since many networks grow by the continuous addition
of new nodes and exhibit preferential attachment. Thus,
the likelihood of connecting to a node depends on the
node’s current connectivity [41-44,46,47]. At each time
step of a growing random network [44], a new node is
added, and a directed edge to one of the earlier nodes is
created. This growing network has a directed-tree graph
topology whose basic elements are nodes connected by
directed edges. In general, the topology of a general GRN
is determined by the connection kernel Ay, which is the
probability that a newly-introduced node forms an edge
to an existing site with k edges (k — 1 incoming and 1
outgoing). Future research could explore how to define
a connection kernel (or more generally a GRN) so that
the resulting network can be well approximated using
the CPBA of the adjacency matrix. The Barabasi-Albert
(BA) model is an important special case of a GRN [41,42]
that leads to a scale-free network. In the BA model, the
degree of a node satisfies the power-law (or scale-free)
distribution

P(k) ~ k7.
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clustering identifies modules of highly interconnected nodes.

Figure 5 OMIM Gene Network. Genes are colored based on their cluster membership, and node size is proportional to a gene’s propensity. This
view was achieved with a spring-embedded layout in Cytoscape using the number of edges between two genes as weights. Note that CPBA based

For homogeneous connection kernels, Ay ~ k", and scale
free networks only arise if v = 1 [44]. Future research
could explore whether the adjacency matrix of the BA
model can be well approximated using the CPBA. Toward
this end it may useful to observe that the probability P;; of
finding an edge between nodes i and j in the BA model is
given by [42,44]

b 4(k; — 1) (4k; + k; +2)
U7 kitki + Dk + ki — D(ki + k) (ki + Kk + 1) (ki + K +2)

which, importantly, assumes that node i with connectiv-
ity k; was added later to the growing network than node j
(implying that k; < k;). In view of this temporal assump-
tion, P; is not symmetrical in i and j; it also contains no
parameters to capture clustering. Thus, there is no obvi-
ous relationship between the BA model and the CPBA
approximation of a network. Future research can investi-
gate how to parameterize preferential attachment so that
the resulting probability P;; of finding an edge fits well to
the CPBA.
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Table 4 Disease network top 20 significant connections PPP model
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Disease 1 Disease 2 Cc1 C2 -Log10(P)
1 Muscular dystrophy-dystroglycanopathy (limb-girdle) Muscular dystrophy-dystroglycanopathy (congenital) 2 2 13.31
2 Zellweger syndrome Adrenoleukodystrophy 14 14 12.06
3 Leber congenital amaurosis Retinitis pigmentosa 6 6 10.12
4 Neuropathy Charcot-Marie-Tooth disease 12 12 8.99
5 Blood group Malaria 13 13 8.76
6 Ullrich congenital muscular dystrophy Bethlem myopathy 14 14 8.57
7 Iminoglycinuria Hyperglycinuria 14 14 8.57
8 Usher syndrome Deafness 8 8 848
9 Hemolytic uremic syndrome Macular degeneration 10 10 8.24
10 Bronchiectasis with or without elevated sweat chloride Pseudohypoal-dosteronism 11 11 7.75
1 Refsum disease Zellweger syndrome 14 14 7.14
12 Meckel syndrome Joubert syndrome 6 6 7.08
13 Omenn syndrome Severe combined immunodeficiency 14 14 6.99
14 Left ventricular noncompaction Cardiomyopathy 12 12 6.97
15 Mitochondrial complex | deficiency Leigh syndrome 2 2 6.85
16 Alport syndrome Hematuria 14 14 6.70
17 Colorblindness Blue cone monochromacy 14 14 6.70
18 Atrial fibrillation Long QT syndrome 2 2 6.64
19 Cone-rod dystrophy Retinitis pigmentosa 6 6 6.56
20 Microphthalmia with coloboma Microphthalmia 6 6 6.46

Relationship to other clustering methods
Although the MM algorithm that estimates the CPBA
parameters naturally generates a clustering method,
CPBA is not just another clustering method. Our appli-
cations highlight the utility of the parameter estimates
and the resulting likelihood based tests. CPBA not only
provides a sparse parametrization of a general similarity
matrix, but it also identifies hub nodes and clusters
and enables significance tests for excess edges (between
nodes) and shared similarities (between clusters). We do
not claim that CPBA based clustering outperforms exist-
ing clustering methods in the simple task of clustering.
Substitutes for CPBA clustering include hierarchical
clustering, partitioning around medoids [48], spectral
clustering [49], mixture models [50], component mod-
els [51], and many more [52-56]. Because CPBA can be
interpreted as a generalization of weighted correlation
network methods, there is no need to invoke it instead of
WGCNA when it comes to co-expression network appli-
cations. In modeling relationships between quantitative
variables, one can use a host of other methods, for exam-
ple sparse Gaussian graphical models [57,58], Bayesian
networks, and structural equation models. CPBA is not
meant to replace these powerful approaches for model-
ing relationships between quantitative variables. Its main

attraction is that it applies to a general similarity measure.
Since input data sometimes consists of a similarity (or
dissimilarity) measure, CPBA fills a useful niche.

Conclusions

The current paper introduces the CPBA model (clus-
ter and propensity based approximation) for general
similarity measures and sketches an efficient MM algo-
rithm for estimation of the CPBA parameters. These
advances will prove valuable in dissecting networks
involving functional or evolutionary modules. The CPBA
model is attractive for several reasons. First, it invokes rel-
atively few parameters while providing sufficient flexibility
for modeling observed similarities. Second, the cluster
similarity parameters are good at revealing higher-order
relationships between clusters. The row sum of the cluster
similarity matrix can be used to define a cluster connec-
tivity measure and to identify hub clusters such as the
neoplasm hub in the disease network. Third, the CPBA
model naturally generalizes network approximations that
are already part of scientific practice, namely, the propen-
sity based approach in multigraph models, the conformity
decomposition in weighted networks, and the eigenvector
based approximation in correlation networks. Fourth, the
connections to the MM algorithm make the model well
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Table 5 Gene network top 20 significant connections PPP
model

Rank Gene 1 Gene 2 Cluster 1 Cluster2  -Logqo(P)
1 HBB HBA1 2 2 13.87
2 SHOXY SHOX 10 10 10.15
3 SDHD SDHB 5 5 9.96
4 SCNN1G SCNN1B 5 5 9.27
5 RAG2 RAGI1 10 10 8.34
6 TSC2 TSC1 10 10 8.14
7 SDHC SDHB 5 5 7.79
8 FOXC1 PITX2 7 7 7.54
9 OPNTMW  OPN1TLW 10 10 743
10 COL4A4 COL4A3 10 10 743
1 GDF6 GDF3 7 7 7.29
12 TERC TERT 9 9 7.20
13 CISH TIRAP 4 4 7.12
14 GDNF RET 5 5 7.04
15 COL6A1 COL6A3 10 10 6.94
16 COL6A2 COL6A3 10 10 6.94
17 SLC6A19  SLC36A2 10 10 6.94
18 SLC6A20  SLC36A2 10 10 6.94
19 SLC6A20  SLC6A19 10 10 6.94
20 COL6A2 COL6A1T 10 10 6.94

adapted to high-dimensional optimization. Fifth, the Pois-
son multigraph version of the model enables assessment
of the statistical significance of edge counts and similari-
ties between clusters. Sixth, likelihood-based models such
as the Poisson multigraph model provide a rational basis
for estimating the number of clusters. While it is beyond
our scope to evaluate different methods for estimating the
number of clusters in a data set, it is worth mentioning
that our R implementation allows users to initialize clus-
ters via hierarchical clustering. This tactic obviates the
need to pre-specify the number of clusters.

Using simulated clusters in the plane and simulated co-
expression networks, we demonstrate that CPBA general-
izes existing methods. The planar examples show how a
propensity can be intuitively seen as a measure of a node’s
closeness to its cluster’s center and how a cluster similar-
ity can be seen as a measure of proximity between two
clusters. The simulated gene expression dataset exposes
the CPBA model’s close ties to the previously studied
concepts of intramodular connectivity, module eigen-
genes, and eigengene adjacency. Our analysis of real gene
expression data reassures us that CPBA clustering results
are similar to those of a benchmark method used in
co-expression network analysis. The CPBA propensity
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parameters mirror the module eigengene based connec-
tivity kME, and the cluster similarity measures mimic
the network eigengenes. In our view, the main value of
the CPBA model lies in generalizing correlation network
methods.

To illustrate the versatility of CPBA, we applied it to
the gene and disease networks of OMIM. The evidence
that CPBA identifies biologically meaningful clusters is
readily apparent in the significant enrichment of MeSH
categories in the disease clusters and in the significant
enrichment of GO terms in the gene clusters. While many
other clustering procedures could have been used, CPBA
has the advantage of dealing with dissimilarity measures
as opposed to numeric input variables. It also provides
Poisson likelihood based significance tests for edge counts
(either pairs of genes and or pairs of diseases) that respect
the underlying cluster structure. Finally, the row sums of
the cluster similarity measure can be used to define hub
clusters, and the estimated propensities can be used to
define hub nodes. As we hoped, there were biologically
meaningful ties between significantly connected pairs of
genes and diseases. Several of these biologically plausible
explanations are discussed in the text.

Although our examples are mainly biological, one can
apply CPBA in many other contexts. For example, we
employed CPBA to highlight shared board members
among the Fortune 500 companies. This example illus-
trates how significant connections mirror the underlying
ties between nodes. The edge count significance test sug-
gests that the antitrust suit against GM and DuPont was
no accident. To its credit, CPBA not only generalizes cor-
relation network methods to general similarity matrices,
but it also provides a valuable extension of random multi-
graph methods to weighted and unweighted multigraph
data. CPBA is not just another clustering procedure but

Diseases cor=0.94, p<1e-200 Genes cor=0.91, p<1e-200
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Figure 6 OMIM CPBA versus PPP Analysis. Scatterplot of the
Log;(P) values obtained from analysis of OMIM using 14 and 10
clusters versus a single cluster for the Disease network and Gene
network respectively. Note that the points are colored based on
whether they come from a pair within a cluster(red) or between two
clusters(black). This is very telling as it shows that by conditioning on
the clustering, CPBA is able to increase its sensitivity in finding
intercluster pairs while at the same time toning down that same trait
in intracluster pairs.




Ranola et al. BMC Systems Biology 2013, 7:21
http://www.biomedcentral.com/1752-0509/7/21

CPBA cor=0.94, p=9.1e-29 PPP cor=-0.32, p=0.013

<
Am o —_—
a 3
8’N gao g’N
3 o8 -
o C] TtEseeies
o - J o A
0.0 04 0.8 0.0 0.4 0.8

True ADJ True ADJ

Figure 7 Simulated CPBA versus PPP Analysis. Scatterplot of the
—Log;((P) values versus the true adjacency values obtained from 0/1
block diagonal matrix by re-setting a few other entries from 0 to 1.
These changed values are shown along with the resulting —Log;o(P)
values obtained using CPBA and PPP.

offers unique test statistics that permit identification of
hub clusters and significant edge counts. We anticipate
that the CPBA model will prove attractive to a wide range
of scientists.

Methods

Maximizing the Poisson log-likelihood based objective
function

Our algorithm for maximizing the Poisson log-likelihood
(Eq. 6) given a clustering assignment ¢ combines block
ascent and the MM principle [59-61]. Clustering proceeds
by re-assigning each node in turn until clusters stabilize.
It may take several cycles through the nodes to achieve
stability. Reassignment fixes parameters and selects the
assignment with the highest log-likelihood. In the Poisson
log-likelihood (Eq. 6), we take

InL(c,R,P) =y > nj[In(repip)) — (regipipy) — In(mz!)]
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To optimize the objective function for a given cluster
assignment, we employ block ascent and alternate updat-
ing R and p. Fixing p, it is possible to to solve for the best
cluster similarity parameters r,;, exactly. Indeed, setting
the partial derivative

Poisson = Z Z (rnkl —Pkpl)

CiCj
kec; leg; i

Teigy

equal to zero and solving for r¢,; yields the simple update.

. Zkec,- Zleq A
Tejei = .
i (Zkgci pk)(Zlec, pl)

(11)

We expect the estimated r,, to occur within the unit
interval [0, 1] because edge formation is enhanced within
clusters.

To update the propensity vector p with R fixed, we
turn to an MM algorithm [59-61]. The MM principle says
we should minorize the objective function by a surro-
gate function and maximize the surrogate function. This
action drives the objective function uphill. One function
minorizes another at a point p,, if it is tangent to the
other function at p,, and falls below it elsewhere. The
arithmetic-geometric mean inequality

1 N2 2\
Pibj = =PmiPmj (pl) + (1>
2 Pmi Pmj

is the key to minorizing the Poisson log-likelihood. Sub-
stituting the right-hand side for p;p; in the log-likelihood
(Eq. 6) gives a surrogate function with parameters sepa-
rated and leads directly to the propensity updates

i ji
where Teie; 1S the cluster similarity between clusters c; and i 3 n;
¢j, pi is the propensity of node i, and A; = #; is the P+l = - = 7 (12)
number of connections between nodes i and j. Zi#i TeiciPmj
Table 6 Fortune 500 top 10 significant connections
Rank Company 1 Company 2 -Log10(P) Edges
1 U.S. Bancorp Ecolab 6.01 4
2 PetSmart Dean Foods 453 3
3 Sempra Energy Aecom Technology Corp. 4.39 3
4 General Motors DuPont 4.07 3
5 Cardinal Health Aon Corp. 4.07 3
6 Lockheed Martin Monsanato 4.07 2
7 Fidelity National Financial Fidelity National Inf. Services 4.06 2
8 Hewlett-Packard News Corporation 3.89 2
9 AutoZone AutoNation, Inc. 38 3
10 United Technologies Corporation PACCAR 374 2
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In practice, this MM algorithm may require an excessive
number of iterations to converge. To accelerate conver-
gence, we employ a Quasi-Newton extrapolation specif-
ically designed for high-dimensional problems (Methods
and [62]). The overall ascent algorithm (outer iterations)
on R and p may also be slow to converge. It can also be
accelerated by the same extrapolation scheme. Accelerat-
ing both inner and outer iterations gives a fast numer-
ically stable procedure for estimating R and p for ¢
fixed.

Minimizing the Frobenius norm based objective function
Minimization of the Frobenius objective function (Eq. 5)
employs block descent and again alternates updating R
and p. In this case setting the partial derivative

Frobenius = —2 Z Z(Akz — Yo PkPPKDI

Teici
) kECi lECj

equal to zero and solving for r¢,; yields the simple update

. 2keq 2t AMPRPI
Tag = 2 2 (13)
(Zkeci ry) (21661‘ p;)

To update p for R fixed, we again rely on the MM princi-
ple. However, since we now seek to minimize the objective
function, we majorize it. This is accomplished by first
expanding it in the form

Frobenius(c, p, R) = Z Z

i i

X I:Az - 2Aijrc,~c,'pipj + (Vcic,'pipj)z:l .
(14)
In majorization, one is allowed to work piecemeal. Thus,

we majorize the term involving (p;p;)* by the earlier
arithmetic-geometric mean inequality

1 N\ N4
pz‘2p1‘2 = E(pmi)z(pmj)z |:<]9) + <P/> i|
Pmi Pwmj

taking into account squares. The term involving —p;p; can
be majorized by the inequality x > 1 4 Inx for x > 0 in
the form

bibj
—Pibj = —PmiPmj [1 +1In (L ! )] .
PmiPmj

Substituting upper bounds side for (pip/)2 and —p;p; in
the expanded objective function (Eq. 14) gives a surrogate
function with parameters separated and leads directly to
the propensity updates

1/4
» Omi)> 2o X jep TeicjAijPm /
1,0 — .
e Zb Zjeb(rcic,')z(pmj)z

(15)
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As in the Poisson case, acceleration is advisable for both
inner MM iterations and the outer block descent itera-
tions. The same Quasi-Newton extrapolation [62] is per-
tinent and gives a fast numerically stable procedure for
estimating R and p for c fixed.

Model initialization

Initial cluster assignment

Many algorithms exist for creating initial cluster assign-
ments [56]. For most datasets these assignments only
affect the time to convergence and not the converged
solution. Our R software implements hierarchical clus-
tering and does not require pre-specifying the number
of clusters. More specifically, our software applies aver-
age linkage hierarchical clustering with dynamic branch
cutting [24]. Dissimilarities are set equal to 1 minus
similarities.

Initial propensities

One way to initialize propensities is to assume a single
cluster and estimate propensities as suggested in our ear-
lier work [20]. An alternative in the Frobenius model is
to initialize p; by the sum of the connections of node i
divided by the square root of the sum of all connections
(21],

2 i A

bi= —F——.
,/Zk Zj;ékAk/

This initialization can be motivated by showing that the
above equation holds if ., = 1 (equivalently, the net-
work consists of a single cluster) and >_ p; 3> 3 p?. While
the assumption of perfect cluster similarity is unrealistic,
it leads to initial values that work well in practice. For the
Poisson model the analog is

(16)

Zj;éi Tij

bi= FT7/—m—m——.
V 2k 2k Mk

Cluster similarity parameters

Because the block updates (Eq. 11) and (Eq. 13) for
the cluster similarity parameters only depend on cluster
assignment and propensities, it is natural to use those
updates for initialization as well.

(17)

Clustering algorithm

1. Choose the objective function (Frobenius or Poisson).

2. Initialize the cluster assignment, for example, via
hierarchical clustering.

3. Initialize the propensity vector p by (Eq. 16) or
(Eq. 17) and the cluster similarity matrix R by
(Eq. 11) or (Eq. 13).

4. Parameter Estimation: Given cluster assignments,
re-estimate parameters through the updates (Eq. 11)
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and (Eq. 12) or (Eq. 13) and (Eq. 15). Declare
convergence when the objective function changes by
less than a threshold, say 107>,

5. Cluster Reassignment:

(a) Randomly permute the nodes.

(b) For each node taken in order, try all possible
cluster reassignments for the node.

(c) Assign the node to the cluster that leads to
the biggest improvement in the objective
function.

(d) Repeat step 5 until no nodes are reassigned.

6. Repeat steps 4 and 5 until no nodes are reassigned.

7. (Optional) Repeat steps 1- 5 for other cluster
numbers and use a cluster number estimation
procedure for choosing the number of clusters.

Quasi-Newton acceleration

In this section we briefly review a Quasi-Netwon accel-
eration method described more fully in [62]. Newton’s
method seeks a root of the equation 0 = ¥ — F(x), where
F(x) is a smooth map. For CPBA this is the algorithm
map summarized by Equations (11) and (12) for Poisson
updates or Equations (13) and (15) for Frobenius updates.
Because the function G(x) = x — F(x) has differential
dG(x) = I—dF(x), Newton’s method iterates according to

X1 =%y — dG(x,) T G(wy) = xy—[I — dF (x,)] 7" G(xy).

Quasi-Netwon acceleration approximates dF(x,) by a
low-rank matrix M and explicitly forms the inverse
I -1

Construction of M relies on secants. We can generate
a secant by taking two iterates of the algorithm starting
from the current iterate x,,. If we are close to the optimal
point ¥, then we have the linear approximation

F o F(xy) — F(x,) =~ M[F(x,) — %4] ,

where M = dF(x~). We abbreviate the secant require-
ment as Mu = v, where u = F(x,,)—x,, and v = FoF(x,)—
F(xy,). To improve the approximation of M, one can use
several secant constraints Mu; = v; fori = 1,...,q.
These are expressed in matrix form as MU = V. For our
purposes the value g = 6 works well.

Provided U has full column rank ¢, the minimum of
the strictly convex function ||M ||12: subject to the con-
straints MU = V is attained at M = V(U'U)~U" [62].
Fortunately, a variant of Sherman-Morrison formula [63]
implies that the matrix I — M = I — V(U*U)~'U" has the
explicit inverse

[I—-vWi'nyy'u =1+ viuu-uvi' u.
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Thus, the quasi-Newton acceleration can be expressed as

Xpi1 = xp—[1 — VU U (2, — F(xn)]
=x,—[I+ VU'U - U'V)'U [x, — Fx,)]
= F(x,) — V(U'U - U'V)'U' [, — F(x,)].

This update involves inversion of the small g x g matrix
U'U — U'V; all other operations reduce to matrix times
vector multiplications.

Estimating the number of clusters

Estimating the number of clusters is the Achilles heel of
cluster analysis. While this topic is beyond our scope, it
is worth mentioning that an advantage of model based
approaches is that likelihood criteria can be brought to
bear. Since adding clusters entails more parameters, it is
tempting to use the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC) to estimate
the number of cluster in the Poissom model [64,65]. Both
of these criteria balance the tradeoff between the num-
ber of parameters and the fit of the model. Specifically
these methods choose the number of clusters K that min-
imize AIC = —21In(L) + 2c or BIC = —2In(L) + cIn(n),
respectively, where ¢ is the number of parameters, L is the
likelihood, and # is the sample size. We caution the reader
that AIC and BIC may be inappropriate for the present
task because both criteria invoke strong assumptions. For
example, AIC is derived by assuming a regular model, for
instance, a linear model with Gaussian noise. Hence, AIC
may be inappropriate for models with latent variables such
as cluster labels. BIC may be inappropriate because our
approach is frequentist rather than Bayesian. A review of
the limitations and utility of these criteria can be found in
[66].
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Decomposition is implemented in the R package
PropClust. The package also contains the function


http://www.genetics.ucla.edu/labs/horvath/PropClust
http://www.genetics.ucla.edu/labs/horvath/PropClust

Ranola et al. BMC Systems Biology 2013, 7:21
http://www.biomedcentral.com/1752-0509/7/21

CPBAdecomp for carrying out the propensity decompo-
sition of a network.

Abbreviations

BA: Barabasi Albert; CPBA: Cluster and propensity based approximation; ER:
Erdos renyi; GO: Gene ontology; GRN: Growing random network; kME:
Connectivity based on the module eigenvector or eigengene; MeSH: Medical
subject headings; MM: Minorization maximization or majorization
minimization; PPP: Pure propensity poisson; SFT: Scale free topology; SVD:
Singular value decomposition.

Competing interests
The authors declare that they have no conflict of interest.

Authors’ contributions

JR, SH, and KL jointly developed the methods and wrote the article. JR carried
out the analysis and implemented the software. PL helped with the R software
implementation and carried out the example analysis on empirical expression
data. All authors read and approved the final manuscript.

Acknowledgements
This research was supported in part by United States Public Health Service
grants GM53275, HG006139, MH59490, and UCLA CTSI Grant ULTTR000124.

Author details

Biomathematics, University of California, Los Angeles, CA, USA. 2Human
Genetics, UCLA, Los Angeles, CA, USA. 3Biostatistics, UCLA, Los Angeles, CA,
USA. 4Statistics, UCLA, Los Angeles, CA, USA.

Received: 20 June 2012 Accepted: 14 February 2013
Published: 14 March 2013

References

1. von Luxburg U: A tutorial on spectral clustering. Stat Comput 2007,
17(4):395-416.

2. Eisen M, Spellman P, Brown P, Botstein D: Cluster analysis and display
of genome-wide expression patterns. Proc Nat/ Acad Sci U S A 1998,
95(25):14863-14868.

3. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for
global discovery of conserved genetic modules. Science 2003,
302(5643):249-255.

4. Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S,
Geschwind D: Functional organization of the transcriptome in
human brain. Nat Neurosci 2008, 11(11):1271-1282.

5. Zhang B, Horvath S: A general framework for weighted gene
co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:17.

6. Huang, LiH, HuH, Yan X, Waterman M, Huang H, Zhou X: Systematic
discovery of functional modules and context-specific functional
annotation of human genome. Bioinformatics 2007, 23(13):i222-i229.

7. Horvath S, Zhang B, Carlson M, Lu K, Zhu'S, Felciano R, Laurance M, Zhao
W, Shu Q, Lee Y, Scheck A, Liau L, Wu H, Geschwind D, Febbo P, Kornblum
H, Cloughesy T, Nelson S, Mischel P: Analysis of oncogenic signaling
networks in Glioblastoma identifies ASPM as a novel molecular
target. Proc Natl Acad Sci USA 2006, 103(46):17402-17407.

8. Carlson M, Zhang B, Fang Z, Mischel P, Horvath S, Nelson SF: Gene
connectivity, function, and sequence conservation: predictions from
modular yeast co-expression networks. BMC Genomics 2006, 7(7):40.

9.  Oldham M, Horvath S, Geschwind D: Conservation and evolution of
gene coexpression networks in human and chimpanzee brains. Proc
Natl Acad Sci U S A 2006, 103(47):17973-17978.

10. Chen L, EmmertStreib F, Storey J: Harnessing naturally randomized
transcription to infer regulatory relationships among genes.
Genome Biol 2007, 8(219).

11. Keller M, Choi 'Y, Wang P, Belt Davis D, Rabaglia M, Oler A, Stapleton D,
Argmann C, Schueler K, Edwards S, Steinberg H, Chaibub Neto E,
Kleinhanz R, Turner S, Hellerstein MK, Schadt E, Yandell B, Kendziorski C,
Attie A: A gene expression network model of type 2 diabetes links
cell cycle regulation in islets with diabetes susceptibility. Genome Res
2008, 18(5):706-716.

12. Dawson J, Ye S, Kendziorski C: An empirical bayesian framework for
discovering differential co-expression. Bioinformatics 2012,
68(2):455-465.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

Page 19 of 20

de la Fuente A: From ‘differential expression’ to ‘differential
networking’ -identification of dysfunctional regulatory networks in
diseases. Trends Genet 2010, 26(7):326—-333.

Horvath S, Zhang B, Carlson M, Lu K, Zhu S, Felciano R, Laurance M, Zhao
W, Shu Q, Lee Y, Scheck A, Liau L, Wu H, Geschwind D, Febbo P, Kornblum
H, TF C, Nelson S, Mischel P: Analysis of oncogenic signaling networks
in glioblastoma identifies ASPM as a novel molecular target. Proc
Natl Acad Sci U S A 2006, 103(46):17402-17407.

Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, Schadt E, Thomas A,
Drake T, Lusis A, Horvath S: Integrating genetics and network analysis
to characterize genes related to mouse weight. PloS Genet 2006, 2(8).
Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, Horvath S: Weighted
gene coexpression network analysis strategies applied to mouse
weight. Mamm Genome 2007, 18(6-7):463-472.

Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A,
Baruch-Oren T, Berliner JA, Kirchgessner TG, Lusis A J: The unfolded
protein response is an important regulator of inflammatory

genes in Endothelial cells. Arterioscler Thromb Vasc Biol 2006,
26(11):2490-2496. [http://atvb.ahajournals.org/cgi/content/abstract/26/
11/2490]

Horvath S, Dong J: Geometric interpretation of gene co-expression
network analysis. PloS Comput Biol 2008, 4:8.

Dong J, Horvath S: Understanding network concepts in modules. BMC
Syst Biol 2007, 1:24.

Ranola J, Ahn S, Sehl ME, Smith D, Lange K: A Poisson model for random
multigraphs. Bioinformatics 2010, 26(16):2004-2011.

Horvath S: Weighted Network Analysis: Applications in Genomics and
Systems Biology. 1 edition. New York: Springer; 2011.

Deeds E, Ashenberg O, Shakhnovich E: A simple physical model for
scaling in protein-protein interaction networks. Proc Natl Acad Sci U S
A 2006,103(2):311-316.

Langfelder P, Horvath S: Eigengene networks for studying the
relationships between co-expression modules. BMC Syst Biol 2007,
1:54.

Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical
cluster tree: the dynamic tree cut library for R. Bioinformatics 2007,
24(5):719-20.

Langfelder P, Horvath S: WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 2008, 9:559.
McKusick-Nathans Institute of Genetic Medicine JHU: Online mendelian
inheritance in man, OMIM®. [http://omim.org/]

Goh Kl, Cusick ME, Valle D, Childs B, Vidal M, Barabdsi AL: The human
disease network. Proc Nat/ Acad Sci 2007, 104(21):8685-8690. [http://
www.pnas.org/content/104/21/8685.abstract]

Rogers F: Medical subject headings. Bull Med Libr Assoc 1963,
51:114-116.

Steinberg S, Dodt G, Raymond G, Braveman N, Moser A, Moser H:
Peroxisome biogenesis disorders. Biochemica et Biophysica Acta - Mol
Cell Res 2006, 1763(12):1733.

Maere S, Heymans K, Kuiper M: BINGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological
networks. Bioinformatics 2005, 21(16):3448-3449. [http://bioinformatics.
oxfordjournals.org/content/21/16/3448.abstract]

Shaanan B: Structure of human Oxyhaemoglobin at 2.1 a resolution.
J Mol Biol 1983,171:31-59.

Stelzl Uea: A human protein-protein interaction network: a resource
for Annotating the Proteome. Cell 2005, 122(6):957-968.

U.S. National Institute of Health’s informational page on

Usher syndrome [http://www.nidcd.nih.gov/health/hearing/pages/
usher.aspx]

U.S. National Institute of Health’s informational page on
Waardenburg syndrome [http://www.ncbi.nlm.nih.gov/
pubmedhealth/PMH0002401/]

U.S. National Institute of Health’s informational page on
Craniofacial-deafness-hand syndrome [http://ghr.nim.nih.gov/
condition/craniofacial-deafness-hand-syndromel]

Alfmova M, Lezhelko T, Golimbet V, Korovaltseva G, Lavrushkina O,
Kolesina N, Frolova L, Muratova A, Abramova L, Kaleda V: Investigation of
association of the brain-derived neurotrophic factor (BDNF) and a
serotonin receptor 2A (5-HTR2A) genes with voluntary and


http://atvb.ahajournals.org/cgi/content/abstract/26/11/2490
http://atvb.ahajournals.org/cgi/content/abstract/26/11/2490
http://omim.org/
http://www.pnas.org/content/104/21/8685.abstract
http://www.pnas.org/content/104/21/8685.abstract
http://bioinformatics.oxfordjournals.org/content/21/16/3448.abstract
http://bioinformatics.oxfordjournals.org/content/21/16/3448.abstract
http://www.nidcd.nih.gov/health/hearing/pages/usher.aspx
http://www.nidcd.nih.gov/health/hearing/pages/usher.aspx
http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002401/
http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002401/
http://ghr.nlm.nih.gov/condition/craniofacial-deafness-hand-syndrome
http://ghr.nlm.nih.gov/condition/craniofacial-deafness-hand-syndrome

Ranola et al. BMC Systems Biology 2013, 7:21
http://www.biomedcentral.com/1752-0509/7/21

37.
38,
30.
40.
41.
2.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

involuntary attention in schizophrenia. Zh Nevrol Psikhiatr Im S S
Korsakova 2008, 108(4):62—-69.

Freebase open data resource [http://www.freebase.com/]

DuPont Wikipedia entry [http://en.wikipedia.org/wiki/DuPont]

Erdos P, Renyi A: On random graphs. Publicationes Mathematicae 1959,
6:290-297.

Watts D, Strogatz S: Collective dynamics of ‘small-world’ networks.
Nature 1998, 393(6684):440-442.

Barabasi A, Albert R: Emergence of scaling in random networks.
Science 1999, 286(5439):509-512.

Albert R, Barabasi A: Statistical mechanics of complex networks.

Rev Mod Phys 2002, 74:47-97.

Newman MEJ, Strogatz SH, Watts DJ: Random graphs with arbitrary
degree distributions and their applications. Phys Rev £ 2001,
64:026118. [http://link.aps.org/doi/10.1103/PhysReVvE.64.026118]
Krapivsky PL, Redner S, Leyvraz F: Connectivity of growing random
networks. Phys Rev Lett 2000, 85:4629-4632. [http://link.aps.org/doi/10.
1103/PhysRevLett.85.4629]

Lange K: Numerical Analysis for Statisticians. New York: Springer; 2010.
Strogatz SH: Exploring complex networks. Nature 2001,
410(6825):268-276. [http://dx.doi.org/10.1038/35065725]

Durrett R: Random Graph Dynamics. New York: Cambridge University
Press; 2006.

Kaufman L, Rousseeuw P: Finding Groups in Data: An Introduction to Cluster
Analysis. New York: John Wiley and Sons, Inc; 1990.

Zhou D, Burges CJC: Spectral clustering and transductive learning
with multiple views. In Proceedings of the 24th international conference
on Machine learning, ICML '07. New York: ACM; 2007:1159-1166. [http://
doi.acm.org/10.1145/1273496.1273642]

Newman MEJ, Leicht EA: Mixture models and exploratory analysis in
networks. Proc Natl Acad Sci U S A 2007, 104(23):9564-9569.

Sinkkonen J, Aukia J, Kaski S: Component models for large networks.
arXiv e-prints 2008, arXiv :0803.1628.

Hofman JM, Wiggins CH: Bayesian approach to network modularity.
Phys Rev Lett 2008, 100(25):258701.

Kemp C, Tenenbaum JB, Griffiths TL, Yamada T, Ueda N: Learning
systems of concepts with an infinite relational model. In AAA/. United
States: AAAI Press; 2006 :381-388.

Airoldi EM, Blei DM, Fienberg SE, Xing EP: Mixed membership
stochastic blockmodels. J Mach Learn Res 2008, 9:1981-2014.
Newman M: Modularity and community structure in networks. PNAS
2006, 103:8577-8582.

Schaeffer SE: Graph clustering. Comput Sci Rev 2007, 1:27-64. [http://
www.sciencedirect.com/science/article/pii/S1574013707000020]

Yin J, Li H: A sparse conditional gaussian graphical model for analysis
of genetical genomics data. Ann Appl Stat 2011, 5(4):2630-2650.
Xulvi-Brunet R, Li H: Co-expression networks: graph properties and
topological comparisons. Bioinformatics 2010, 26(2):205-214.

Hunter D, Lange K: A tutorial on MM algorithms. Am Stat 2004,
58:30-37.

Lange K: Optimization. New York: Springer; 2004.

Wu'T, Lange K: The MM alternative to EM. Stat Sci 2010, 25(4):492-505.
Zhou H, Alexander D, Lange K: A quasi-Newton acceleration for
high-dimensional optimization algorithms. Stat Comput 2011,
21:261-273. [http://dx.doi.org/10.1007/511222-009-9166-3]
doi:10.1007/511222-009-9166-3.

Lange K: Numerical Analysis for Statisticians. New York: Springer-Verlag;
1999.

Akaike H: A new look at the statistical model identification. Automatic
Control, IEEE Trans 1974, 19(6):716-723.

Schwarz G: Estimating the dimension of a model. Ann Stat 1978,
6(2):461-464. [http://www jstor.org/stable/2958889]

Watanabe S: Algebraic Geometry and Statistical Learning Theory.
Cambridge: Cambridge University Press; 2009.

doi:10.1186/1752-0509-7-21
Cite this article as: Ranola et al.: Cluster and propensity based approxima-
tion of a network. BMC Systems Biology 2013 7:21.

Page 20 of 20

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolMed Central



http://www.freebase.com/
http://en.wikipedia.org/wiki/DuPont
http://link.aps.org/doi/10.1103/PhysRevE.64.026118
http://link.aps.org/doi/10.1103/PhysRevLett.85.4629
http://link.aps.org/doi/10.1103/PhysRevLett.85.4629
http://dx.doi.org/10.1038/35065725
http://doi.acm.org/10.1145/1273496.1273642
http://doi.acm.org/10.1145/1273496.1273642
http://www.sciencedirect.com/science/article/pii/S1574013707000020
http://www.sciencedirect.com/science/article/pii/S1574013707000020
http://dx.doi.org/10.1007/s11222-009-9166-3
http://dx.doi.org/10.1007/s11222-009-9166-3
http://www.jstor.org/stable/2958889

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Background: adjacency matrix and multigraphs
	Background: correlation- and co-expression networks

	Results and discussion
	CPBA is a sparse approximation of a similarity measure
	Objective functions for estimating CPBA
	Example 1: Generalizing the random multigraph model
	Example 2: Generalizing the conformity-based decomposition of a network
	MM algorithm and R software implementation
	Simulated clusters in the Euclidean plane
	Simulated gene co-expression network
	Real gene co-expression network application to brain data
	OMIM disease and gene networks

	Empirical comparison of edge statistics
	Simulations for evaluating edge statistics
	Hidden relationships between fortune 500 companies
	Relationship to other network models and future research
	Relationship to other clustering methods

	Conclusions
	Methods
	Maximizing the Poisson log-likelihood based objective function
	Minimizing the Frobenius norm based objective function
	Model initialization
	Initial cluster assignment
	Initial propensities
	Cluster similarity parameters

	Clustering algorithm
	Quasi-Newton acceleration
	Estimating the number of clusters
	Ethical approval

	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

