
Jonnalagadda and Srinivasan BMC Systems Biology 2014, 8:28
http://www.biomedcentral.com/1752-0509/8/28
RESEARCH ARTICLE Open Access
An efficient graph theory based method to identify
every minimal reaction set in a metabolic network
Sudhakar Jonnalagadda1 and Rajagopalan Srinivasan2,3*
Abstract

Background: Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in
producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks
are computationally expensive. Further, they identify only one of the several possible minimal reaction sets.

Results: In this paper, we propose an efficient graph theory based recursive optimization approach to identify all
minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in
math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal
solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and
Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing
38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets
revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to
practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets
from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required
only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in
the solution time when compared to the existing methods for finding minimal reaction set.

Conclusions: Identification of all minimal reactions sets in metabolic networks is essential since different minimal
reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified
all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to
other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks.

Keywords: Systems biotechnology, Strain development, Minimal cell, Mixed-Integer Linear Program (MILP),
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Background
The depletion of fossil fuels and increasing concerns
over environmental changes are key driving factors for
the development of sustainable bioprocesses to produce
chemicals and fuels from renewable resources [1]. Today,
bioprocesses using microorganisms are being increasingly
used for production of compounds with applications
in food, agriculture, chemical and pharmaceutical in-
dustries [2-4]. Bioprocesses provide several advantages
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over traditional chemical processes including high speci-
ficity, low temperature, low pressure and reduced use of
strong solvents; thus they are environmentally friendlier
while reducing the dependency on fossil resources.
Despite these advantages, the industry has not adapted bio-
processes extensively, because the viability of bioprocesses
is often questionable due to low yield and productivity for
desired compounds [5]. In order to make bioprocesses eco-
nomically viable, it is essential to engineer microbial strains
that offer enhanced yield of the desired product [6,7].
Synthetic biology provides the tools and techniques to

design and construct artificial cells with minimal func-
tionality containing a minimal genome, but with all the
essential genes for survival in a defined environment and
possessing replication capabilities [8]. Such minimal cells
provide a platform for efficient production of desired
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chemicals and decontamination of waste streams [9,10].
Strains with reduced genomes have been created by de-
leting large number of non-essential genes [11,12]. These
strains have shown to have equal or better growth per-
formance compared to their parent strains [13,14]. In
biotechnology applications, improved performance has
been reported by the strains with minimal metabolism
created by blocking handful of reactions that drive the
metabolic flux through the predefined minimal meta-
bolic reactions [15]. Burgard et al. [16] proposed a math-
ematical programming approach to find the minimal
reaction sets under different uptake environments. Their
study finds that minimal reaction sets are strongly
dependent on medium constituents and cellular objec-
tives. This approach does not provide any indication on
what reactions have to be blocked in order to construct
the cell with minimal metabolism besides its computa-
tional complexity is high. The approach used by Trinh el
at. [15] identifies the reactions to be blocked to design
the cell with minimal metabolism by considering the re-
duction in Elementary Flux Modes (EFMs) achieved by
removing reactions from the metabolic model. EFMs rep-
resent the various independent pathways available for the
cell to achieve its cellular objectives [17]. EFMs analysis
has so far been employed only with small metabolic
models representing the central metabolism but the com-
putational complexity of EFMs analysis prevents its ap-
plication to genome-scale models. We have previously
proposed a graph theory based approach for identifying
minimal reaction set in metabolic networks [18]. The
approach exploits the network structure of metabolic
networks and uses math programming efficiently, to
identify the minimal reaction set. Significant reduction
in the computational time has been achieved using the
graph theory based approach compared to classical math
programming.
The presence of redundant pathways in metabolic net-

works results in alternate optimal solutions and conse-
quently create mismatch between model predictions and
experimental observations [19,20]. Redundant pathways
also lead to multiple minimal reaction sets with different
biological significance. Several factors related to the
physical and biological functioning of the designed cells
including high substrate utilization, deregulated path-
ways, high tolerance to inhibitors, robust reproduction,
predictable metabolic interactions, and physical robustness
to sustain the stress and strain during fermentation have
to be considered before creating minimal cells [21,22].
Though not all these factors may be equally important in
designing minimal metabolic cells, some such as practically
achievable metabolic fluxes, thermodynamically favourable
pathways, and high substrate utilization should be incorpo-
rated. Also, the number of reactions to be knocked-out in
order to create a minimal metabolism cell is an important
factor. Each solution, minimal metabolism cell, found
through computational analysis of metabolic network has
different properties that may not be captured in the model
used for computational analysis. Identifying all the minimal
reaction sets would enable us to evaluate such non-
quantifiable properties of different minimal reaction sets
and select the one most suitable for experimental develop-
ment. In this paper, we propose a graph theory based re-
cursive math programming approach to identify all the
minimal reaction sets in the metabolic network.

Methods
MILP for finding minimal reaction set
The metabolic network of a given microorganism with
N metabolites and M reactions is mathematically repre-
sented as [23]:

XM

j¼1

Sijvj ¼ 0; i ¼ 1; 2;…;N ð1Þ

The Stoichiometric matrix S captures interactions
among reactions where Sij is the stoichiometric coeffi-
cient of the ith metabolite in the jth reaction and vj is the
flux (rate) of reaction j. The zero in the right hand side
is due to the steady-state assumption generally consid-
ered in metabolic network analysis. The mathematical
representation of metabolic networks enables analysis of
the metabolism using optimization methods to identify
internal flux distribution, metabolic capabilities, and strain
improvement strategies through gene knock-out or inser-
tion of non-native reactions [17,24-26]. Identification of
minimal reaction set can be represented as an optimization
problem given by [16]:

minimize z ¼
XM

j¼1

yj

s:t
XM

j¼1

Sijvj ¼ 0 i ¼ 1; 2;…;N

vmin
j ⋅yj ≤ vj ≤ vmax

j ⋅yj j ¼ 1; 2;…;M

yj ∈ 0; 1f g j ¼ 1; 2;…;M

vbiomass ≥ vmax
biomassvj ∈ R

ð2Þ

Here, vj
min and vj

max represent the lower and upper
bounds for the flux through reaction j. A binary variable
yj is associated with each reaction with ‘1’ indicating the
presence/activation of the reaction and ‘0’ its absence/
deactivation. Cellular objectives are incorporated as
constraints, for example, the objective in Eq. (2) is to pro-

duce at least ν
max

biomass
biomass. Although the Mixed-

Integer Linear Programming (MILP) in Eq. (2) has been
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reported to be successfully solved in some cases, the
computational time increases exponentially with number
of reactions [18].
We previously reported an efficient approach that

combines graph theory with math programming to solve
this problem (Jonnalagadda et al. [18]). In our hybrid
approach, a metabolic network is considered as an
AND-OR graph where nodes represent metabolites and
arcs represent reactions. Reactions that require multiple
metabolites to proceed are considered to be related by a
AND-logic, while reactions that can produce or con-
sume a metabolite using independent routes are consid-
ered to be conjoined by an OR logic. A depth is
associated with each node and arc in the network starting
with the extracellular metabolites and primary uptake re-
actions which are deemed to be of depth 1. The depth of
every other metabolite and reaction is assigned as an in-
crement over its predecessor’s. There are two phases in
the hybrid approach (Figure 1). Based on the depth of re-
actions, Phase 1 decomposes the metabolic network into
sub-networks which are then analyzed in isolation using
small MILPs to classify reactions as Essential, Extraneous
or Indeterminate. Essential reactions (SRs) are required
for the cell to meet biological objectives and hence they
are the part of every minimal set. Extraneous reactions
(XRs) are not necessary for the cell. Indeterminate
reactions (IRs) primarily consist of substitutable reac-
tions i.e. reactions which can be substituted with other reac-
tions to achieve the cellular objectives. These IRs are
holistically analysed in the subsequent Phase 2, using a
MILP with the same structure as that in (2) but smaller
Minimal
(ER

Graph Theory Insig

Essential 
Reactions (SR)

Extrane
Reactions

Complete Meta

Figure 1 Schematic representation of the hybrid approach that comb
minimal reaction set.
than the monolithic one. Through this, a subset of IRs
called Additional reactions (ARs) necessary for the min-
imal metabolism cell are identified which together with
SRs identified in Phase 1 form the minimal reaction set. A
substantial reduction in the computational time (~66%) re-
quired to identify one solution could be achieved through
the hybrid approach compared to solving Eq. (2) directly.
In this paper, we extend the above hybrid approach to
identify all minimal reaction sets. The theoretical basis of
the proposed approach is discussed first.

Reaction dependency and grouping
Reactions in the metabolic network are dependent on
each other since the network is an interconnected
system designed to achieve the biological objectives
of the cell. Two different kinds of dependencies can be
identified – linear and flux dependency. Linear depend-
ency arises between reactions due to the structure of
the network where the product(s) of a reaction feed
into exactly one other reaction. When a set of reactions
are all linearly dependent, they can be considered to
form a linear pathway. Instances of several reactions
forming a linear pathway in metabolic networks are
common. For example, in the sample metabolic net-
work shown in Figure 2a, two external metabolites
A_ext and B_ext enter into the cell and biomass is pro-
duced from them through the reaction network. Two
linear pathways can be identified in this sample network
{r1, r3, r4, r5} and {r2, r6}. In linear pathways, under steady-
state assumption mentioned above, the flux through all
the reactions has to be equal. Hence, deletion of any
 reaction set 
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Figure 2 Sample metabolic network and groups of dependent reactions (a) A sample metabolic network (b) Four groups of dependent
reactions in the network.
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reaction in the linear pathway would result in the dele-
tion of the whole pathway.
Another kind of dependency, flux dependency, exists be-

tween reactions which are not structurally linear, but are re-
quired to co-exist to balance the fluxes. If a reaction
produces two products which are then consumed by two
different reactions, then these three reactions are dependent
on each other, since at steady state, the metabolites pro-
duced by the first reaction have to be consumed by the two
down-stream reactions. Deletion of any one of these reac-
tions would make all other reactions incapable of carrying
flux at steady state. In the sample network, although reac-
tions {r9, r10, r11} are not linearly dependent, they have flux
dependencies, since reactions {r10, r11} consume the prod-
ucts of r9 and are dependent on each other through the flux
balance requirement.
The linear and flux dependency among reactions in a

metabolic network can be exploited to assemble reactions
into groups for analysis, rather than analyzing them indi-
vidually. Since deletion of any reaction would force all the
dependent reactions to be excluded from the network, for
network optimization using a MILP, it is sufficient to asso-
ciate a single binary variable with each group of reactions.
Reduction of the number of binary variables reduces the
search space and consequently reduces the computational
cost of finding solutions. Identification of dependent reac-
tions and simplification of metabolic networks using the
reaction dependency has been reported in literature
([17,27,28]). Groups of dependent reactions are generally
identified by comparing the rows in the null-space matrix
of the Stoichiometric matrix, S. The null-space represents
all the possible steady-state flux distributions that satisfy
Eq. 1 and the dependent reactions are the rows in this
matrix with same values after normalization with no con-
tradictions in the directionality for irreversible reactions.
Since this procedure depends on the directionality of reac-
tions without considering the structural features of meta-
bolic netwotk, it may not identify some dependent
reaction groups due to imperfect assignment of reaction
directionality in the metabolic networks. Also, identifica-
tion of dependent reaction groups strictly based on flux
distributions results in groups of structurally unrelated
reactions which hinders interpretation. We have devel-
oped a graph based algorithm that exploits the struc-
ture of metabolic network to identify groups of
dependent reactions as described next.
Given a metabolic network where the depth has been

assigned to reactions as described in MILP for finding
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minimal reaction set, the algorithm first creates a list of
reactions, sorted in the ascending order of their depth.
Reactions are grouped from this list using an iterative
procedure. In each iteration, a new group is created
starting with the first reaction in the list, i.e. reaction
with the lowest depth. Dependent reactions are then
added to this group step-by-step by searching the meta-
bolic network in a breath-first manner. In each step, all
the reactions at the current depth +1 are collected and
tested for linear or flux dependency. Reactions are added
to the group if they dependent on other reactions that
are already present in the group. Specifically, a single re-
action that receives its reactants exclusively from an-
other reaction in that group is deemed as linearly
dependent. Similarly, multiple reactions are deemed to
have flux dependency if all their reactants originate from
one reaction already in the group. The search continues
until al the reactions are evaluated i.e., the highest depth
in the network is reached or no dependent reaction can
be found at a given depth. Once a group of dependent
reactions is identified, all these reactions are removed
from the reaction list. In the subsequent iteration, the al-
gorithm continues with the creation of a new group with
the first reaction in the updated reaction list. The algo-
rithm terminates when the reaction list becomes empty.
We illustrate the algorithm using the sample network

shown in Figure 2a. In the first iteration, the algorithm
starts a new group with reaction r1 (depth 1), identifies
reaction r3 as linearly dependent at depth 2 in the first
step, and then reaction r4 in the second step, and r5 in
the third step. In the fourth step, r9 is added to the
group since one of its two reactants is exclusively from
r5. Reactions {r10, r11} are then identified as having flux
dependency since they exclusively receive their reactants
from r9. The search stops at this step since there are no
further reactions in the list at higher depths. Thus the first
group of dependent reactions is {r1, r3, r4, r5, r9, r10, r11}.
The graph based algorithm thus groups reactions based
on both linear and flux dependencies. The number of
reactions in a group is called its norm. Thus, the norm
of this group is 7. All these 7 reactions are removed
from the reaction list. The second iteration starts with
reaction r2 (since it has the lowest depth of the reac-
tions in the updated reaction list), and identifies reaction
r6 as its dependent. The search for dependent reactions
stops here since two reactions, {r7, r8}, consume the
product (D) of r6. Hence, the second group has 2 reac-
tions {r2, r6}. Continuing in this fashion, two single reac-
tion groups {r7} and {r8} are also identified. Thus, in
total, there are four different groups in the sample net-
work as shown in Figure 2b.
Once the groups of dependent reactions have been

identified in the metabolic network, analysis can be car-
ried out on these groups rather than on the individual
reactions. If a reaction from a group is essential for the
cell, all the reactions in that group become essential
since they are dependent on each other. Similarly, all the
reactions in the group become extraneous or indeter-
minate if one of the reactions in the group is extraneous
or indeterminate, respectively. Hence, the minimal reaction
set identification problem is reduced to identification es-
sential reaction groups (SRGs), extraneous reaction groups
(XRGs), and indeterminate reaction groups (IRGs).

Recursive MILP for finding all minimal reaction sets
The proposed recursive MILP approach for identifying all
the minimal reaction sets in metabolic network is shown in
Figure 3. A given metabolic network is described using the
groups of dependent reactions where a single binary
variable is associated with each group. Then, Phase 1 of the
proposed approach classifies these groups into essential,
extraneous and indeterminate groups using the algorithm
described in Jonnalagadda et al. [18]. As described in MILP
for finding minimal reaction set, the essential reaction
groups (SRGs) are necessary for the cell to meet its cellular
objectives and hence these groups have to be present in all
minimal reaction sets. Extraneous reaction groups (XRGs)
are unnecessary for the cell and will be absent in every min-
imal reaction set. Indeterminate reaction groups (IRGs)
comprise substitutable reactions (see Group substitutability
analysis for identifying solutions) which are the source of
multiple optimal solutions Hence, all minimal reaction sets
can be identified by finding all the different additional reac-
tion groups (ARGs) from the IRGs. These multiple sets of
ARGs together with the SRGs identified in Phase 1 forms
all the minimal reaction sets.
The algorithm for finding all ARGs from IRGs formu-

lated as a recursive MILP as shown in Figure 4. The first
set of ARG is found by solving the MILP with the same
constraints as given in Eq. 2, but considering only the
IRGs where binary variables have been associated for
each group (step 1). The objective function for the

optimization is the minimization of
X IRGj j

l
wl⋅yl where

the wl is the norm of the group and yl is the binary vari-
able associated with that group. The optimization pro-
cedure thus will identify the ARGs such that the total
number of reactions is minimal. The ARGs together
with the SRG from Phase 1 forms the first minimal reac-
tion set. Once an optimal solution is found, a constraint
is added to the model to exclude that solution from the
search space (Step 2). Based on Lee et al. (2000), the fol-
lowing constraint is added to Eq. 2:

X

r∈NZ

wr⋅yr ≤ NZj j−1 ð3Þ

where NZ is the groups in the optimal solution, and yr is
the binary variable associated with the groups in NZ.
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Figure 3 Schematic representation of the recursive MILP approach for identifying all minimal reaction sets.
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Eq. (3) means that at least one of the non-zero binary
variable in the optimal solution is set to zero. Hence in
the next recursion, NZ is excluded from the search space
and the optimizer is forced to find a new optimal solu-
tion. This recursive procedure terminates when the
optimizer returns a sub-optimal solution, i.e. a solution
with more reactions than that in the first solution.
In principle, all the minimal reaction sets can be iden-

tified by recursively solving the MILP with a new con-
straint added to the model in each recursion. However,
the grouping of reactions offers insights which enable
the computational cost to be reduced significantly by gen-
erating additional solutions without solving the MILP,
using group substitutability analysis (Step 3).

Group substitutability analysis for identifying solutions
In metabolic networks, some reactions share similar
cellular functions such as producing, consuming a
metabolite, or recycling co-factors. For example, in the
sample network shown in Figure 2a reactions r7 and r8
consume metabolite D and produce metabolite G. The
presence of reactions with similar functions enables the
cell to survive under different conditions, stress, and mal-
function of genes through substitution of reaction for an-
other inactive reaction. These reactions are considered
substitutable since they result in alternate optima. In the
minimal reaction set identification problem, substitutable
reactions lead to multiple minimal reaction sets. The
above recursive MILP approach can be employed to
identify all minimal reaction sets. Alternatively, many
candidate solutions can be generated more efficiently by
simply substituting a reaction in an optimal solution.
In this paper, we perform this substitution analysis on

groups to efficiently identify alternate optimal solutions.
Two types of group substitution are possible – single
and multi-group substitution. In single group substitu-
tion, a group is substituted with another group of the
same norm. So, the total number of reactions in the
optimal solution remains unchanged. For example, in
Figure 2b groups 3 and 4 are substitutable as both have
the same metabolic function and have a norm of 1. Thus
if group 3 is present in an optimal solution, another



Figure 4 Recursive MILP approach for identifying all minimal Additional Reaction Groups (ARGs). After finding an optimal solution, other
candidate solutions are generated through substitutability analysis and verified. A new constraint is added to the math program corresponding to
each optimal solution, which drives the optimizer to a different optimal solution in the next recursion. The different ARGs identified in Phase 2
together with the Essential Reaction Groups (SRGs) form the various minimal reaction sets.
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candidate solution can be generated by replacing it with
group 4. Substitutability for single groups can be identi-
fied easily since all the groups would produce and con-
sume the same metabolites, and can hence be identified
by OR gates in the graph representation of the metabolic
network. Sets of groups could also be analysed for substi-
tutability but this multi-group substitution is computa-
tionally complex and is beyond the scope of this paper.
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Group substitutability analysis is conducted in the pro-
posed approach following the identification of a solution
by the MILP and candidate solutions generated. Not
every candidate solution identified by the qualitative
approach would meet the cellular objectives. Therefore,
it is essential to verify the candidate solutions to ensure
that the predefined biological objectives are satisfied.
This verification is conducted by solving a linear pro-
gram (LP) with the objective of maximizing the cellular
objective (Step 4), which is computationally efficient.
Only candidate solutions that satisfy the objective are
deemed as optimal solutions to the original MILP and
appended to the set of optimal solutions (Step 5). Other
candidate solutions are discarded. A new constraint is
also added to the model for each optimal solution thus
identified to eliminate their re-identification in future re-
cursions (Step 6). The algorithm then continues with
solving the MILP to find other optimal solutions.

Results
We illustrate the proposed method by identifying all min-
imal reaction sets that support predefined growth for two
systems – Escherichia coli and Saccharomyces cerevisiae.

Case Study 1: Aerobic growth of Escherichia coli on glucose
Here, we identify all the minimal reaction sets from
the E. coli metabolic network so as to meet cellular

objective ν
max

biomass
≥0:7 g/gDW∙h for a glucose uptake

rate of 10 mmol /gDW∙h. The network contains 63 me-
tabolites and 77 reactions [29]. These 77 reactions are
first grouped based on dependency as described in
Reaction dependency and grouping. There are in total
62 groups — 3 groups with norm 3, 9 groups with
norm 2 and 50 groups with norm 1 i.e. single reaction
groups. Hence, the number of binary variables required
for MILP is reduced from 77 to 62. The proposed
recursive MILP method is then employed to identify all
the minimal reaction sets from this network. Phase 1 of
the proposed approach classified 14 groups (18 reac-
tions) as essential reaction groups of which 4 groups
with norm 2 the remaining 10 groups of norm 1. The
method also denoted 8 groups (12 reactions) as extraneous.
There were 40 groups (47 reactions) identified as indeter-
minate containing 1 group with norm 3, 5 groups with
norm 2 and the remaining 34 with norm 1. Hence, the
number of binary variables defined in Phase 2 is reduced
from 47 to 40. Then the recursive MILP is employed to
identify IRGs. The first optimal solution contains 18
groups (20 reactions) — 17 groups of norm 1 and 1 group
with norm 3. The recursive MILP found two more opti-
mal solutions (also with 20 ARs) that meet the prede-
fined cellular objective. In the fourth iteration, the
optimizer found a sub-optimal solution with 21 ARS and
hence is terminated. These three sets of additional reac-
tions together with the 18 SRs from Phase 1 form the three
different minimal reaction sets. To cross-validate the re-
sults, we also implemented the classical monolithic
MILP approach with 77 binary variables. The mono-
lithic MILP also identified the same three minimal reaction
sets thus confirming the accuracy of the proposed
approach.
The three minimal reaction sets identified in the

E. coli metabolic network are shown in Figure 5. The
reactions in the minimal reaction set are shown by
thick solid line. The three minimal reaction sets differ
from each other by the presence of a single unique re-
action while 37 of 38 reactions in the minimal reaction
set are common to all three. This indicates that 19 out
of the 20 reactions identified in Phase 2 by recursive
MILP are common to all three minimal sets. However,
these 19 reactions are deemed as Indeterminate (not as
Essential reactions) in Phase 1 since there exist alter-
native (but sub-optimal) pathways. Minimal reaction
Set 1 has a unique reaction Phosphoenolpyruvate carbox-
ykinase (PPCK) while Set 2 has Pyruvate kinase (PYK)
and Set 3 has Transhydrogenase (THD2). The compari-
son of flux distributions from the different reaction sets
reveals how the cell meets its biological objective while
still staying minimal. For example, minimal reaction
Set 1 contains PPCK which converts Oxaloacetate, pro-
duced from Phosphoenol pyruvate through Phosphoenol-
pyruvate corboxylase (PPC) reaction, back to Phosphoenol
pyruvate forming a cycle. Since such cycles may not gener-
ally be active at steady-state, considering thermodynamics
[30], this minimal reaction set may not be suitable for
developing minimal metabolism cell. Similarly, minimal
reaction set 3 has large flux through the transhydrogenase
reaction that regenerates cofactors NADH, NADP from
NAD and NADPH. This set is also not desirable for devel-
oping minimal metabolism cell since such a high flux may
not be practically possible in the organism. In comparison,
Set 2 has a unique reaction PYK that converts Phospho-
enolpyruvate to Pyruvate which is part of glycolysis path-
way in aerobically growing E.coli and contains no coupled
reactions (cycles); hence, it is a suitable reaction set for
developing the minimal metabolism cell.
We identify the number of reactions to be knocked-

out from E.coli in order to develop minimal metabolism
cell based on each minimal reaction set using the graph
theory based approach [18]. In brief, the procedure itera-
tively selects the reaction with lowest depth from the list
of reactions not present in the minimal reaction set as
the knock-out candidate. In each iteration, all the reac-
tions dependent on the selected reaction are excluded
from the list. The procedure continues until the list of
reactions becomes empty. Thus all the reactions selected
in this procedure have to be removed from the strain to



Figure 5 The metabolic network of Escherichia coli used in case study 1. The reactions in the minimal reaction set are shown by thick solid
line. Reactions unique to minimal reaction set 1 (PPCK) is shown as dashed line and the unique reaction in minimal reaction set 2 (PYK) as dotted
line. The unique reaction in minimal reaction set 3 (THD2) is a Transhydrogenase reaction involving only cofactors is given as a separate reaction.
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achieve the minimal metabolism based on the selected
minimal reaction set. In this case study, all three min-
imal reaction sets require 6 reactions to be knocked-out
from Escherichia coli; 4 of these 6 reactions are the same
in all cases. Hence, the minimal metabolism cell can be
constructed by suitable blocking out the reactions corre-
sponding to minimal reaction set 2. In summary, finding
multiple minimal sets enables us to develop the best
minimal metabolism cell by selectively deleting the
remaining two reactions.

Case Study 2: Aerobic growth of Saccharomyces
cerevisiae on glucose
We now illustrate the computational efficiency of the pro-
posed method by identifying all the minimal reaction sets
for a genome-scale model of Saccharomyces cerevisiae con-
taining 1061 metabolites and 1266 reactions [31]. The cel-

lular objective is selected as ν
max

biomass
of 0.0973 g /gDW∙h

for glucose uptake rate of 1 mmol /gDW∙h. The model is
reduced to 620 reactions by removing 637 reactions that
are not connected to the glycolysis pathway and 9 reactions
which differ in a cofactor. There are 114 groups of
dependent reactions in the norm range [2 15].
Phase 1 of the proposed approach identified 128 groups

(213 reactions) as essential, 22 groups (37 reactions) as ex-
traneous, and 301 groups (370 reactions) as indeterminate.
The extraneous reactions are removed from further ana-
lysis. Unlike the E. coli model, the Saccharomyces cerevisiae
model has compartments. Out of the 370 indeterminate
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reactions, 52 reactions are involved in transporting metab-
olites among the compartments and inter-converting co-
factor metabolites. These are deemed to be essential
reactions. The remaining 249 groups containing 318 inde-
terminate reactions are further analyzed in Phase 2 using
recursive MILP to find all additional reactions. The results
are given in Table 1. There are 38 reactions in the first
solution that together with the 265 essential reactions
from Phase 1 form the first minimal reaction set with
303 reactions.
Based on the first solution, 7 other minimal reaction

sets that meet the predefined cellular objective are iden-
tified through group substitutability analysis leading to a
total of 8 minimal reaction sets in the first iteration.
These 8 optimal solutions were excluded from the
search space through addition of new constraints. In the
seconds iteration, 6 more minimal reaction sets were
identified — 1 from MILP and 5 from substitution ana-
lysis. The algorithm then continues with next iteration.
The results for each iteration are shown in Table 2.
There are a total of 256 minimal reaction sets for this
metabolic network. The proposed recursive MILP ap-
proach has to go through 66 iterations to identify all
these optimal solutions. Further execution of MILP re-
sulted in a sub-optimal solution with 39 reactions, hence
it terminated.
To quantify the improvement achieved, we executed

the MILP with 318 binary variables for 318 indetermin-
ate reactions. The solver required 3,735,864 CPLEX iter-
ations and 1038 seconds to find the optimal solution.
The reduction of number of binary variables has resulted
in a significant improvement with approximately 60% re-
duction in CPLEX iterations and 80% reduction in the
time required for finding the optimal solution in Phase
2. We also compared the total time required for Phase 1
& 2 to find the first solution by the proposed method
with monolithic MILP and graph theory based approach
without grouping. The results are given in Table 1. The
time required by the proposed method is ~ 4% and 22%
of the time required for the monolithic MILP and graph
theory based approach, accordingly. For all 256 solu-
tions, the proposed approach required 16311 seconds.
The large computational time required for monolithic
Table 1 Results for Saccharomyces cerevisiae case study

Method No. of minimal

Monolithic MILP (Jonnalagadda et al. [18]) 1

Graph theory augmented MILP (Jonnalagadda et al. [18]) 1

Proposed approach 256

The proposed approach identified 256 minimal reaction sets within a reasonable am
MILP restrained its use for finding all minimal reaction
sets. Nonetheless, to validate the results monolithic
MILP was employed after excluding all the 256 minimal
reactions from search space. It found a sub-optimal so-
lution with 304 reactions in the minimal set. This guar-
antees that the proposed method identifies all minimal
reaction sets.

Discussion and conclusions
Development of cells with minimal metabolic functional-
ity is increasingly gaining importance. The presence of
redundant reactions in metabolic networks results in
multiple minimal reactions sets that can meet the prede-
fined cellular objectives. In this paper, we proposed a
graph theory augmented recursive MILP approach to
identify all the minimal reaction sets in a metabolic net-
work. The proposed method has been demonstrated by
finding all the minimal reaction sets for Escherichia coli
and Saccharomyces cerevisiae. The proposed approach
correctly identified all the minimal reaction sets in both
the cases. We also proposed the concept of grouping
dependent reactions to reduce the number of binary
variables for MILP formulation. In the present study,
several groups of dependent reactions are identified
in Escherichia coli and Saccharomyces cerevisiae and
exploited to reduce the number of binary variables and
consequently the solution time. Since the use of binary
variables is very common in metabolic network analysis
for identifying strain improvement strategies [24,25,27],
the reaction group concept will benefit the other applica-
tions as well.
Here, we have developed a graph based algorithm that

exploits the structure of the metabolic network to iden-
tify groups of dependent reactions. We now compare
the groups of dependent reactions identified by the pro-
posed method with the previously reported approach
based on steady-state flux distribution. We used the
METATOOL software [32] to find the dependent reaction
groups using steady-state flux distribution. While the pro-
posed graph based approach found 114 reaction groups
(containing 291 unique reactions) with norm more than 1
in the yeast model used in case study 2, the flux based ap-
proach identified 86 dependent reaction groups (with 277
reaction sets Time required (seconds) Total time (seconds)

7200 7200

Phase 1 48 1086

Phase 2 (one solution) 1038

Phase 1 48 243

Phase 2 (First Solution) 195

ount of time.



Table 2 Results for Saccharomyces cerevisiae case study for all the iterations in Phase 2

Run Time taken
(sec)

CPLEX
iterations

Time taken for group
substitutability analysis (sec)

No of optimal solutions identified
by substitutability analysis

Total no. of
solutions

1 194.24 1,557,244 0.0163 7 8

2 169.57 1,324,661 0.0144 5 14

3 375.11 3,156,253 0.0156 7 22

4 326.91 2,825,007 0.0145 3 26

5 329.70 2,600,338 0.0158 6 33

6 499.10 3,999,565 0.0143 5 39

7 395.26 3,097,534 0.0146 1 41

8 346.00 2,604,183 0.0151 5 47

9 443.81 3,227,776 0.0141 3 51

10 341.17 2,919,954 0.0147 5 57

11 605.92 3,605,713 0.0152 5 63

12 469.40 3,628,574 0.0152 6 70

13 462.00 3,709,793 0.0154 5 76

14 499.12 3,957,554 0.0154 5 82

15 493.20 3,705,021 0.0158 1 84

16 508.61 3,541,896 0.0139 3 88

17 461.61 3,717,958 0.0156 7 96

18 586.31 3,896,863 0.0147 2 99

19 572.73 3,834,966 0.015 2 102

20 101.44 727,992 0.0147 5 108

21 70.72 559,520 0.0148 3 112

22 87.30 666,870 0.0147 5 118

23 83.13 626,335 0.0152 2 121

24 80.39 622,837 0.0152 1 123

25 89.23 650,657 0.0149 1 125

26 143.5 909,324 0.0145 5 131

27 96.71 702,949 0.015 6 138

28 94.68 672,714 0.0146 3 142

29 155.29 939,499 0.0151 1 144

30 95.20 669,098 0.0154 1 146

31 167.19 939,535 0.0145 1 148

32 96.33 691,134 0.0145 3 152

33 167.44 945,667 0.0148 2 155

34 136.38 814,707 0.0153 0 156

35 197.90 1,104,430 0.0147 2 159

36 98.23 668,304 0.0151 2 162

37 191.12 978,923 0.0149 5 168

38 110.01 745,564 0.0154 7 176

39 198.40 987,311 0.015 6 183

40 119.95 755,954 0.0149 3 187

41 190.69 986,746 0.015 5 193

42 115.18 723,329 0.0152 0 194

43 105.69 675,581 0.0153 2 197
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Table 2 Results for Saccharomyces cerevisiae case study for all the iterations in Phase 2 (Continued)

44 334.70 1,065,005 0.0149 6 204

45 105.12 675,556 0.0158 7 212

46 262.07 1,073,140 0.0155 0 213

47 135.00 813,478 0.0152 1 215

48 200.65 957,317 0.0147 0 216

49 215.34 978,111 0.0152 5 222

50 251.66 1,209,539 0.0154 6 229

51 196.72 1,016,461 0.0151 1 231

52 263.74 1,289,731 0.0153 0 232

53 270.45 1,284,578 0.0147 0 233

54 131.65 770,203 0.0153 5 239

55 227.39 1,052,628 0.0152 1 241

56 255.51 1,156,613 0.0156 1 243

57 131.90 770,250 0.0155 1 245

58 142.50 837,089 0.0151 0 246

59 367.53 1,775,515 0.0151 0 247

60 317.67 1,553,221 0.0157 1 249

61 223.43 1,106,047 0.0149 0 250

62 178.30 1,042,046 0.0156 1 252

63 342.01 1,553,461 0.0153 0 253

64 170.40 920,427 0.0148 0 254

65 260.28 1,237,089 0.015 0 255

66 206.23 1,125,379 0.0161 0 256

Total 16262.53 104,938,717 0.9953 256
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unique reactions). The norm range of the reaction groups
identified by the proposed approach is [2 15] while that for
the flux based approach is [2 21]. The lower range of the
proposed approach could be due to the strict use of the
structure of the metabolic network in contrast to the flux
based approach which can place structurally unconnected
reactions in a group. Nonetheless, the use of structure of
metabolic network identified some dependent reaction
groups that were not identified by the flux based approach
due to the use of reaction directionality as described in
Reaction dependency and grouping. While there is a large
overlap between the dependent reaction groups found by
the two approaches, several groups are uniquely identified
by each approach. Hence, combining the two approaches
could further simplify the metabolic network.
Generally, different minimal reaction sets have differ-

ent structural and functional properties in terms of
robustness, predictable metabolic interactions, practic-
ally achievable metabolic fluxes, and thermodynamically
non-favourable pathways and cycles. We identified one
such cycle in one of the solutions identified in E.coli
model in case study 1 and very high flux through co-
factor recycling reaction in another solution. Thus, of
the three, only one solution has practically achievable
fluxes without any coupled reactions (cycles) and is suit-
able for developing the minimal metabolism cell. This
clearly shows the importance of identifying all minimal
reaction sets. In Case Study 2, the proposed method
identified 256 solutions. While some of them use gly-
colysis pathway to produce DHAP others use pentose
phosphate pathway. Other differences observed include
use of different reactions for the consumption of DHAP
and formate, recycling of NAD, NADH, NADP, and
NADPH, and production of Ammonium. A preliminary
analysis shows that some minimal reaction sets require
complex set of reactions with impractical high fluxes
compared to others. Further analysis may reveal the de-
tails of these pathways that qualify them to developing
into minimal metabolism cells.
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