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Abstract

Background: Most phenotypic effects of drugs are involved in the interactions between drugs and their target
proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited.
One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which

govern drug-target interactions.

|u

domains, which we cal

chemical substructures and protein domains.

Results: In this paper, we make a systematic analysis of the correlation between drug side effects and protein
pharmacogenomic features,” based on the drug-target interaction network. We detect
drug side effects and protein domains that appear jointly in known drug-target interactions, which is made
possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be
used for predicting potential drug-target interactions. We also discuss advantages and limitations of the
pharmacogenomic features, compared with the chemogenomic features that are the associations between drug

Conclusion: The inferred side effect-domain association network is expected to be useful for estimating common
drug side effects for different protein families and characteristic drug side effects for specific protein domains.

Background

Most phenotypic effects of drugs are involved in the
interactions between drugs and their target proteins
(drug-target interactions hereafter). Drug molecules
often interact not only with a therapeutic target but also
with the other proteins (off-targets hereafter), which
could lead to unwanted side effects [1]. Therefore, the
identification of overall target proteins of drugs includ-
ing the therapeutic targets and off-targets is a crucial
process in the drug development. In addition, the
understanding of the molecular mechanism of drug phe-
notypic effects in terms of drug-target interactions is
also an important issue in many pharmaceutical applica-
tions. There is a hypothesis that drug phenotypic effects
are involved in many kinds of biological features of
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drugs and proteins (e.g., drug chemical substructures,
pharmacophores, protein functional sites, and biological
pathways).

Recently, a variety of computational methods have
been developed for large-scale prediction of drug-target
interactions in the context of chemogenomics or phar-
macogenomics. The key idea of the chemogenomic
approach is that chemically similar compounds are likely
to interact with similar proteins, and the prediction is
performed based on compound chemical structures
and/or protein sequences [2-7]. In contrast, the key idea
of the pharmacogenomic approach is that phenotypically
similar drugs are likely to interact with similar proteins,
and the prediction is performed based on drug side
effects and/or protein sequences [8-10]. However, the
predictive models of most previous methods are not
biologically interpretable, which makes it difficult to
interpret biological features of drug-target interactions
or compound-protein interactions.
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The identification of biological features which are
associated with drug-target interactions or compound-
protein interactions is becoming a challenging issue in
recent pharmaceutical science. In the context of che-
mogenomics, some machine learning methods with
sparse models have been proposed to detect informa-
tive combinations of drug chemical substructures and
protein domains which may explain the mechanism of
drug-target interactions. The inferred features are
called “chemogenomic features” [11,12]. In addition,
the use of a data mining method has been proposed to
infer molecular substructure pairs which appear fre-
quently and significantly in interacting drug-target
pairs [13]. The next challenge is to relate drug-target
interactions with drug phenotypic effects (e.g., pharma-
ceutical effects and side effects). Recently, the use of
drug targeted proteins has been proposed for predict-
ing drug side effects [14-16]. The inference of proteins
associated with drug side effects has been proposed
[14,17], but there is no previous work on the analysis
at the protein domain level. Protein domains are struc-
tural, evolutional, and functional units, so it would be
important to investigate the associations between pro-
tein domains and drug side effects on a large scale.

In this paper, we make a systematic analysis of the
correlation between drug side effects and protein
domains, which we call “pharmacogenomic features,”
based on the drug-target interaction network. We detect
drug side effects and protein domains that appear jointly
and in known drug-target interactions, which is made
possible by using classifiers with sparse models. It is
shown that the inferred pharmacogenomic features can
be used for predicting potential drug-target interactions.
We also discuss advantages and limitations of the phar-
macogenomic features, compared with the chemoge-
nomic features that are the associations between drug
chemical substructures and protein domains. To our
knowledge, no other computational method has been
reported for relating protein domains with drug side
effects. The inferred side effect-domain association net-
work is expected to be useful for estimating common
drug side effects for different protein families and char-
acteristic drug side effects for specific protein domains.

Results and discussion

Inference of pharmacogenomic features

We applied four methods: L1LOG, L2LOG, L1LOG-C,
and L2LOG-C to infer pharmacogenomic features from
the drug-target interaction network. Note that L1ILOG
and L2LOG are respectively L;- and L,-regularized
logistic regressions with the tensor product descriptors,
and L1LOG-C and L2LOG-C are respectively L;- and
L,-regularized logistic regressions with the combined
descriptors (see the Methods section for more details).
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In each method, we inferred pharmacogenomic features
with positive weights in the predictive model.

Each pharmacogenomic feature is composed of a side
effect and a protein domain which are thought of as
being associated with each other. There is a tendency
that the protein domain in a pharmacogenomic feature
are present in the same protein family targeted by drugs
causing the side effect within the corresponding phar-
macogenomic feature. We quantitated degree of the
associations between side effects and protein domains
by evaluating the weights on the corresponding pharma-
cogenomic features. Figure 1 shows a small part of side
effect-domain association network inferred by the
L1LOG method, where edges are placed between side
effects and protein domains in positively weighted phar-
macogenomic features and the top 200 weights are
selected in the picture because of space limitation.

We investigated the number of pharmacogenomic fea-
tures inferred by the four methods. Figure 2 shows a
summary of the comparison between L1LOG, L2LOG,
L1LOG-C, and L2LOG-C on the gold standard data. It
is found that the numbers of inferred features in
L1LOG and L1LOG-C are significantly fewer than those
in L2LOG and L2LOG-C, respectively. This observation
means that the sparsity induced by the L; penalty has
positive effects of reducing the number of features in
the descriptors. The feature extraction property helps us
to analyze the inferred features for biological interpreta-
tion in practice.

Figure 3 shows the overlap of inferred pharmacoge-
nomic features between the four methods. It is found
that LILOG was able to infer a very limited number of
features and most of the features were included in those
of L2LOG. This result suggests that the inferred features
of LILOG are more representative than those of
L2LOG. Both L1LOG and L1LOG-C are sparsity-
induced methods, but the number of common features
between the two methods was very limited. This result
suggests that biological interpretation about the inferred
features may depend on the descriptors designed for
drug-target pairs.

Reconstruction of known drug-target interactions

We examined the validity of the pharmacogenomic
features inferred by L1ILOG, L2LOG, L1LOG-C, and
L2LOG-C in terms of generalization properties for
drug-target interactions. In order to test the ability of
each method to reconstruct known drug-target interac-
tions from the features, we performed two types of
cross-validation experiments: pair-wise cross-validation
and block-wise cross-validation (see the Methods sec-
tion for more details). We also made a comparison
between the pharmacogenomic features and the che-
mogenomic features. Note that the chemogenomic
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Figure 1 Part of the inferred side effect and protein domain network. Green circle and red rectangle represent a side effect and a protein
domain, respectively. Node size represents a node degree. Edge width represents the weight of side effect and protein domain pair.

\

features correspond to the associations between drug
chemical substructures and protein domains [12]. The
methods with the pharmacogenomic features and the
chemogenomic features are referred to as pharmacoge-
nomic approach and chemogenomic approach, respec-
tively, below.

We evaluated the performance by using the ROC
curve (receiver operating characteristic curve). The ROC
curve is a function of true positive rates against false
positive rates based on many thresholds for the predic-
tion scores, where true positives are correctly predicted
interactions and false positives are incorrectly predicted
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Figure 2 Barplot of the numbers of features. Comparison of the
number of inferred features between L1LOG, L2LOG, L1LOG-C, and
L2LOG-C.

Figure 3 Overlap of the number of features. Comparison of the
number of inferred features across L1LOG, L2LOG, L1LOG-C, and
L2LOG-C.
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Figure 4 AUC scores and the number of features in the cross-validation experiments by L1LOG and L2LOG. The left panels show the
results of the pair-wise cross-validation, while the right panels show the results of the block-wise cross-validation. The horizontal axis of each
panel indicates the chemical structure similarity used for the clustering threshold in constructing the benchmark data.
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interactions. We computed the total AUC score (the
area under the ROC curve) over the five folds.

Figure 4 shows the resulting AUC scores and the
number of inferred features by L1LOG and L2LOG
based on nine benchmark datasets with different cluster-
ing thresholds (see the Method section for more details).
It is found that LILOG is able to infer a smaller number
of features, compared with L2LOG in most cases. Inter-
estingly, the prediction accuracy of LILOG is kept to
some extent. Another observation is that the block-wise
cross-validation provides lower AUC scores, compared
with the pair-wise cross-validation. This result suggests
that target prediction for new drugs with no target
information and ligand prediction for orphan proteins
with no ligand information are quite difficult problems.

Pharmacogenomic approach and chemogenomic
approach showed similar behaviors in the pair-wise
cross-validation setting, while the two approaches
showed different behaviors in the block-wise cross-vali-
dation setting. The performance of pharmacogenomic

approach was better than that of chemogenomic
approach for the benchmark data consisting of structu-
rally different drugs (i.e., in the case of low chemical
similarity thresholds). On the other hand, the perfor-
mance of pharmacogenomic approach was worse than
the chemogenomic approach for benchmark data con-
taining many structurally similar drugs (i.e., in the case
of high chemical similarity thresholds). For example, the
pharmacogenomic approach worked well for the Test-
Drug-TrainProtein pairs when the chemical similarity
threshold is 0.2, and for the TestDrug-TestProtein pairs
when the chemical similarity threshold lies in the range
0.2-0.5.

Figure 5 shows the resulting AUC scores and the num-
ber of inferred features for LILOG-C and L2LOG-C
based on nine benchmark datasets. Note that LILOG-C
and L2LOG-C are based on the combination of the ten-
sor product descriptor and individual feature vectors of
drugs and target proteins. Similar tendencies exhibited in
L1LOG and L2LOG can be observed in LILOG-C and
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Figure 5 AUC scores and the number of features in the cross-validation experiments by L1LOG-C and L2LOG-C. The left panels show
the results of the pair-wise cross-validation, while the right panels show the results of the block-wise cross-validation. The horizontal axis of each
panel indicates the chemical structure similarity used for the clustering threshold in constructing the benchmark data.
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L2LOG-C as well. However, the AUC scores of L1LOG-
C and L2LOG-C tend to be higher than those of LILOG
and L2LOG in both the pharmacogenomic approach and
the chemogenomic approach. This result suggests that
the combination of the tensor product descriptor and
individual feature vectors of drugs and target proteins is
meaningful for predicting drug-target interactions.

Biological interpretation of side effects and protein

domains in the inferred pharmacogenomic features

We made biological interpretations for drug side effects
and protein domains in the inferred pharmacogenomic
features. Table 1 shows examples of highly weighted
side effect-domain pairs in the pharmacogenomic fea-
tures inferred by the LILOG method. Table 2 shows
examples of highly weighted protein domains for each
side effect inferred by the LILOG method. Table 3
shows examples of highly weighted side effects for each
protein domain inferred by the LILOG method. The

inferred side effect-domain associations suggest potential
side effects involving each protein domain and side
effects for a wide range of protein families. The results
of all inferred pharmacogenomic features in Tables 1, 2,
and 3 can be obtained from Additional files 1, 2, and 3
in supplemental materials. Here we discuss some exam-
ples in Tables 1, 2, and 3.

7TM_GPCR_Srw, 7TM_GPCR_Srbc, and 7TM_GPCR_
Srsx are the Serpentine type 7TM GPCR chemorecep-
tors, which are the members of seven-transmembrane
G-protein-coupled receptors (7TM GPCRs) that involved
in many diseases and are also the target of many modern
medicinal drugs. Srw, Srbc, and Srsx are the solo families
amongst the superfamilies of chemoreceptors. It is rea-
sonable to find that these three families share some side
effects such as mental depression, nasal congestion, and
priapism, however it might be meaningful to find that
these families have their own specific side effects; short-
ness of breath, weakness, and ptosis for Srw, labyrinthitis,
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Table 1 Examples of highly weighted pharmacogenomic features inferred by the L1LOG method

Rank Weight Side effect Protein domain ID Protein domain definition
1 330.0000 anaphylaxis PF13558 SbcCD_C (Putative exonuclease SbcCD, C subunit)
2 330.0000 tardive dyskinesia PF10320 7TM_GPCR_Srsx (Serpentine type 7TM GPCR chemoreceptor Srsx)
3 330.0000 labyrinthitis PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
4 330.0000 shortness of breath PF02898 NO_synthase (Nitric oxide synthase, oxygenase domain)
5 330.0000 priapism PF10324 7TM_GPC_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
6 330.0000 nasal congestion PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
7 330.0000 nasal congestion PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
8 330.0000 weakness PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
9 3271335 burning sensation PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
10 326.7361 glycosuria PF00191 Annexin (Annexin)
1 325.3147 shortness of breath PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
12 3244456 shortness of breath PF02931 Neur_chan_LBD (Neurotransmitter-gated ion-channel ligand binding domain)
13 320.0000 anaphylaxis PF00060 Lig_chan (Ligand-gated ion channel)
14 292.0382 hypoventilation PF02898 NO_synthase (Nitric oxide synthase, oxygenase domain)
15 281.0425 hypoventilation PF02931 Neur_chan_LBD (Neurotransmitter-gated ion-channel ligand binding domain)

burning sensation and torticollis for Srbc, and tardive
dyskinesia, hyperprolactinemia, and Parkinson for Srsx.

Neur_chan_LBD (Neurotransmitter-gated ion-channel
ligand binding domain) is a transmembrane receptor-
ion channel complex that binds specific ligands for
rapid transmission of signals at chemical synapses,
which includes nicotinic acetylcholine receptor (AchR),
glycine receptor, gamma-aminobutyric acid (GABA)
receptor, serotonin 5HT3 receptor, and glutamate recep-
tor. By viewing the side effects on the protein domain
level, this domain was shown to be involved in many
side effects, such as shortness of breath, respiratory
arrest, blindness, hypoventilation, increased salivation,
drug dependence, and proctitis. It is understandable that
most of these side-effects are shared by NO_synthase
(Nitric oxide synthase, oxygenase domain). NO_synthase
has isoenzymes eNOS (endothelial NOS) and nNOS
(neuronal NOS); the former is the primary signal gen-
erator in the control of vascular tone, insulin secretion,
and airway tone, and the latter is involved in the devel-
opment of nervous system.

Novel predictions

Finally, we conducted a large-scale prediction of
unknown interactions of all drugs and all proteins based
on the pharmacogenomic features inferred by L1ILOG.
We learned a predictive model based on all drug-target
pairs in the gold standard data, and applied it to all
drugs and proteins for which side-effect information
and domain information are available. We put the list of
the top 1000 predictions in Additional file 4.

Conclusion
In this paper we made a systematic analysis of the cor-
relation between drug side effects and protein domains,

which we call pharmacogenomic features, using binary
classifiers with sparse models based on the drug-target
interaction network. We showed the usefulness of the
inferred pharmacogenomic features for predicting drug-
target interactions. To our knowledge, this work is the
first study to relate protein domains with drug side
effects on a large scale.

In this study, we used logistic regression as a binary
classifier, but other classifiers can be used for the same
objective. For example, support vector machine (SVM)
is a good candidate for high-performance binary classi-
fier. Actually, we performed the same analysis using
SVM in a similar manner as logistic regression, and
confirmed that the same tendency in the results can be
obtained. The detailed results can be found in Addi-
tional files 5 and 6.

In this study we used side effect profiles of drugs and
domain profiles of target proteins in the correlation ana-
lysis, but the performance and the biological interpreta-
tion depend heavily on the elements in the profiles of
drugs and proteins. The method can not extract features
which are absent from the predefined descriptors, so the
generalization properties of the method could be
improved by constructing more meaningful descriptors
or using more complete descriptors.

Materials and methods

Data

Drug-target interactions

We obtained the information about drug-target interac-
tions from the DrugBank database [18]. The number of
interactions in the dataset is 1064. These interactions
involve 413 drugs and 400 target proteins. We used this
data set as gold standard data in the cross-validation
experiment.
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Table 2 Examples of highly weighted protein domains for each side effect inferred by the L1ILOG method

Rank Weight Side effect Protein domain ID Protein domain definition
1 anaphylaxis
330.0000 PF13558 SbcCD_C (Putative exonuclease SbcCD, C subunit)
320.0000 PF00060 Lig_chan (Ligand-gated ion channel)
115.8250 PF08491 SE (Squalene epoxidase)
113.4802 PF00989 PAS (PAS fold)
74.9419 PFO5790 C2-set (Immunoglobulin C2-set domain)
2 tardive dyskinesia
330.0000 PF10320 7TM_GPCR_Srsx (Serpentine type 7TM GPCR chemoreceptor Srsx)
3 labyrinthitis
330.0000 PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
70.4820 PF10140 YukC (WXG100 protein secretion system (Wss), protein YukC)
4 shortness of breath
330.0000 PF02898 NO_synthase (Nitric oxide synthase, oxygenase domain)
3253147 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
3244456 PF02931 Neur_chan_LBD (Neurotransmitter-gated ion-channel ligand binding domain)
100.7863 PF10320 7TM_GPCR_Srsx (Serpentine type 7TM GPCR chemoreceptor Srsx)
5 priapism
330.0000 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
112.9922 PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
2.0630 PF00206 Lyase_1 (Lyase)
6 nasal congestion
330.0000 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
330.0000 PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
7 weakness
330.0000 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
8 burning sensation
327.1335 PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
14.2660 PF02867 Ribonuc_red_IgC (Ribonucleotide reductase, barrel domain)
74168 PF03522 KCl_Cotrans_1 (K-Cl Co-transporter type 1 (KCC1))
5.7520 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
0.3741 PF00209 SNF (Sodium:neurotransmitter symporter family)
9 glycosuria
326.7361 PF00191 Annexin (Annexin)
1453436 PF08377 MAP2_projctn (MAP2/Tau projection domain)
499279 PF03491 5HT_transporter (Serotonin (5-HT) neurotransmitter transporter, N-terminus)
480767 PF02222 ATP-grasp (ATP-grasp domain)
32.5342 PF00698 Acyl_transf_1 (Acyl transferase domain)
10 hypoventilation
292.0382 PF02898 NO_synthase (Nitric oxide synthase, oxygenase domain)
281.0425 PF02931 Neur_chan_LBD (Neurotransmitter-gated ion-channel ligand binding domain)

Pharmacological and chemical data of drugs
We obtained the information about side effects of drugs
from the SIDER database that accumulates reported side
effects from package inserts for marketed drugs [19].
We represented each drug by a 1179-dimensional binary
vector in which the presence or absence of each side
effect is coded as 1 or 0.

We obtained the information about chemical struc-
tures of drugs from the PubChem database [20]. We

represented each drug by an 881-dimensional binary
vector in which 881 PubChem substructures are used
and the presence or absence of each substructure is
coded as 1 or 0.

Genomic and functional data of target proteins

We obtained genomic information about target proteins
from the UniProt database [21], and obtained the protein
domains from the PFAM database [22]. We represented
each target protein by a 476-dimensional binary vector in
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Table 3 Examples of highly weighted side effects for each protein domain inferred by the L1LOG method
Rank Weight Protein domain ID Protein domain definition Side effect
1 PF13558 SbcCD_C (Putative exonuclease SbcCD, C subunit)
330.0000 anaphylaxis
41.1178 allergic reaction
2 PF10320 7TM_GPCR_Srsx (Serpentine type 7TM GPCR chemoreceptor Srsx)
330.0000 tardive dyskinesia
2163340 mental depression
102.3075 regurgitation
100.7863 shortness of breath
90.8773 hyperprolactinemia
3 PF10316 7TM_GPCR_Srbc (Serpentine type 7TM GPCR chemoreceptor Srbc)
330.0000 labyrinthitis
330.0000 nasal congestion
3271335 burning sensation
266.0200 torticollis
225.7442 testicular swelling
4 PF02898 NO_synthase (Nitric oxide synthase, oxygenase domain)
330.0000 shortness of breath
292.0382 hypoventilation
2329827 respiratory arrest
229.9422 increased salivation
2044183 blindness
5 PF10324 7TM_GPCR_Srw (Serpentine type 7TM GPCR chemoreceptor Srw)
330.0000 priapism
330.0000 nasal congestion
330.0000 weakness
3253147 shortness of breath
2799735 ptosis
6 PFO0191 Annexin (Annexin)
326.7361 glycosuria
117.1047 vasculitis
95.9706 sialadenitis
79.3155 COPD
71.9669 choking
7 PF02931 Neur_chan_LBD (Neurotransmitter-gated ion-channel ligand binding domain)
324.4456 shortness of breath
281.0425 hypoventilation
244.4901 increased salivation
2282349 respiratory arrest
221.8014 drug dependence
8 PF00060 Lig-chan (Ligand-gated ion channel)
320.0000 anaphylaxis
194911 allergic reaction
9 PFO8377 MAP2_projctn (MAP2/Tau projection domain)
251.7744 hyperuricemia
145.3436 glycosuria
47.3304 sialadenitis
44,6506 choking
36.2648 polydipsia
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Table 3 Examples of highly weighted side effects for each protein domain inferred by the L1LOG method (Continued)

10 PF14396
239.2866
212.0452
156.3952
134.2967
131.3925

CFTR_R (Cystic fibrosis TM conductance regulator (CFTR), regulator domain)

gallbladder disease
gynecomastia
paronychia
prostatism
cervical erosion

which 476 PFAM domains are used and the presence or
absence of each domain is coded as 1 or 0.

Classifiers for drug-target pairs

We consider the feature extraction problem in the con-
text of drug-target interaction prediction. We represent a
pair of drug D and protein P by (D, P). Suppose that we
are given a learning set of drug-target pairs (D;, P)) (i = 1,
2,...,np;j=1,2,..., np), where the pairs are known
to interact or not, np is the number of drugs and #p is
the number of target proteins in the learning set.

We represent a pair of drug D and protein P by a fea-
ture vector ®(D, P), and then estimate a function f (D,
P) = w®(D, P) which would predict whether drug-tar-
get pair (D, P) is an interacting pair or not. We optimize
the weight vector w based on the learning set with label
information.

The feature vector of drug D is supposed to be repre-
sented as an M-dimensional binary vector:

® (D) = (dll dZI weer dM)T/

where dy € {0, 1}, k=1,..., M . For example, ®(D)
is a profile of side effects or chemical substructures in
this study. In the same manner, the feature vector of
protein P is supposed to be represented as an N-dimen-
sional binary vector:

® (P) = (p1,pa, - PN)

where p;e {0,1},1=1,..., N. For example, ®(P) is
a profile of protein domains in this study.

We propose two kinds of feature vectors for each
drug-target pair. First, we represent each drug-target
pair by the tensor product between ®(D) and ®(P) as
follows:

o (D,P)=D (D) QD (P)
= (dlplr . dlp[\], Y Pis-us deN)T,

where ®(D, P ) is an (M x N)-dimensional feature
vector. We refer to the feature vector as “tensor product
descriptor” in this study. This tensor product descriptor
is similar to that in the previous work [12].

Second, we represent each drug-target pair by
the combination of the tensor product descriptor

O (D) ® ®(P ) and individual feature vectors ®(D) and
@O(P) as follows:

@c (D, P) = [(2(D) ® ®(P))", ®(D)", o(P)"]"
= (dlplr e d][JN, e del, .N,deN, dl,dz, 4,4,dM,p1,p2, 4.4,pN)T,

where ®¢ (D, P) is an (M x N + M + N)-dimensional
binary vector. We refer to the feature vector as “com-
bined descriptor” in this study.

In this study we use logistic regression as a binary
classifier to predict whether a drug D interacts with a
target protein P or not. The predictive model is usually
learnt by minimizing the loss function with L,-regulari-
zation. However, L,-regularization tends to keep most
weight elements to be non-zeros, which makes it diffi-
cult to interpret features from the resulting weight vec-
tor. Another possible solution is to use L;-regularization
that tends to make most weight elements to be zeros,
which makes it easier to interpret features from the
resulting weight vector. Therefore, we introduce a logis-
tic regression model with L,-regularization.

Suppose that we have a learning set of drug-target
pairs and interaction labels

@Dy, P), yi)s vy (+L, -1} (i=1,2,...,npj=1,2,

., np), where np is the number of drugs and #p is the
number of target proteins in the learning set. The
weight vector w of the linear logistic regression is
usually learned with L,-regularization as follows:

nhp np

min || w||, + CZ Z log (1 + exp (—y,-j w'd (Di, Pj))) ,
w

i=1 j=1

where || - ||2 is L, norm (the sum of squared values)
and C is a regularization parameter to control the
penalty.

To induce sparsity in the model, the weight vector w
of the linear logistic regression is learned with L;-regu-
larization as follows:

np np

min || w]|; + CZ Z log (1 + exp (—y;j w'® (D;, P}))),

i=1 j=1

where || - ||1 is L; norm (the sum of absolute values)
and C is a regularization parameter to control the spar-
sity. We examine various values (0.0001, 0.001, 0.01, 0.1,
1, 10, 100, 1000, 10000) for the hyper parameter C, and
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select the value that gave the highest AUC score in the
cross-validation experiment.

In practice, we consider applying the logistic regres-
sion with the tensor product descriptor ®(D, P) and
with the combined descriptor ® (D, P). We refer to L;-
regularized logistic regression with the tensor product
descriptor as “L1LOG,” and L,-regularized logistic
regression with the tensor product descriptor as
“L2LOG,” respectively. We refer to L,-regularized logis-
tic regression with the combined descriptor as “L1LOG-
C, and L,-regularized logistic regression with the com-
bined descriptor as “L2LOG-C,” respectively.

Cross-validation experiments for benchmark data

There are two scenarios for drug-target interaction pre-
diction from practical viewpoints. The first scenario is
that we have drugs with target information and proteins
with ligand information, and the goal is to additionally
detect missing interactions between the drugs and the
proteins. The second scenario is that we have drugs
with no target information and protein with no ligand
information, and the goal is to find all potential target
proteins of the drugs and all potential ligands of target
proteins. To simulate the above two scenarios in the 5-
fold cross-validation experiment, we consider two differ-
ent settings: pair-wise cross-validation and block-wise
cross-validation.

The pair-wise cross-validation consists of the following
procedures: First, we split all drug-target pairs in the
gold standard set into five subsets of all drug-target
pairs in an independent manner. Second, we regard
each subset of drug-target pairs as a test set, and regard
the other four subsets of drug-target pairs as a training
set. Third, we optimize a predictive model based on
drug-target pairs in the training set. Finally, we apply
the predictive model to drug-target pairs in the test set.
Note that drug-target pairs are considered independent
of each other, so drugs and target proteins in test pairs
are overlapped with those in the training set to some
extent.

The block-wise cross-validation consists of the follow-
ing procedures: First, we split drugs and target proteins
in the gold standard set into five subsets of drugs and
five subsets of target proteins. Second, we regard each
subset of drugs (resp. proteins) as test drugs (resp. test
proteins), and use the other four subsets of drugs as
training drugs (resp. training proteins). Third, we opti-
mize a predictive model based on drug-target pairs con-
sisting of training drugs and training proteins. Finally, we
compute the prediction scores for three types of drug-tar-
get pairs: test drugs v.s. training target proteins (referred
to as “TestDrug-TrainProtein”), training drugs v.s. test
target proteins (referred to as “TrainDrug-TestProtein”),
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and test drugs v.s. test target proteins (referred to as
“TestDrug-TestProtein”). Note that drugs and proteins in
test pairs are not completely different from those in the
training set. Thus, the prediction problem in the block-
wise setting is more difficult than that in the pair-wise
setting.

The gold standard data contain many drugs which were
chemically and structurally almost identical, because they
were derived from the same lead compound. If these
identical drugs were divided into a training set and a test
set, the prediction in the cross-validation experiment
would be trivial. To avoid overestimation of the predic-
tion accuracy, we perform a grouping of similar drugs
based on their chemical structures and use only drugs
which are chemically and structurally different to some
extent, following a previous work [10]. First, we carry out
a clustering of all drugs based on Tanimoto coefficient
(Jaccard coefficient) [23] of chemical fingerprints using
average linkage algorithm. Second, we cluster drugs with
high Tanimoto coefficients into the same cluster, and
selected one representative drug within each cluster.
Third, we construct a set of drugs with low Tanimoto
coefficients. Finally, we prepare nine sets of benchmark
data consisting of representative drugs by varying the
clustering threshold little by little (e.g., from 0.2 to 1.0 by
0.1) on the dendrogram. When the clustering threshold
is 0.1, the number of drug clusters is only 3 in our data,
so it is not possible to test the clustering threshold of 0.1
in the 5-fold cross-validation.

Additional material

Additional file 1: Extracted side effects and protein domains of
L1LOG.

Additional file 2: Extracted protein domains for each side effect of
L1LOG.

Additional file 3: Extracted side effects for each protein domain of
L1LOG.

Additional file 4: The list of novel drug-target predictions of L1LOG.

Additional file 5: AUC scores and the number of features in the
pair-wise and block-wise cross-validation experiments by L1LOG,
L2LOG, L1SVM, and L2SVM.

Additional file 6: AUC scores and the number of features in the
pair-wise and block-wise cross-validation experiments by L1LOG-C,
L2LOG-C, L1SVM-C, and L2SVM-C.
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