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Abstract

Background: Data-driven studies on the dynamics of reconstructed protein-protein interaction (PPI) networks
facilitate investigation and identification of proteins important for particular processes or diseases and reduces
time and costs of experimental verification. Modeling the dynamics of very large PPI networks is computationally
costly.

Results: To circumvent this problem, we created a link-weighted human immunome interactome and performed filtering.
We reconstructed the immunome interactome and weighed the links using jackknife gene expression correlation of inte-
grated, time course gene expression data. Statistical significance of the links was computed using the Global Statistical Sig-
nificance (GloSS) filtering algorithm. P-values from GloSS were computed for the integrated, time course gene
expression data. We filtered the immunome interactome to identify core components of the T cell PPI network
(TPPIN). The interconnectedness of the major pathways for T cell survival and response, including the T cell re-
ceptor, MAPK and JAK-STAT pathways, are maintained in the TPPIN network. The obtained TPPIN network is
supported both by Gene Ontology term enrichment analysis along with study of essential genes enrichment.

Conclusions: By integrating gene expression data to the immunome interactome and using a weighted
network filtering method, we identified the T cell PPI immune response network. This network reveals the most
central and crucial network in T cells. The approach is general and applicable to any dataset that contains
sufficient information.
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Background
Cellular interactomes often consist of large numbers of
proteins with even larger numbers of connections between
them. Typically in protein-protein interaction (PPI) net-
work nodes represent proteins and the links represent re-
lationships between them. This network representation
enables the study and visualization of the reconstructed
cellular systems.
Data-driven studies on the dynamics of reconstructed

PPI networks facilitate investigation and identification of
proteins important for a particular process and reduces
time and costs of experimental verification [1,2]. Modeling
the dynamics of very large PPI networks is computationally
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reproduction in any medium, provided the or
very costly. To circumvent this problem, one needs to
identify relevant core components of networks without los-
ing vital information. A PPI network constituting most of
the relevant core of a cellular system is sufficient to study
its dynamic properties [3].
Many methods have been developed to reduce com-

plex directed and undirected networks to their core
components. Some of the methods include topological
centrality techniques [4], synthetic biology approaches of
the minimal gene set of a cell [5,6], complex systems
coarse-graining [7,8], and filtering approaches [9-11]. In
the centrality methods, topological centrality of nodes is
used to identify the non-redundant links and to delete
the redundant ones [11]. Minimal gene set approaches
aim to identify genes that are crucial for life sustenance
and cannot be inactivated under specific optimal growth
conditions. These approaches do not take into account
interactions between essential gene products [5]. The
coarse-graining approaches identify specific motifs in a
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Table 1 KEGG pathways used to supplement IKB dataset

KEGG identifier Name of KEGG pathway

path:hsa04010 MAPK signaling pathway

path:hsa04062 Chemokine signaling pathway

path:hsa04514 Cell adhesion molecules

path:hsa04612 Antigen processing and presentation

path:hsa04620 Toll-like receptor signaling pathway

path:hsa04621 NOD-like receptor signaling pathway

path:hsa04622 RIG-1-like receptor signaling pathway

path:hsa04630 Jak-STAT signaling pathway

path:hsa04640 Hematopoietic cell lineage

path:hsa04650 Natural killer cell mediated cytotoxicity

path:hsa04660 T cell receptor signaling pathway

path:hsa04662 B cell receptor signaling pathway

path:hsa04664 FcεRI signaling pathway

path:hsa04666 FcγR-mediated phagocytosis

path:hsa04670 Leukocyte trans-endothelial migration

path:hsa04672 Intestinal immune network for IgA production

path:hsa04610 Complement and coagulation cascades

path:hsa04623 Cytosolic DNA-sensing pathway

The protein products of the genes that take part in these pathways were used
to supplement the protein data from the IKB database. The combined protein
data represent the immune response protein dataset.
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network, and collapse and replace them by a single node
[8]. This process is repeated until there are no more mo-
tifs. The final network is less complex but does not con-
sider the structural heterogeneity and broad weight
distribution, i.e. the multi-scale nature, of cellular networks.
Network filtering approaches have also been used to

reduce network complexity [10-13]. Those that preserve
the inherent multiscale structure of natural complex net-
works have been shown to be better in revealing most of
the important components of networks [11,13]. These
approaches score the nodes or links, and enable the de-
letion of those that do not deviate significantly from a
null model.
In this study, we identified the network of proteins

relevant in T cells by filtering the immunome interac-
tome using the result from Global Statistical Significance
(GloSS) [13] algorithm and a constraint of connectivity
of the T cell receptor (TCR) signaling pathway. We com-
piled genes for the major immune processes and used
them to reconstruct the immunome interactome, i.e., all
the PPIs of the immunome. We then integrated gene ex-
pression profiles for the corresponding genes across sev-
eral experiments. Jackknife correlation for gene expression
was then used to weigh links between the proteins
encoded by the genes. To maintain the multiscale struc-
ture of the network during filtering, we used the GloSS al-
gorithm. This algorithm utilizes a global null model of the
link weight and the degree distribution of the network. It
computes the statistical significance for each link. For the
null model, GloSS assigns weights from the weight distri-
bution of the network, independently and randomly, with-
out changing its topology. We filtered the network by
deleting links based on their p-values (computed by
GloSS) in descending order. To determine the endpoint of
the filtering, we imposed as a constraint, the existence of a
single path between the components of the NF-κB and
TCR complexes.
Because we investigated the global and aggregate char-

acteristics of the system and integrated T cell gene ex-
pressions, we can assume that the filtered network
contains most of the components central for T cell sig-
naling [14]. This was supported by Gene Ontology (GO)
and essential genes enrichment analysis.

Results
Protein-protein interaction network
We used altogether 1579 proteins for the network filtering
(Additional file 1). Eight hundred and eighty five human
immunome genes were obtained from the Immunome
Knowledge Base (IKB) [15]. As IKB contains only the
most essential immunome genes and does not necessarily
contain full pathways, it was supplemented with proteins
for key immune system pathways derived from the KEGG
Pathway database [16] (Table 1).
The PPI network was reconstructed for the immu-
nome proteins (see workflow in Figure 1). PPI data were
retrieved from iRefIndex database (version 9.0) which
compiles PPIs from the major repositories [17]. ppiTrim
(version 1.2.1) was used for general filtering according to
Stojmirovic et al. [18]. Only experimentally verified and
binary PPIs were retained. Moreover, multiple binary
PPIs encoded by the same gene pair were collapsed into
a single PPI. Finally, binary interactions to proteins out-
side the immunome were eliminated. A total of 5603
PPIs between 1259 immunome proteins were available
after these pre-processing steps (Additional files 2 and 3).

Gene expression correlation
T cell gene expression datasets were obtained from
NCBI GEO [19] and EBI ArrayExpress [20] databases.
Altogether 16 time series datasets (Additional file 4)
containing 384 samples derived from 5 platforms ful-
filled the set criteria. After pre-processing, batch effect
analysis was performed. Further, exploratory Principal
Component Analysis (PCA) was done to examine the
effect and performance of the batch effect analysis
(Figure 2). The samples cluster according to experi-
ment and platform before batch effect analysis. How-
ever, after batch effect correction, samples performed
on all three platforms overlap with each other. The
batch effect-corrected expression data were integrated
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Figure 1 Workflow for the reconstruction of the immunome interactome. The general steps taken to reconstruct the immunome
interactome are shown. The cylinders represent data repositories from which data was retrieved. Parallelograms represent data, either retrieved
from databases or obtained by analyses. Rectangles represent performed analyses. T cell microarray experiments available in ArrayExpress and
the GEO databases were retrieved. These experiments included at least 3 samples. The selected experiments were normalized using the
R/Bioconductor libraries. Batch effect analysis was done and all experiments were merged or integrated. Jackknife Pearson correlation coefficient
was calculated for the integrated dataset. Immunome proteins were retrieved from the Immunome knowledge Base (IKB) and the KEGG
pathways databases. Major immune response pathways from the KEGG were used to supplement the IKB immunome proteins. Immunome
interactome was obtained by retrieving PPIs for the immunome protein dataset from the iRefIndex database. To reduce noisy PPIs we used the
ppiTrim method and further filtered its output of redundant and non-immune response PPIs. The Jackknife correlation coefficients were used as
link weights.
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or merged together. Of the genes encoding the 1259
immunome proteins, 1149 were expressed in at least
80% of the samples in the merged dataset and were
thus included in the analysis.
Next, the mean of the jackknife Pearson product-

moment correlation coefficient was calculated for the
pre-processed and merged expression values for all gene
pair combinations. In total, 1140 genes representing
5164 gene pairs encoding interacting proteins in the
immunome interactome were used for further analysis.
The distribution of the integrated jackknife correlation

values is shown in Figure 3. The maximum gene expres-
sion correlation is 0.88, between ITGA2B (integrin α-IIb
or CD41) and ITGB3 (integrin β-3 or CD61). The encoded
proteins form an integrin receptor complex [21] and are
thus co-expressed. Their functions include cell adhesion,
cell-cell interaction, receptor for several molecules and
platelet activation [21]. The minimum correlation of -0.62
was observed between LCK, coding for lymphocyte-
specific protein tyrosine kinase, and PAK2, p21 protein
(Cdc42/Rac)-activated kinase 2. LCK is an important
signaling protein in many cellular processes, especially in
T cell receptor (TCR) activation and T cell development
[22]. PAK2 is a member of the PAK proteins (a family of
serine/threonine kinases) targeted by small GTP proteins,
CDC42 and RAC1 [23,24]. They take part in several sig-
naling pathways, including the TCR signaling network. Al-
beit association of increased PAK2 activity in cells that
overexpress Src kinases, PAK2 and LCK have not been
shown to directly interact with each other [25]. The mean
of the correlation values for all gene pairs is 0.09 and most
of the correlation coefficients lie between -0.5 and 0.5.

T cell-specific PPI network
We reconstructed the immunome PPI network as a
weighted and undirected graph. The nodes, links, and link
weights of the graph represent, respectively, the immu-
nome protein coding genes, the PPIs and the absolute
value of the mean jackknife expression correlation be-
tween the connected immunome protein coding genes.
The topology and weight distribution of naturally oc-

curring complex weighted networks are heterogeneous



-40 -20 0 20 40

-2
0

0
20

40

HG-U133_Plus_2

HG-U133A_2

HG-U133A

-30 -20 -10 0 10 20
-1

0
0

10
20

A B

before after
Figure 2 PCA analysis of normalized gene expression data before and after batch effect analysis. A. PCA before batch effect analysis.
Experiments from the different platforms cluster together. B. PCA after batch effect analysis. Results for experiments from different platforms
overlap. The platforms are indicated by symbols.

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Correlation of integrated gene expression

Correlation of gene expression values

D
en

si
ty

Figure 3 The distribution of the jackknife correlation of gene expression among the immunome proteins. Density plot for the
distribution of gene expression correlation of 1140 immune response-related genes used in this study. Gene expression values were normalized,
and integrated across experiments after batch effect analysis. The correlation coefficient for each gene pair was derived by the jackknife Pearson
correlation coefficient across all the integrated microarray samples. A major part of the gene expression correlation values is between -0.5 and 0.5.
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and tightly connected. This makes the identification of
the relevant structure that maintains the multiscale na-
ture of the network nontrivial. Thus, we used the GloSS
algorithm [13] to compute a p-value, for each link.
GloSS identifies the relevant backbone of a weighted
graph while retaining the multiscale coupling of its
weight distribution and topological characteristics. It
uses a global null model that describes both the struc-
ture of the network and its weight distribution. The
p-values computed by GloSS were used to filter the
network by deleting links based on their p-values, in
descending order. We monitored the filtering process to
make sure that the central networks between TCR, and
NF-κB and NFAT signaling pathways remained intact.
These pathways have been shown to be crucial for T cell
signaling [26,27] and therefore cannot be disconnected
without destroying essential cellular processes.
We followed changes of structural and biological fea-

tures in the PPI network during the filtering process
with network parameters. The diameter of the network
represents the longest minimum distance between the
nodes. We used as measures the changes in diameter,
the relative size of the largest connected component and
the average size of the isolated components [28]. These
network topology scores show how connectivity, integ-
rity and robustness of the network are changed when
links are removed during the filtering process (Figure 4).
All the panels in Figure 4 indicate that at the cutoff
point most of the remaining network’s connectivity and
integrity is still maintained. We call the remaining net-
work the T cell PPI Network, TPPIN (Figure 5). TPPIN
consists of 288 nodes, 227 links in 73 connected compo-
nents (Table 2).

Correlation distribution before and after filtering
Threshold algorithms filter a network by removing edges
whose weights are below an arbitrary cutoff. Such a net-
work loses its multiscale and, thus, its core structure.
We probed the distribution of the gene expression cor-
relation coefficient to establish whether the multiscale
structure of the immunome interactome is retained in
the filtered T cell PPI network (Figure 6). The filtering
process succeeds in maintaining not just the links with
large weights but also links with lower weights. Thus,
the filtering process maintains the multi-scale structure
of the network and retains edges that are crucial for the
T cell PPI network.

Effect of noise on the filtering procedure
To test the sensitivity of our filtering procedure to noise
we introduced randomness to the immunome interac-
tome, before performing filtering, by randomizing frac-
tions of the link weights while preserving the topology
of the network. We refer to these networks as the Link
Weight-Randomized Networks (LWRNs). Nine such
networks were created based on the fraction of weights
randomized. Thirty iterations were conducted for each
LWRN. Each iteration consists of choosing randomly a
fraction of links, reassigning their weights randomly,
conducting the filtering procedure, and calculating net-
work topology statistics. The topology features calcu-
lated for each iteration include node degree, average
path length, betweenness centrality of both the nodes
and the links, clustering coefficient of the network, and
the intersection between the TPPIN and the LWRN.
These measures indicate the local and global connectiv-
ity of a network. We retained the average of the above
quantities.
Figure 7 shows the similarity or dissimilarity between

TPPIN and LWRNs. Figure 7 A-E, shows that as more
of the link weights are randomized, the topology of the
LWRNs diverges significantly from TPPIN. Moreover, as
Figure 7 F shows, there is very little overlap of links be-
tween the LWRNs and TPPIN.

Gene Ontology over-representation and semantic
similarity analysis
GO term over-representation analysis was performed for
the TPPIN proteins and shows that, at level two details,
most of the biological process terms are relevant for
T cell function (Table 3 and Additional file 5). For example,
the term positive regulation of lymphocyte activation
pathway (GO:0051251, p-value = 9.74 × 10-7), regulation
of immune response (GO:0050776, p-value = 1.11 × 10-6),
and intracellular protein kinase cascade (GO:0007243,
p-value = 3.40 × 10-6) terms are among the most sig-
nificantly enriched after adjusting for multiple compari-
sons. In addition to significant immune response-related
terms, there are also those for general cellular processes.
To better investigate the similarity or difference be-

tween the immunome interactome and the TPPIN net-
work, we explored semantic similarity of the networks
using the GOSemSim package available from R/Biocon-
ductor. The semantic similarity ranges between 0 and 1.
The similarity between the immunome interactome and
TPPIN proteins in the biological process and molecular
function terms were very high, i.e., 0.91 and 0.92, re-
spectively, indicating that the TPPIN is very representa-
tive of the immunome interactome.

Essential genes over-representation analysis
Essential genes are indispensable to the survival of a cell
or organism. To account for how essential the genes are,
we performed an over-representation analysis to identify
the proportion of the essential TPPIN genes. We con-
ducted a hypergeometric test on the human orthologs of
the mouse lethality genes from the Mouse Genome In-
formatics resource [29]. The results show a highly
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significant enrichment of essential genes in the TPPIN
(p-value = 1.37 × 10-10, Table 4 and Figure 5).

Interconnection of T cell-specific pathways
The TPPIN proteins were mapped onto the TCR, JAK-
STAT and MAPK signaling pathways that are central for
T cell functions [30] (Figure 8). Albeit containing just a
third of the proteins in the initial network, the TPPIN
includes almost all the main components for the
remaining pathways. Except for CD3γ and CD3δ, all the
CD3 proteins of the TCR complex are present in the
TPPIN. Further, most proteins important for early T cell
activation, NFAT, AP1, NF-κB, T cell co-inhibitory and
co-stimulatory signal transduction are present. Overall,
most of the proteins in the important pathways for T cell
signaling are present in the TPPIN. This indicates that
the filtering procedure was able to, first of all, identify
central pathways and, secondly, to keep their connectiv-
ity. As a novel feature the TPPIN indicates the intercon-
nection of the central pathways.

Discussion and conclusions
In this study, we identified the network of proteins rele-
vant for T cells by filtering the multiscale immunome
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interactome using the GloSS filtering algorithm [13]. We
compiled the genes for the major immune processes and
reconstructed the immunome interactome. Then we in-
tegrated gene expression profiles across several gene ex-
pression experiments. The jackknife correlation for gene
expression was used to weigh links between the proteins
encoded by the genes. Next, we used the output from
GloSS to filter the network. The filtered network con-
tains most of the relevant T cell functional components
and was designated TPPIN. This was confirmed by the
overrepresentation analysis conducted with GO terms
and essential genes.
Many important components of the TCR-dependent

signaling pathways are present in the TPPIN. Except for
Table 2 General structure of the T cell PPI network

Number of nodes in
connected component

Number
of links

Number of components
in the network

91 100 1

14 14 1

6 5 2

5 4 3

4 3 5

3 2 13

3 3 1

A component represents a set of nodes that are all connected to each other,
either directly or indirectly. Components with two nodes are not included in
the table.
CD3γ and CD3δ, other components of the TCR complex
which are included in the microarrays used in this study,
are present (TCR-α and -β are not present in the micro-
arrays). The co-receptors CD4 and CD8 are both
present, as well as, all the proteins that make up the im-
munological synapse. With the exception of LAT, GADS
and ITK, most proteins that are central in the immediate
TCR receptor-associated intracellular signaling after the
formation of the immunological synapse and TCR acti-
vation are present in the TPPIN, including LCK, FYN,
CD45, ZAP70, SLP-76 and PLC-γ.
After its activation, PLC-γ cleaves PIP2 into the sec-

ond messenger IP3 and DAG [31,32]. This event sets off
the activation of three important signaling pathways in
T cells that end up with transcriptional activation of
NFAT, NF-κB and AP-1 [30]. DAG activates PKC-θ,
which in turn activates NF-κB [33]. IP3 activates CaN
through the calcium signaling, and CaN subsequently
activates NFAT [34]. DAG activates RasGRP [35,36],
which in turn initiates the activation of the MAP kinase
cascade [37], culminating in the activation of FOS [38].
Key proteins in the NF-κB pathway including PKC-θ,
IKK-β and IκB [39] are present in the TPPIN. With the
exception of RasGRP, MEK1/2 and ELK co-complexes,
the other vital proteins in the MAP kinase signaling cas-
cade [40] and the JAK-STAT pathway [41] are captured
by the TPPIN. These results show how the TPPIN repre-
sents relevant T cell-related parts of the immunome
interactome.
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During the filtering step the central networks connect-
ing the TCR complex to the NF-κB and NFAT signaling
pathways were kept intact. Although the NFAT and NF-
κB pathways are present in many different cell-types, they
are central for T cell survival and functions. The connect-
ivity of these components was used to determine the end
point for the filtering process. The filtering was continued
until there was a minimum number of links, i.e., one, be-
tween the TCR, and NF-κB and NFAT components.
GO term enrichment analysis confirms that several of

the TPPIN proteins have important T cell functions. As an
example of biological process term enrichment, the positive
regulation of lymphocyte activation pathway (GO:0051251),
regulation of immune response (GO:0050776), and intracel-
lular protein kinase cascade (GO:0007243) terms are sig-
nificantly enriched. To further probe the similarity between
the immunome interactome and the TPPIN proteins we
calculated their semantic similarity with respect to bio-
logical process and molecular function GO terms. The net-
works were semantically very similar in both types of GO
terms. Because essential genes are indispensable for the
survival of a cell, their enrichment in the cellular network
would indicate that the network is crucial to the cell. Thus,
we investigated the enrichment of essential genes in the
TPPIN. The analysis showed a highly significant enrich-
ment of essential genes in the TPPIN. These independent
lines of evidence support the applicability of the network
filtering routine.
Due to the scarcity of time course microarray experi-

ments with uniform design, gene expression datasets
with different designs were used. Integrated analysis was
carried out to identify and exclude biased datasets [42,43].
The normalization and batch effect analysis steps served
to considerably minimize the effect of bias for correlation
calculation from the experimental studies.
Global and aggregate cellular interactions are more

plausible between proteins encoded by co-expressed
genes than between gene products whose expression
patterns are uncorrelated [14]. Since we investigated the
global and aggregated characteristics of the immune re-
sponse in T cells by integrating gene expression experi-
ments conducted for T cell lines, the correlation coefficients
represent the aggregate strength of the T cell-specific rela-
tionship between the genes and their interacting protein
products [14,44].
To explore the changes in the network during the fil-

tering process we investigated changes in the diameter,
relative size of the largest component and the average
size of the connected components of the network. These
network measures have been shown to indicate the con-
nectivity status of a network and its robustness against
link removal or loss [28,45]. The changes in network sta-
tistics during the filtering process showed that TPPIN
maintains most of the integrity and connectivity of the
immunome interactome.
Certain aspects of T cell function have been previously

modeled [46-49]. Most of these studies are related to
gene regulatory networks and modeling of small signal-
ing networks involving transcription factors and their
targets, selected to include genes or proteins well-known
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in the modeled system. In these studies, the typical num-
ber of genes or proteins is in a few tens, whereas we
started with the entire immunome interactome of 1149
proteins and 5164 links, and ended up with a core net-
work that contains 288 proteins and 227 links. The
number of nodes and links in the TPPIN makes it amen-
able to tailored cellular systems modeling and experi-
mental studies. Our approach is unsupervised and does
not utilize any preconceptions, yet, it reveals the central
proteins and their networks.
The filtering process carried out in this study has some

potential limitations. It needs several time course expres-
sion datasets for the cell-type or tissue of interest and each
experiment should consist of at least 3 samples. A set of
proteins is needed to track the connectivity of the vital
pathways and a stop criterion when key pathways are



Table 3 GO biological process term enrichment for TPPIN

GO ID Term Number of significant vs.
annotated genes

Expected number
of genes

Raw vs. adjusted P value

GO:0051251 positive regulation of lymphocyte activation 128/61 32.51 5.40 × 10-09/9.74 × 10-07

GO:0043067 regulation of programmed cell death 289/114 73.41 4.77 × 10-10/4.60 × 10-07

GO:0050776 regulation of immune response 313/118 79.51 6.79 × 10-09/1.11 × 10-06

GO:0048523 negative regulation of cellular process 401/142 101.86 1.05 × 10-08/1.62 × 10-06

GO:0050867 positive regulation of cell activation 144/64 36.58 7.04 × 10-08/5.59 × 10-06

GO:0048584 positive regulation of response to stimulus 401/140 101.86 5.10 × 10-08/4.40 × 10-06

GO:0042981 regulation of apoptotic process 285/113 72.39 4.04 × 10-10/4.60 × 10-07

GO:0007243 intracellular protein kinase cascade 330/121 83.82 3.13 × 10-08/3.40 × 10-06

GO:0019221 Cytokine mediated signaling pathway 163/73 41.40 3.85 × 10-09/8.07 × 10-07

GO:0006468 protein phosphorylation 313/116 79.51 3.63 × 10-08/3.51 × 10-06

The “universe” is the immunome protein data and the enrichment is for the filtered immunome interactome, the T cell PPI network (TPPIN).
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broken. However, these limitations are not of great prac-
tical importance in the present era of high throughput
studies.
The reported filtering routine can capture the core

cell-type-specific PPI network for any cell-type from
time series gene expression datasets, and is not limited
to well-known systems. The approach opens ways for
modeling protein interaction networks of cellular sys-
tems, even when pathways are not previously well
characterized.

Methods
Protein-protein interaction network reconstruction
Human immunome proteins were obtained from the
IKB [15] and supplemented with key immune system
pathways from the KEGG pathways database [16].
Experimentally verified and consolidated PPI data for

the human immunome proteins was retrieved from the
iRefIndex database version 9.0 [17]. First, the ppiTrim
version 1.2.1 [18] was used to filter the iRefIndex data-
set. This algorithm maps protein interactants to NCBI
gene identifiers and removes undesired raw interactions,
deflates potentially expanded complexes, and reconciles
annotation labels from the different PPI databases. Sec-
ond, non-experimentally verified, non-human, complex
and self-self PPIs were omitted. Third, we collapsed mul-
tiple binary PPIs whose interactants are products of the
same genes. Finally, we eliminated PPIs for which both in-
teractants were not immunome proteins (Figure 1). The
igraph library [50] in the R statistical programming
Table 4 Essential genes overrepresentation

Number
of genes

Number of genes
annotated in MGI

Number of le
annotated in

Immunome interactome 1140 949 312

TPPIN 288 256 105

The T cell PPI network is the resulting network after filtering the immunome interac
environment [51] was used to reconstruct and analyze the
PPI network. Visualizations were done using Cytoscape
version 2.8 [52].

Gene expression data
We retrieved microarray time course datasets for human
T cell-lines from GEO [19] and ArrayExpress [20]
databases. Each experiment had to contain at least three
samples and at least one for time zero for baseline data.
GEO datasets that consisted of samples from multiple
platforms were split into multiple experiments, so that
each experiment consisted of samples for the same
microarray platform. To reduce bias during gene expres-
sion integration across experiments we included only ex-
periments performed on Affymetrix whole transcript
array platform U133A, U133A 2.0, U133B, U133 plus
2.0 and U95A arrays.

Pre-processing of gene expression data
R and Bioconductor libraries were used for data pre-
processing [51,53]. The raw data for each gene expres-
sion dataset was retrieved. Pre-processing consisted of
quality control using boxplots, arrayPLM and simpleaffy
routines. For each experiment, samples were normalized
using default parameters of the Robust Multi-Array al-
gorithm [54] implemented in the affy library [55]. To
convert probe sets to gene expressions, we used the
mean of the probe sets to represent the corresponding
gene’s expression using the platform-dependent libraries
in the Bioconductor project [56]. Gene expressions for
thality genes
MGIa

Expected number of
lethality genes in MGI

P-value for hypergeometric
test

59 1.37 × 10-10

tome. MGIa is the Mouse Genome Informatics database.



Figure 8 T cell PPI Network mapped to TCR, with main JAK-STAT and MAPK signaling pathways. The figure shows the TCR and the main
JAK-STAT and MAPK signaling networks that are connected to the TCR-dependent T cell response. The pathway information is adapted from the
KEGG Pathways resource. The TPPIN proteins are represented by red-colored boxes with protein names in white text. The signaling network
demonstrates the effectiveness of the filtering approach as many of the central proteins in T cell response are left intact after filtering.
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non-protein coding genes in the immunome protein
dataset were removed.
The gene expression datasets were merged and batch

effects were analyzed. We also performed PCA analysis
before and after batch effect analysis to examine its ef-
fect and performance on the normalized datasets. The
batch effects and PCA analysis were performed using
the ComBat [43] and plotMDS algorithms implemented
in the inSilicoMerging library [42] in Bioconductor.

Gene expression correlation
The mean of the jackknife Pearson correlation coeffi-
cient of the merged and pre-processed expression values
for all gene pair combinations was calculated using the
bootstrap library implemented in R. These correlation
values were converted to absolute values and used as
link weights for the immunome interactome.

Protein network filtering
We reconstructed the immunome PPI network as a
weighted and undirected graph using the igraph package
in R. The nodes, links, and link weights of the graph
represent, respectively, the immunome protein coding
genes, the PPIs and the average jackknife gene expres-
sion correlation between the immunome protein coding
genes.
Network filtering was achieved with the GloSS algo-

rithm [13], which identifies the relevant backbone of a
weighted graph while retaining its weight distribution
and structure. It uses a global null model to calculate
the significance of the links by maintaining the topology
of the network while assigning link weights randomly,
from the observed weight distribution. The link weights
(jackknife correlation coefficients) were multiplied by
100 to allow the p-values to be computed by GloSS. The
computed link p-values by GloSS were used to filter the
network by removing links in decreasing order of p-value.
We monitored the filtering process to make sure that at
least a path or connectivity remained between the TCR
complex and NF-κB signaling pathways. The steps below
represent the filtering procedure:

Step 1: Using GloSS, determine p-value for each edge
of the network
Step 2: Select the link with the largest p-value
Step 3: Remove the link from the network
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Step 4: Check for presence of connectivity between the
NF-κB components and the TCR complex
Step 4.1: If connectivity exists discard the link and go
to step 2.
Step 4.2: If connectivity does not exist, return the link
to the network and stop.

This procedure was performed for both the NF-κB
and the NFAT signaling pathways. Network diameter is
the maximum of the shortest paths between the nodes
of the network. A connected component is the region of
a network in which there is a path connecting all node
pairs. We followed changes in the network diameter, the
relative size of the largest connected component and the
average size of the isolated components [28]. The rela-
tive size of the largest component is the number of
nodes in the largest component divided by the number
of nodes in the whole network. That is, nrel = n/N,
where, nrel is the relative size of the largest component,
n is the number of nodes in the largest component and
N is the number of nodes in the whole network. These
measures were plotted against the fraction of filtered
nodes. The ratio,

number of deleted nodes
number of nodes in the network

;

represents the fraction of the filtered nodes. The igraph
package was used to calculate the network scores [50].

Robustness of the T cell PPI network
Link weight-randomized networks were created by ran-
domizing the weights of a fraction of links, keeping the
topology unchanged. The following fractions of links
were used to create each of the link weight-randomized
networks: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.
Thirty iterations were performed on each link weight-
randomized network. For each iteration, a fraction of
links were randomly selected, their weights randomly
reassigned, the filtering procedure performed and net-
work topology statistics calculated. Node degree, average
path length, betweenness centrality of both the nodes
and the links, clustering coefficient of the network, and
the intersection between the TPPIN network and the
link weight-randomized networks, were calculated. After
the iterations for each link weight-randomized network,
the average of each of the network topology statistics
was retained.

Gene Ontology term enrichment, over-representation and
semantic similarity analysis
The interconnected proteins in the TPPIN were sub-
jected to GO [57] term enrichment analysis. The GO
terms for the proteins in the immunome interactome
were used as the background. Fisher's exact test of the
hypergeometric distribution was calculated and correc-
tion for multiple comparisons was performed using the
Benjamini-Hochberg procedure [58]. The enrichment
analysis was performed with Webgestalt [59]. Semantic
similarity between the immunome interactome and the
TPPIN was calculated using the clusterSim routine of
the GOSemSim library [60] (version 1.18.0) available in
R/Bioconductor.

Analysis of essential genes
We retrieved the human orthologs of the mouse lethality
genes from the Mouse Genome Informatics database
[29]. A gene was included in the set of lethality genes
with the following criteria: phenotype contains the word
“lethality”, the type of lethality annotation contains nei-
ther “partial” nor “wean”. After removing non-immunome
genes and those without the above-mentioned lethality
annotations, we calculated the hypergeometric distribu-
tion and Fisher’s exact test for significance. Essential genes
were retrieved using the biomaRt package in R [61] and
visualization of the TPPIN with essential genes was done
using Cytoscape 2.8.3.

Pathway gene mapping
The TPPIN genes were mapped to the KEGG pathways
using the KEGG pathway mapper tool [16].

Additional files

Additional file 1: Protein data from the Immunome Knowledge
Base and the immune response pathways from KEGG. This file
contains the Entrez-gene identifiers of the genes encoding the immune
response proteins from the IKB database and the KEGG immune response
pathways listed in Table 1 of the main document. This dataset represents
the immunome protein dataset and was used to generate the immunome
interactome from PPIs in the iRefIndex database.

Additional file 2: Immunome interactome network figure. The figure
represents the immunome interactome constructed from the immunome
protein list of Additional file 1. The figure shows the complex nature of the
network and thus cannot be studied by intuition alone. To reduce the
complexity of the network the filtering procedure, reported in this study, was
performed.

Additional file 3: Immunome interactome table. This is a table of the
PPIs of the immune response proteins of Additional file 1. They were
reconstructed from the iRefIndex which is a compendium
of PPI data from major PPI databases. Additional filtering was carried out
such that only experimentally verified, human, binary PPIs were obtained
(see methods). The identifiers are entrez gene identifiers of the genes that
code for the immune response genes.

Additional file 4: A summary of the gene expression datasets. This
consists of a summary of all microarray datasets that were used in this
study. The datasets were retrieved from NCBI’s GEO and EBI’s
ArrayExpress databases. The dataset with asterisk (*) contains 3
experiments conducted on 3 different platforms. The 3 experiments were
separated into separate data sets throughout the pre-processing. After
pre-processing only samples from the experiment conducted on
Affymetrix Human Genome U133A Array were merged with data sets
from other experiments.

http://www.biomedcentral.com/content/supplementary/1752-0509-8-17-S1.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-8-17-S2.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-8-17-S3.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-8-17-S4.xls
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Additional file 5: Full Gene Ontology analysis results table. This
contains details of the GO term enrichment analysis performed by the
Webgestalt web resource. The background of the GO analysis is the
immune response proteins. The null hypothesis significance test is the
hypergeometric test and the p-values were corrected using the
Benjamini–Hochberg procedure.
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