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Abstract

Background: Model development is a key task in systems biology, which typically starts from an initial model
candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation
and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the
biological phenomena under study. During such iterative model development, researchers frequently propose a set
of model candidates from which the best alternative must be selected. Here we consider this problem of model
selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely,
we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and
identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or
DAEs (differential algebraic equations).

Results: We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter
Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the
KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final
model that presents a better fit to the in silico generated experimental data.

Conclusions: The presented MINLP-based optimization approach for nested-model selection and identification is a
powerful methodology for model development in systems biology. This strategy can be used to perform model
selection and parameter estimation in one single step, thus greatly reducing the number of experiments and
computations of traditional modeling approaches.
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Background
Model development is a key task in systems biology, and
involves different steps, such as model calibration, exper-
imental design and model refinement which usually take
place in an iterative way (see reviews in [1-5]). The process
of building a model of a biological system typically starts
by generating an initial model candidate, or by taking one
from the pre-existing knowledge, and then involves an
iterative cycle of hypotheses-driven model modifications,
new experimentation and subsequent model identifica-
tion steps, finally leading to a satisfactory refined model
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[6,7]. Thus, model selection, experimentation and model
refinement can be considered the basic elements of sys-
tems biology [8].
A number of researches have proposed different itera-

tive schemes for model development involving the steps of
parameter estimation, identifiability analysis, and optimal
experimental design [9-12]. The related topic of optimal
experimental design for parameter estimation [3,13] and
for model discrimination [14-16] is receiving increased
attention in recent years. Lillacci and Khammash [17]
introduced a new method for parameter estimation based
on Kalman filtering that can also be used to discriminate
among alternate models of the same biological process.
Verheijen [18] presented an overview of model selec-

tion practices, highlighting the main criteria for choosing
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out of a large set of models: level of rigor, accuracy with
respect to data, adequacy of the model, and its flexi-
bility and computational complexity. He also identifies
developments in optimization-based approaches [19,20]
as very promising, but recognizing its limitations due to
numerical and algorithmic challenges. Although research
along this line has continued [21,22], it still remains as a
challenging numerical problem.
Here, we present a method to simultaneously select a

model and calibrate it in a single step. This contribution is
based on the following four key ideas: (i) frequently, iter-
ative model development cycles can be considered in a
more compact way if sets of hypotheses can be grouped
together and formulated as a parameterized set of mod-
els, from which the best alternative must be selected; (ii)
we consider the problem of model selection formulat-
ing it as a simultaneous model selection and parameter
identification problem; (iii) further, in order to make the
selection decision in a systematic way, we formulate it as
an optimization problem [23] acting on the parameter-
ized set of models; (iv) the optimization problem, which
belongs to the class of mixed-integer nonlinear program-
ming (MINLP) problems, is solved by recently developed
algorithms based on metaheuristics.
The paper is organized as follows: First, we describe the

framework used for model selection and identification,
based on the nested models paradigm. Then we state the
corresponding optimization problem using a formulation
based on mixed-integer non-linear programming subject
to differential and algebraic constraints. In the following
sections, we describe the application of this methodol-
ogy to a case study considering a dynamic model of the
KdpD/KdpE system of Escherichia coli. Finally, we pro-
vide a discussion of the results and summarize the main
conclusions of the study.

Methods
To the best of our knowledge, this is the first time that
an MINLP framework for simultaneous model selection
and identification is presented. The key issues for the
successful design of this combined approach are: (i) selec-
tion of the integer and binary parameters that accurately
describe all the possible nested models; (ii) reliable and
accurate parameter estimation; (iii) use of efficient algo-
rithms with reduced computational cost; (iv) assessment
of model identifiability.

Nested-models: selection and identification
In this contribution we consider dynamic models which
are nested, i.e. there is a hierarchy such that each model
is a particular subcase of an extended parameterized
model, which can be considered as a superstructure.
These nested-models arise from existing models plus new
hypotheses such as e.g. the existence of new positive or

negative feedback loops. In a loose sense, we can say
that Model B is nested within Model A if Model B is
a special case of Model A. Figure 1 depicts an exam-
ple where Model A is a superstructure containing three
feedback loops, Model B contains only two of them, and
Model C and Model D one each. Therefore, we can say
that Model C and Model D are nested within Model B
that is in turn nested within Model A. In this frame-
work, the model selection problem reads as follows: given
a set of nested models, find the one which gives the
best fit to the available experimental data, meeting pos-
sible additional constraints on model rigor, accuracy and
adequacy.
Several functions have been suggested as metrics

to asses the goodness of models fit. The maximum-
likelihood estimation (MLE), introduced by Fisher in 1912
[24], consists of maximizing the so-called likelihood func-
tion which is the probability density of a model for
the occurrence of the measurements for given parame-
ters. Assuming the probability of the measurements to
be uncorrelated normal distributions, the log-likelihood
function (Jml, which yields to the same estimate than the
likelihood function but is easier to handle in practice) is
given as:

Jml(p) = ln

⎛
⎝NE∏

i=1

NVi∏
j=1

NMij∏
k=1

(
1

2πσ 2
ijk

) 1
2
⎞
⎠
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⎩

NE∑
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ỹijk − yijk(p)

)2
σ 2
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]} (1)

where

p : set of parameters to be estimated
NE: number of experiments
NVi: number of measured variables in experiment i
NMij: number of measurements of the variable j in exper-
iment i
σ 2
ijk : variance of the measurement k of the variable j in

experiment i
ỹijk : measurement k of the variable j in experiment i
yijk : model predicted value k of the variable j in experi-
ment i

The Akaike information criterion (AIC) [25] for a given
model is a function of the maximized log-likelihood
(Eq. 1) and the number of estimated parameters (Np):

AIC = −2Jml(p) + 2Np (2)

Many functions have been suggested to compare two or
more models. Despite the fact that several authors have
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Figure 1 Example of nested models. Example of nested models where Model C and Model D are nested within Model B that is in turn nested
within Model A, which can be considered as a superstructure.

questioned whether AIC is biased towards complexmodel
structures [26], this function has been widely used as a
metric to select the most adequate among hierarchical or
nested models, since it encompasses model performance
and model complexity [27]. It allows establishing a rank-
ing of the models where the most adequate is the one with
the smallest value of the criterion [25]. However, most
of the available techniques for model selection based on
the AIC, require the previous fitting of all the candidate
models. Therefore, when the number of possible models
is large or the simulation of the models is computationally
expensive, these methodologies can become practically
impossible [27].
In order to reduce the computational burden, in this

work we used the AIC as cost function for finding the
optimal set of parameters formed by a subset of binary
parameters defining the model structure (e.g. presence or
absence of a certain feedback loop) and another subset
of integer and real parameters characterizing the model
dynamics.

Formulation of the MINLP
The formulation of the simultaneous model selection and
identification problem is stated as an MINLP optimiza-
tion problem. In mathematical terms, the general MINLP
is defined as finding the vector of nr continuous variables

p and the vector of ni integer variables q which minimize
a scalar function J

min
p,q

J(ẏ, y,p,q) (3)

subject to:

• System dynamics in the form of DAEs, with state
variables y

f (ẏ, y,p,q) = 0 (4)

y(t0) = y0 (5)

• Additional requirements in the form of equality
and/or inequality constraints

h(y,p,q) = 0 (6)

g(y,p,q) ≤ 0 (7)

• Upper and lower bounds (superscripts U and L
respectively) on decision variables

pL ≤ p ≤ pU (8)

qL ≤ q ≤ qU (9)

This set of constraints defines the feasible space S, while
the feasible objective space o is the set J(p,q)|(p,q) ∈ S.
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Solution of the MINLP problem
The problem of parameter estimation is a crucial step in
the development of models of biological systems [17]. Due
to the nonlinear and dynamic nature of these systems and
the usually sparse and noisy nature of the experimental
data available, the resulting parameter estimation problem
is frequently ill-conditioned and multi-modal. Therefore,
traditional local methods may fail and there is a need to
use more sophisticated techniques as global optimization
(GO) to successfully fit the model. In our group, differ-
ent efforts have been devoted to design metaheuristics
for efficient and robust parameter estimation in biological
models [28,29].
In the case of the MINLP problem at hand, the need

to use GO methods is increased by the additional non-
linearities coming from the binary and integer variables
and the augmented size of the problem. ACOmi (Ant
Colony Optization for mixed-integer problems) [30] and
fSSm [31] are robust extensions of metaheuristics (Ant
Colony optimization and Scatter Search, respectively)
that enable the handling of mixed-integer variable search
domains; therefore, they are ideal for solving the MINLP
problem introduced in this work.

ACOmi
ACOmi (Ant Colony Optization for mixed integer prob-
lems) is an extension of the ant colony optimization
metaheuristic that enables to handle mixed integer vari-
able search domains. In this method a new penalization
strategy was introduced in order to extend the ACO
framework to face constrained optimization problems.
A detailed explanation of the hybrid implementation
ACOmi, incorporating the extended ACO framework and
a robust oracle penalty method, is given by [30].

fSSm
fSSm is a new evolutionary method for complex-process
optimization. It is partially based on the principles of
the scatter search methodology, but making use of inno-
vative strategies to be more effective in the context of
complex-process optimization using a small number of
tuning parameters. In particular, this method uses a
new combination method based on path relinking, which
considers a broader area around the population mem-
bers than previous combination methods. It also uses a
population-update method which improves the balance
between intensification and diversification, as described
in [31]. Although fSSm is mainly designed for continuous
problems, a rounding operator has been implemented for
handling integer and binary variables.

MISQP
MISQP is a modified sequential quadratic programming
method for solving MINLP problems. MISQP assumes

that the model functions are smooth in the sense that an
increment of an integer variable by one leads to a small
change of function values but it does not require that the
mixed-integer program is convex or relaxable (i.e. func-
tion values are evaluated only at integer points). Thus,
this algorithm is expected to be more efficient than any
other method that starts from a solution of the relaxed
problem [32].
Moreover, in contrast to other local optimization

solvers, the evaluation of the exact gradient is not always
required for a proper convergence of SQP methods. The
evaluation of the performance of the method used in this
study, MISQP, on a test set of 186 academic test examples
published in [33] showed that analytical partial derivatives
subject to the integer variables do not improve robustness
or efficiency, and the number of iterations is enlarged [34].
Diehl et al. [35] presented another SQP algorithm which
does not require the evaluation of the exact constraint
Jacobian matrix.

Model identifiability, sensitivity and correlation analysis
Several powerful approaches have been recently devel-
oped to asses the identifiability of model parameters in
systems biology models, namely, those exploiting the pro-
file likelihood [36], Bayesian approaches using Markov
Chain Monte Carlo (MCMC) [37], core-prediction anal-
ysis based on spread-searching optimization algorithms
[38], and pseudo-global identifiability analysis using a
Bayesian framework [39]. All these approaches aim to
assess the quality of the estimated parameters by checking
the practical identifiability of the model. This study aims
to answer the following question: given a model structure,
could the parameters of the model be uniquely identified
from the available (limited and noisy) data [40,41]? The
classical definition of identifiability requires the calcula-
tion of the rank of the Fisher Information Matrix (FIM)
given by:

FIM =
NM∑
i=1

1
σ 2
i

[
∂yi
∂p

]T [
∂yi
∂p

]
(10)

If the FIM is full rank the parameters are considered
identifiable [42]. The parameters of a model are not iden-
tifiable when an infinite number of parameter sets fitting
the experimental data with the same accuracy exist and
the confidence intervals are infinite. Moreover, it is also
interesting to study the parameter sensitivity and the
correlation among parameters.

Sensitivity analysis
Sensitivity analysis measures the importance of the
parameters with respect to the influence of their varia-
tions onmodel predictions. Themost widely usedmethod
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is the local sensitivity analysis which consists of calculat-
ing the partial derivatives of the model state variables to
the model parameters evaluated at the normal operating
point where all the parameters have their nominal value.
This method gives a linear approximation of how much a
variable changes due to a given change in a parameter. The
use of relative measures, where the sensitivity function is
normalized by the value of the parameter and the state,
is recommended to make these measures comparable for
parameters and states of different order of magnitude:

Sθ ,j = pθ

yi
δyi
δpθ

(11)

To lump the sensitivity of a parameter with respect
to different states at different time points and different
experiments, Brun et al. [43] recommend the use of the
measure σ

msqr
θ as a ranking criterion in the context of

weighted least squares estimation:

σ
msqr
θ =

√√√√√ NE∑
i=1

NVi∑
j=1

NMij∑
k=1

S2
θ ,ijk (12)

A high value of the sensitivity indexmeans that a change
in parameter pθ has an important effect on the model out-
come making the parameter pθ identifiable with the data
available if all the other parameters are fixed. Unless a
parameter is unidentifiable due to total correlation with
another parameter, the higher the sensitivity the more
accurately the parameter can be identified and, on the
other hand, a parameter with a small sensitivity will be
very difficult to identify since any change on its value will
have almost no influence on the model dynamics. There-
fore, values of critical parameters should be thoroughly
identified while parameters having a little effect can be
simplified or even ignored [44].
The main drawback of local sensitivity indices is that

they are computed at the nominal values used for the
parameters and the behavior of the response function
is described only locally in the parameter space. More-
over, preliminary experiments and parameter estimation
tests should be carried out in order to obtain a first
guess for the parameter values and an iterative scheme
involving both steps is required to study the model sen-
sitivity. In addition, these methods are linear; thus, they
are not sufficient for dealing with complex models, espe-
cially those in which there are nonlinear interactions
between parameters.
In contrast, global sensitivity analysis (GSA) methods

evaluate the effect of a parameter while all other parame-
ters are varied simultaneously, accounting for interactions
between parameters without depending on the stipula-
tion of a nominal point. In this work, a pseudo-global

sensitivity analysis as described in [39] was used. For
that, 210 sampling points were generated in the parameter
space by means of Sobol’ low-discrepancy sequences that
guarantee an uniform distribution avoiding clustering and
empty areas [45]. Then, Bayesian Derivative based Global
Sensitivity Measures [39] were computed using SensSB
toolbox [46] and their metrics were used to establish an
importance ranking for the parameters.

Correlation analysis
For models with several parameters, high parameter sen-
sitivity, although necessary, does not ensure the identifi-
ability of the model. In addition, the sensitivity functions
of the parameters have to be linearly independent so a
change in one parameter can not be compensated by
changes in the other parameters. When the parameters
are identifiable, we can study the degree of linear depen-
dence among the sensitivity functions by means of a cor-
relation analysis based on the Fisher Information Matrix
(FIM) as described in [28]. This method requires the
inversion of the FIM so it can only be applied when the
parameters are identifiable and the FIM full rank. How-
ever, correlations among parameters close to +1 or -1
mean that the parameters are difficult to identify and the
confidence intervals very large (although not infinite as in
the case of nonidentifiable parameters). In that case, the
model should be reduced by fixing some of the parameters
to their nominal values or by properly grouping some sets.
In order to eliminate the dependence on a nominal

point, a pseudo-global identifiability analysis as described
in [39,46] was used. A correlation matrix was computed
for each set of parameters used for the sensitivity anal-
ysis and a weighted average was obtained based on the
maximum likelihood of each of the parameter sets. In this
way, the influence of parameters not-likely to fit the data
is minimized while the dependence on a nominal point is
avoided.

Dynamic model of the KdpD/KdpE system of Escherichia
coli
Bacteria constantly monitor their environment and adapt
immediately to changing conditions to survive. There
are several adaptation mechanisms notably special sig-
nal transduction systems. A sensor kinase (KdpD) and a
response regulator (KdpE) regulate the expression of the
KdpFABC operon encoding the high affinity K+ uptake
system of Escherichia coli. In [47], a mathematical model
for the KdpD/KdpE two-component system was devel-
oped and calibrated with the available in vitro and in
vivo experimental data. The model can be separated into
two submodels connected in a unidirectional way. The
parameters corresponding to the signal transduction part
were estimated from in vitro data while the parameters of
the gene expression functional unit were identified from
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mRNA and KdpFABC concentrations determined in vivo
using various extracellular stimulus, S = K+

K+
0
.

The dynamicmodel presented by Kremling and cowork-
ers [47] (Model I) consists of 8 DAEs (6 ODEs and 2
AEs) and has 21 rate constants that were estimated from
experimental data or fixed to literature values (Eq: 13-20):

dmRNA
dt

= ktr

⎛
⎜⎝ DNAf

K DNA0

⎛
⎜⎝1 +

(
KdpEpf

)2
α Ka

⎞
⎟⎠

⎞
⎟⎠

× DNA0 − (kz + μ)mRNA (13)

dKdpD0
dt

= ktl mRNA − (kd + μ)KdpD0 (14)

dKdpDP

dt
= (

k−2 KdpEP + k1
) (

KdpD0 − KdpDP)
− (

kd + k−1 + k2
(
KdpE0 − KdpEP

))
KdpDP

(15)

dKdpE0
dt

= ktl2mRNA − (kd + μ)KdpE0 (16)

dKdpEP

dt
= k2 KdpDP (

KdpE0 − KdpEP
)

− (
kd + (

k3f + k−2
)
KdpD

)
KdpEP (17)

dKdpFABC
dt

= ktl3mRNA − (kd2 + μ)KdpFABC (18)

0 = KdpEP − KdpEpf − 2

(
KdpEpf

)2
DNAf

Ka

(
1 + 1

αK

)
(19)

0 = DNA0 − DNAf

(
1 + 1

K

)
−

(
KdpEpf

)2
DNAf

Ka

×
(
1 + 1

α K

)
(20)

where mRNA represents the concentration of messen-
ger RNA, KdpD0 the total concentration of the sensor
kinase, KdpDP the concentration of the phosphorylated
KdpD, KdpE0 the total concentration of the response reg-
ulator, KdpEP the concentration of the phosphorylated
KdpE,KdpFABC the concentration of the protein complex
and KdpEPf the concentration of the unbound response
regulator.

Results and discussion
Computations were carried out using Matlab™ (Version
7.9.0, R2009b; The Mathworks, MA, USA) running on a
dual INTEL®XEON®2.13 GHz CPU desktop under Win-
dows 7. All the scripts needed to reproduce the results
presented in the following are provided in the Additional
file 1.

Identifiability analysis of the original model
Simulation studies showed that the concentration of
KdpDP was very low and almost in steady state. Therefore,
we removed equation (15) from the model and conse-
quently we fixed the concentration of KdpDP to its initial
value and parameters k1 and k−1 were eliminated.
A local identifiability analysis of the original model with

the best set of parameters was performed. As already
suggested by Kremling et al [47], the full set of parame-
ters is not uniquely identifiable with the available in vivo
data; thus, some of the parameters were fixed to literature
values or to values obtained from in vitro data.
The importance ranking of the parameters estimated

from the in vivo data revealed that parameter k−2 has
the lowest sensitivity index (it accounts for the 0.002% of
the total model sensitivity) while the two most relevant
parameters, ktr and DNA0 represent 75% of the total sen-
sitivity. Hence, k−2 was fixed to its nominal value and
special attention was payed to the set of most influential
parameters. The parameter μ presented high correlations
with other parameters so it was fixed to its experimen-
tal value μ = 0.5 l/h. Other pairs of parameters showed
also high correlation among them but they could still be
identified.
These modifications led to a second formulation of the

model (Model II) with 7 DAEs and 17 parameters that fits
the experimental data equally well.

Newhypotheses for the KdpD/KdpE two component system
Based on unpublished data of a mutant strain with
impaired K+ uptake properties, the existence of two new
feedback loops concerning the regulation of translation
and the regulation of proteolysis could be derived from the
observations (see Figure 2). Moreover, a different expres-
sion for the existing stimulus counteraction feedback loop
was postulated. The selection between competing models
is done by using three binary parameters: bin1 and bin2,
which take values 0 or 1 depending on the absence or
presence of feedback loops, and bin3, which determines
the function representing the stimulus counteraction. The
feedback loops were modeled using S-shaped functions
similar to the Hill equation where the Hill coefficient
(n) represents the number of ligand molecules that are
required to bind to a receptor to produce a functional
effect. Typically, these functions are moderately steep;
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Figure 2 Scheme of the reaction mechanism for the KdpD/KdpE two component system. KdpD/KdpE model with the feedback loops:
regulation of translation (red), regulation of proteolysis (green), and a modified stimulus counteraction (purple).

hence, the different exponents were allowed to take inte-
ger values between 0 and 3 [48-50]. Therefore, equation
(18) was modified according to:

dKdpFABC
dt

= ktl3mRNAR1 − (kd2 R2+μ)KdpFABC

(21)

where

• Regulation of translation (R1)

R1 =
⎧⎨
⎩
1, if bin1 = 0

1
KdpFABCn1 + ktrans , if bin1 = 1

(22)

• Regulation of proteolysis (R2)

R2 =

⎧⎪⎨
⎪⎩
1, if bin2 = 0

KdpFABCn2
KdpFABCn3 + kdeg , if bin2 = 1

(23)

• Stimulus counteraction (R3)
In order to account for the different K+ uptake
properties of the two strains, the model is simulated
twice considering different expressions for k3f
(existence and lack of feedback loop for the wild and
mutant strains, respectively). In the case of the
mutant strain, k3f is given by:

k3f = k3
K+

K+
0

(24)

While two different expressions were hypothesized
for the wild strain:

k3f = R3 =

⎧⎪⎪⎨
⎪⎪⎩
k3 K+

K+
0
khy KdpFABCn4 , if bin3 = 0

k3 K+
K+
0
khy KdpFABCn4

KdpFABCn5 +Khy
, if bin3 = 1

(25)

Note that the dynamics of the mutant strain do not
depend on parameters bin3, n4, n5, khy, and Khy.

These possible new loops were integrated with the
Model II considering a superstructure, which has a total
of 25 degrees of freedom: 17 reals, 5 integers and 3
binaries, resulting in 1700 nested models. In a tradi-
tional setting, each of this model should be identified
(calibrated) from experimental data by solving the cor-
responding minimization problem, that is, a nonlinear-
programming problem subject to differential-algebraic
constraints (NLP-DAEs), prior model selection. Since the
solution of each problem is quite computationally expen-
sive, this is obviously not tractable. As an alternative,
we applied the strategy outlined above and performed
a simultaneous selection and identification via MINLP
optimization.

MINLP solutions
In order to illustrate the capabilities of the methodology
presented in this work, we generated in silico data via
simulation using a nominal set for parameters and a cer-
tain model structure. Starting from a known structure and
known parameter values allows us to asses the perfor-
mance of the MINLP formulation by checking if it is able
to recover the original model.
Therefore, we generated in silico data for a wild and

a mutant strain, defective in the uptake of K+ via the
KdpFABC system, considering the parameters shown in
Table 1 as nominal parameters. In this model, the reg-
ulation of translation and the regulation of proteolysis
are active.Moreover, the stimulus counteractions presents
linear dynamics with a kinetic order of three for Kdp-
FABC. For each strain, five different values of K+ con-
centration were considered (1, 10, 50, 100 and 500 mM)
and to create a more realistic scenario we considered
that we can only measure mRNA and KdpFABC with an
heteroscedastic error of 5%.
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Table 1 Nominal value for the parameters andMINLP best
solution

Parameter Nominal value MINLP solution

k2 5.18E+07 4.74E+07

k3 9.76E+01 1.20E+02

α 5.79E-02 5.23E-02

ktr 1.00E+03 8.66E+02

ktl 4.96E+03 4.28E+03

ktl2 1.03E+03 1.27E+03

ktl3 2.05E+03 1.64E+03

kz 4.99E+01 6.06E+01

kd2 1.00E+01 1.25E+01

DNA0 6.16E-04 7.08E-04

Ka 1.82E-07 2.11E-07

K 1.00E+03 8.48E+02

kd 1.18E+00 9.55E-01

khy 2.00E+06 1.76E+06

ktransf 9.74E-01 8.07E-01

kdegf 1.36E-01 1.84E-01

Khy - -

n1: 3 3

n2: 1 1

n3: 2 3

n4: 3 3

n5: 0 0

bin1: 1 1

bin2: 1 1

bin3: 0 0

The bounds for the real parameters were taken at 50% and 200% around the
initial values and for the integers they are based on the typical values of Hill
coefficients, from 0 to 3. The value of parameter Khy is not reported because it is
inactive when bin3 = 0.

Subsequently, we solved the MINLP problem using
fSSm and ACOmi as optimization methods and the AIC
as cost function. Both, fSSm and ACOmi, could solve
the problem of simultaneous model selection and param-
eter identification in an acceptable computation time,
while fSSm showed a better overall performance (data
not shown). The convergence curves for ten runs of fSSm
(AIC value versus computational time) are depicted in
Figure 3 showing a fast convergence rate particularly at the
initial stage of the optimization. The convergence curve
of the run which achieved the best result is highlighted in
red.
As can be seen in Table 1, fSSm was able to recover the

model structure used to generate the in silico data (the
same loops are active) and the optimal parameters differ
from the nominal values less than 20%. Figures 4, 5, 6, 7
show a good agreement between the new model (Model
III) and the in silico data. The mean of the residuals is
4.4%, very close to the experimental error. Although not
every realization reached the same value of the cost func-
tion, the regulation of translation and regulation of prote-
olysis are active for the 10 solutions (bin1 = bin2 = 1).
For some of the realizations, bin3 is equal to 1 indicat-
ing that the two different expressions for the wild strain
are difficult to distinguish with the available data. More-
over, the proposed method allows formulating biological
hypotheses in a much more compact way and this exam-
ple -although using in silico data- shows that also complex
systems can be handled.

Checking the multi-modality of the MINLP
In order to assess the multi-modality of the MINLP prob-
lem, a traditional multi-start approach (i.e. choosing a
large set of random initial points from inside the param-
eter bounds, and performing local searchers from each

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

P
E

 o
bj

(A
IC

)

CPU time(s)

run 1
run 2
run 3
run 4
run 5
run 6
run 7
run 8
run 9
run 10

Figure 3 Convergence curve of fSSm for the MINLP problem. Convergence curve of fSSm (AIC value versus computational time, in seconds,
using a PC/INTEL XEON CPU, 2.13 GHz).
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Figure 4 KdpFABC data versusmodel prediction for the wild strain. Predicted (solid lines) and experimental in silico (markers) behavior for the
protein KdpFABC for the wild strain at different concentrations of K+ using Model III with the best parameter set.

one) using MISQP was performed. The histogram in
Figure 8 represents the frequency of the solutions for
a multi-start of 50 runs showing that all the solutions
obtained are local solutions very far from the global opti-
mum (three orders of magnitude higher than the global
optimum).

Identifiability analysis of the resulting model
The FIM computed for the best set of parameters obtained
by the global solver is full rank; therefore, we can assert
that the parameters are locally identifiable.
Figure 9 represents the sensitivity of the two mea-

sured variables, mRNA and protein complex KdpFABC,
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the protein KdpFABC for the mutant strain at different concentrations of K+ using Model III with the best parameter set.
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with respect to the 17 real parameters of Model III.
The pseudo-global sensitivity analysis revealed that the
model dynamics are very sensitive to parameters DNA0
and ktr , in agreement with the results of the local sensi-
tivity analysis for Model II. Moreover, the concentration

of both mRNA and KdpFABC showed high sensitivity
to parameters K and kz. Since the stimulus counterac-
tion appears to be linear (bin3 = 0), parameter Khy is
not playing a role in the model, therefore its sensitiv-
ity index is zero. For this reason, we have excluded it
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Figure 8Multistart of the local Solver MISQP on the MINLP problem. Histogram of a multi-start of 50 runs using the local solverMISQP.

from the correlation matrix computation represented in
Figure 10.
The correlation matrix shows several pairs of param-

eters highly correlated what explains the difficulties
encountered by the local method in finding the global

solution. Despite the identifiability difficulties of this
problem, which make most of the solvers fail when trying
to solve it, the residuals for the solution obtained by fSSm
are small indicating a precise parameter estimation, e.g.,
the estimated values are close to the experimental data.
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Figure 11Model selection scheme.Model selection scheme: Local sensitivity analysis and identifiability analysis allowed to reduce Model I
leading to Model II. Subsequently, new hypotheses and model selection and identification via MINLP were conducted to formulate Model III. The
identifiability of Model III was assessed by means of a pseudo-global sensitivity approach and correlation analysis indicating that no further
modifications were required.
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Methodology strengths and limitations
The goal of this study is not to solve the general prob-
lem of model inference but a dense subcase of it, i.e., the
discrimination among a subset of nested competing mod-
els and simultaneous estimation of the model parameters.
In other words, we consider the very frequent situation
in systems biology where a first model is available based
on previous knowledge but new experimental information
allow to formulate different hypotheses to refine it. Thus,
instead of solving a general inference problem (i.e. find the
model structure plus the parameters from a set of data),
we consider a subproblem which is smaller (although still
very challenging) and dense (so sparsity is not an issue),
and which, therefore, does not suffer from many of the
ill-posedness and ill-conditioning maladies of the gen-
eral inference problem [51,52]. Despite the usefulness and
broad applicability of the presented approach for model
development in systems biology, there are three major
limitations worth mentioning here:

• Scaling up to large-scale models: the corresponding
MINLPs might become rather large and therefore the
computational effort needed for their solution might
become prohibitive.

• Non-uniqueness of biochemical reaction
mechanisms: it is known that biochemical reaction
networks with different structure and/or
parametrization may produce the same dynamic
response describing the time-evolution of species
concentrations (see the recent discussion and results
in [52]) difficulting the solution of the associated
MINLPs. Fortunately, and following our comments
above, this work considers a dense subcase of the
general inference problem, so these issues are not as
important. In fact, our approach can be interpreted as
the application of extra constraints that can be used
to reduce uniqueness and identifiability issues.

• Model identification/selection metric: the use of more
advanced metrics for model selection such as the
likelihood ratio or the F-test can not be used in this
approach since they rely on pair-wise comparisons.
However, in the presented methodology the AIC
could be replaced by any other metric for model
selection as long as it can establish a ranking for the
set of competing models encompassing model
performance and model complexity.

Conclusions
Here we have considered the model-building cycle where
an initial model, based on existing data and a priori
knowledge of the system, is subsequently refined by
hypotheses-driven iterations (see Figure 11).
We consider this cycle in a more compact way group-

ing sets of hypotheses together and formulating a para-

meterized set of nested models, from which the best alter-
native must be selected. We then formulate the decision
problem as an MINLP-based optimization for simultane-
ous model selection and parameter identification.
This procedure has been applied to a case study con-

sidering potassium homeostasis in bacteria, arriving to
the following conclusions: (i) the presented MINLP-
based approach for nested-model selection is a powerful
methodology formodel selection and identification in sys-
tems biology; and (ii) for the case study considered, it has
resulted in a model that presents a better fit to the in silico
generated experimental data.

Additional file

Additional file 1: K_homeostasis_MINLP. K_homeostasis_MINLP.zip
contains all the scripts needed to reproduce the results presented in this
manuscript using the toolbox SensSB [46]. SensSB toolbox and related
documentation can be downloaded from the following web site: http://
www.iim.csic.es/~gingproc/SensSB.html

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MRF and MR implemented the model options and performed the analysis of
the novel methodology, carrying out the necessary computations. MRF
performed the analysis of the optimization results, the identifiability
computations and assisted in the coordination of the study. JRB and AK
conceived of the study and participated in its design and coordination. MR,
JRB and MRF drafted the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
Authors MRF and JRB acknowledge financial support from the EU ERASysBio
programme and the Spanish MICINN and MINECO (SYSMO grant KOSMOBAC,
ref. GEN2006-27747-E/SYS and project MultiScales ref. DPI2011-28112-C04-03,
both with partial support from the European Regional Development Fund,
ERDF). MR was supported by the Max Planck society and the European
Erasmus project. AK was funded in part by the BMBF through the Era-Net
initiative SysMO. We acknowledge support of the publication fee by the CSIC
Open Access Publication Support Initiative through its Unit of Information
Resources for Research (URICI).

Author details
1Institute for Collaborative Biotechnologies, University of California, Santa
Barbara, CA 93106-5080, USA. 2Max Planck Institute for Dynamics of Complex
Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany. 3Faculty of
Mechanical Engineering Specialty Division for Systems Biotechnology,
Technische Universitat München, Boltzmannstr. 15, 85748 Garching, Germany.
4(Bio) Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo,
Spain.

Received: 8 May 2012 Accepted: 8 August 2013
Published: 12 August 2013

References
1. van Riel NAW: Dynamic modelling and analysis of biochemical

networks: mechanism-based models andmodel-based
experiments. Brief Bioinform 2006, 7(4):364.

2. Stelling J:Mathematical models in microbial systems biology. Curr
Opin Microbiol 2004, 7(5):513–518.

3. Banga JR, Balsa-Canto E: Parameter estimation and optimal
experimental design. Essays Biochem 2008, 45:195.

http://www.biomedcentral.com/content/supplementary/1752-0509-7-76-S1.zip
http://www.iim.csic.es/~gingproc/SensSB.html
http://www.iim.csic.es/~gingproc/SensSB.html


Rodriguez-Fernandez et al. BMC Systems Biology 2013, 7:76 Page 14 of 14
http://www.biomedcentral.com/1752-0509/7/76

4. Jaqaman K, Danuser G: Linking data to models: data regression. Nat
Rev Mol Cell Biol 2006, 7(11):813–819.

5. Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG: Systems
biology: parameter estimation for biochemical models. FEBS J 2008,
276(4):886–902.

6. Kitano H: Computational systems biology. Nature 2002,
420(6912):206–210.

7. Aderem A: Systems biology: its practice and challenges. Cell 2005,
121(4):511–513.

8. Arita M, Robert M, Tomita M: All systems go: launching cell simulation
fueled by integrated experimental biology data. Curr Opin Biotechnol
2005, 16(3):344–349.

9. Feng X, Rabitz H: Optimal identification of biochemical reaction
networks. Biophys J 2004, 86(3):1270–1281.

10. Kremling A, Fischer S, Gadkar K, Doyle III FJ, Sauter T, Bullinger E, Allgower
F, Gilles ED: A benchmark for methods in reverse engineering and
model discrimination: problem formulation and solutions. Genome
Res 2004, 14(9):1773.

11. Gadkar KG, Gunawan R, Doyle III FJ: Iterative approach to model
identification of biological networks. BMC Bioinform 2005, 6:155.

12. Balsa-Canto E, Alonso A, Banga JR: An iterative identification
procedure for dynamic modeling of biochemical networks. BMC Syst
Biol 2010, 4:11.

13. Bandara S, Schloeder JP, Eils R, Bock HG, Meyer T: Optimal experimental
design for parameter estimation of a cell signaling model. PLoS
Comput Biol 2009, 5(11):e1000558.

14. Apgar JF, Toettcher JE, Endy D, White FM, Tidor B: Stimulus design for
model selection and validation in cell signaling. PLoS Comput Biol
2008, 4(2):e30.

15. Melykuti B, August E, Papachristodoulou A, El-Samad H: Discriminating
between rival biochemical network models: three approaches to
optimal experiment design. BMC Syst Biol 2010, 4:38.

16. Skanda D, Lebiedz D: An optimal experimental design approach to
model discrimination in dynamic biochemical systems. Bioinform
2010, 26(7):939–945.

17. Lillacci G, Khammash M: Parameter estimation andmodel selection in
computational biology. PLoS Comput Biol 2010, 6(3):e1000696.

18. Verheijen PJT:Model selection: an overview of practices in chemical
engineering. Comput Aided Chem Eng 2003, 16:85–104.

19. Petzold L, Zhu W:Model reduction for chemical kinetics: An
optimization approach. AIChE J 1999, 45(4):869–886.

20. Edwards K, Edgar TF, Manousiouthakis VI: Reaction mechanism
simplification using mixed-integer nonlinear programming. Comput
Chem Eng 2000, 24:67–79.

21. Maurya MR, Bornheimer SJ, Venkatasubramanian V, Subramaniam S:
Mixed-integer nonlinear optimisation approach to coarse-graining
biochemical networks. IET Syst Biol 2009, 3:24.

22. Nikolaev EV: The elucidation of metabolic pathways and their
improvements using stable optimization of large-scale kinetic
models of cellular systems.Metab Eng 2010, 12(1):26–38.

23. Banga JR: Optimization in computational systems biology. BMC Syst
Biol 2008, 2:47.

24. Aldrich J: R. A. Fisher and the making of maximum likelihood
1912-1922. Stat Sci 1997, 12(3):162–176.

25. Akaike H: A new look at the statistical model identification. IEEE Trans
Automatic Control 1974, 19(6):716–723.

26. Cedersund G, Roll J: Systems biology: model based evaluation and
comparison of potential explanations for given biological data. FEBS
J 2009, 276(4):903–922.

27. McDonald CP, Urban NR: Using a model selection criterion to identify
appropriate complexity in aquatic biogeochemical models. Ecol
Model 2010, 221(3):428–432.

28. Rodriguez-Fernandez M, Mendes P, Banga JR: A hybrid approach for
efficient and robust parameter estimation in biochemical pathways.
Biosyst 2006, 83(2-3):248–265.

29. Egea JA, Rodriguez-Fernandez M, Banga JR, Martí R: Scatter Search for
Chemical and Bio-Process Optimization. J Glob Optimization 2007,
37:481–503.

30. Schlüter M, Egea JA, Banga JR: Extended ant colony optimization for
non-convex mixed integer nonlinear programming. Comput Oper Res
2009, 36(7):2217–2229.

31. Egea JA, Martí R, Banga JR: An evolutionary method for
complex-process optimization. Comput Oper Res 2010, 37(2):315–324.

32. Exler O, Schittkowski K: A trust region SQP algorithm formixed-integer
nonlinear programming. Optimization Lett 2007, 1(3):269–280.

33. Schittkowski K: A collection of 186 test problems for nonlinear mixed-integer
programming; 2012. Tech. rep., Department of Computer Science;
University of Bayreuth.

34. Exler O, Lehmann T, Schittkowski K: A comparative study of SQP-type
algorithms for nonlinear and nonconvex mixed-integer
optimization.Math Program Comput 2012, 4(4):383–412. [http://dx.doi.
org/10.1007/s12532-012-0045-0]

35. Diehl M, Walther A, Bock HG, Kostina E: An adjoint-based SQP algorithm
with quasi-Newton Jacobian updates for inequality constrained
optimization. OptimizationMethods Softw 2010, 25(4):531–552.

36. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmueller U,
Timmer J: Structural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile likelihood.
Bioinform 2009, 25(15):1923–1929.

37. Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW: An integrated strategy
for prediction uncertainty analysis. Bioinform 2012, 28(8):1130–1135.

38. Brannmark C, Palmer R, Glad ST, Cedersund G, Stralfors P:Mass and
information feedbacks through receptor endocytosis govern insulin
signaling as revealed using a parameter-free modeling framework. J
Biol Chem 2010, 285(26):20171–20179.

39. Rodriguez-Fernandez M, Banga JR, Doyle III FJ: Novel global sensitivity
analysis methodology accounting for the crucial role of the
distribution of input parameters: application to systems biology
models. Int J Robust Nonlinear Control 2012, 22(10):1082–1102.

40. Jacquez JA, Greif P: Numerical Parameter Identifiability and
estimability: integrating identifiability, estimability, and optimal
sampling desing.Math Biosci 1985, 77:201–227.

41. Audoly S, Bellu G, D’Angio L, Saccomani MP, Cobelli C: Global
identifiability of nonlinear models of biological systems. IEEE Trans
Biomed Eng 2001, 48(1):55–65.

42. Fisher F. Econometrica 1959, 27(3):431–447.
43. Brun R, Reichert P, Kunsch HR: Practical identifiability analysis of large

environmental simulation models.Water Resour Res 2001,
37:1015–1030.

44. Karnavas WJ, Sanchez P, Bahill AT: Sensitivity analyses of continuous
and discrete systems in the time and frequency domains. IEEE Trans
Syst, Man, Cybern 1993, 23(2):488–501.

45. Kucherenko S, Rodriguez-Fernandez M, Pantelides C, Shah N:Monte
Carlo evaluation of derivative based global sensitivity measures.
Reliability Eng Syst Saf 2009, 94:1135–1148.

46. Rodriguez-Fernandez M, Banga JR: SensSB: A software toolbox for the
development and sensitivity analysis of systems biology models.
Bioinform 2010, 26(13):1675–1676.

47. Kremling A, Heermann R, Centler F, Jung K, Gilles ED: Analysis of two-
component signal transduction by mathematical modeling using
the KdpD/KdpE system of Escherichia coli. Biosyst 2004, 78(1-3):23–37.

48. Alon U: An Introduction to Systems Biology - Design Principles of Biological
Circuits. London: Chapman & Hall/CRC; 2007.

49. Widder S, Schicho J, Schuster P: Dynamic patterns of gene regulation I:
Simple two-gene systems. J Theor Biol 2007, 246(3):395–419.

50. Konkoli Z: A danger of low copy numbers for inferring incorrect
cooperativity degree. Theor Biol MedModel 2010, 7:40.

51. Prill R, Marbach D, Saez-Rodriguez J, Sorger P, Alexopoulos L, Xue X,
Clarke N, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment
of systems biology models: the DREAM3 challenges. PloS one 2010,
5(2):e9202.

52. Szederkenyi G, Banga JR, Alonso AA: Inference of complex biological
networks: distinguishability issues and optimization-based
solutions. BMC Syst Biol 2011, 5:177.

doi:10.1186/1752-0509-7-76
Cite this article as: Rodriguez-Fernandez et al.: Simultaneousmodel discrim-
ination and parameter estimation in dynamic models of cellular systems.
BMC Systems Biology 2013 7:76.

http://dx.doi.org/10.1007/s12532-012-0045-0
http://dx.doi.org/10.1007/s12532-012-0045-0

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Nested-models: selection and identification
	Formulation of the MINLP
	Solution of the MINLP problem
	ACOmi
	fSSm
	MISQP

	Model identifiability, sensitivity and correlation analysis
	Sensitivity analysis
	Correlation analysis

	Dynamic model of the KdpD/KdpE system of Escherichia coli

	Results and discussion
	Identifiability analysis of the original model
	New hypotheses for the KdpD/KdpE two component system
	MINLP solutions
	Checking the multi-modality of the MINLP
	Identifiability analysis of the resulting model
	Methodology strengths and limitations

	Conclusions
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

