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Abstract

Background: Heterologous gene expression is an important tool for synthetic biology that enables metabolic
engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency
of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host
organism. However, traditional approaches for optimization neglect to take into account many factors known to
influence synonymous codon distributions.

Results: Here we define an alternative approach for codon optimization that utilizes systems level information and
codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a
probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational
efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent
protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case,
optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene
optimization algorithms.

Conclusions: Codon optimization is now often a standard tool for protein expression, and while a variety of tools
and approaches have been developed, they do not guarantee improved performance for all hosts of applications.
Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in
Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for
which gene expression data can be generated and is thus of potential interest for a variety of applications in
metabolic and cellular engineering.
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Background
Codon optimization is commonly used to improve heterol-
ogous gene expression, especially in the context of synthetic
biology and metabolic and cellular engineering [1,2]. While
most commonly employed in prokaryotic systems [3-5],
codon optimization has also been described in eukaryotic
systems such as yeast [1,6-8]. The basic premise behind this
approach is that the distribution of the 64 unique DNA
codons is non-random. Specifically, the occurrence of
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synonymous codons (i.e. different codons all encoding
for the same amino acid) within any genome is not uni-
form, resulting in both rare and abundant codons. The
distribution of preferred codons varies across all organ-
isms [1,9,10] giving rise to a host-specific codon usage bias
(CUB) [11]. Codon usage, especially the high prevalence
of rare codons, is known to influence translational effi-
ciency [12]. As a result, the most common strategy for
codon optimization is to replace rare codons with more
frequently occurring ones, thereby matching the CUB of
the host organism.
Typically, the CUB for a given organism is determined

using the Codon Usage Tabulated from GenBank (CUTG)
[13]. This process calculates the frequency of codon usage
across all annotated protein coding genes and is the
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primary dataset used for codon optimization. Several al-
ternative codon usage tables exist including the codon
adaptation index (CAI) [14,15], codon bias index (CBI)
[16] and effective number of codons (Nc) [17]. As an out-
growth of these approaches, several online optimization
programs have been developed and are freely available
[18-20]. Despite the promise of these approaches, much of
this research has focused on studying and describing en-
dogenous gene expression. Moreover, traditional codon
optimization does not always lead to improved expression
compared to a wild-type, unmodified sequence [21-23]. In
fact, in a survey of 44 synthetic genes manufactured by
Blue Heron Biotechnology (http://www.blueheronbio.com/
assets/documents/BlueHeronBioExpressionSurvey.pdf ),
32% of the “optimized” synthetic genes expressed at
lower levels than the wild-type. Thus, alternative strat-
egies are required to further improve codon optimization
for heterologous genes, especially in eukaryotic hosts and
for biotechnological applications.
We posit that the limitations to traditional codon

optimization stem from the fact that traditional methods
for CUB calculations utilize all potential coding regions of
the genome. It is well documented that tRNA abundance
is influenced by changes in environmental factors includ-
ing growth condition and cell-cycle [24-27]. Moreover,
much of an organism’s protein coding genes are lowly
expressed and thus minimal evolutionary pressure has
been present to drive efficient natural evolution and
optimization [11,28]. As a result, it is expected that the ef-
fective CUB for a given growth condition may differ from
the whole-genome based CUB. Thus, a traditional codon
optimization approach neglects cell conditions and con-
siders all of a genome’s protein coding information as
equal. As a result, these approaches fail to capture im-
portant nuances of the effective CUB that may be essen-
tial for guaranteeing expression of a heterologous gene.
In addition, traditional approaches neglect evidence that
adjacent codons co-evolve [29-31]. Finally, it is not al-
ways wise to consistently utilize abundant codons, espe-
cially in biotechnological applications where multiple
genes are optimized and the cognate tRNA may eventu-
ally become limiting [27].
Here we demonstrate that a CUB generated using only

genes expressed under a given condition can enable im-
proved codon optimization in Saccharomyces cerevisiae
compared to a CUB generated using the CUTG. We
refer to this alternative approach as ‘condition-specific
codon optimization.’ Furthermore, we utilize a probabil-
istic method that incorporates codon context into opti-
mized gene design and thus results in multiple variants
to be tested rather than a singular design. We demon-
strate the utility of this technique in S. cerevisiae
through the condition-specific codon optimization of two
heterologous genes: a green fluorescent protein variant
originally optimized for expression in Escherichia coli, and
the catechol 1,2-dioxygenase enzyme from Acinetobacter
baylyi. To do so, we created a CUB for two specific con-
ditions of interest: constitutive high expression and high
expression in stationary phase growth. The resulting op-
timized genes yielded more protein activity under the
conditions for which they were optimized. Furthermore,
our best catechol 1,2-dioxygenase gene variant resulted
in 2.9-fold higher activity than a commercially opti-
mized gene variant. This technique should be applicable
to any organism for which gene expression data can be
generated and is thus of potential interest for a variety
of applications in metabolic and cellular engineering.

Results and discussion
Developing a condition-specific codon usage bias matrix
To establish condition-specific codon optimization, we de-
veloped a simple workflow for optimizing heterologous
genes (outlined in Figure 1a).
First, the condition under which the heterologous gene

of interest will be expressed must be identified and
genome-scale expression data for the host should be ob-
tained under this condition. While we have selected
DNA microarray data for this study, it is conceivable to
use additional sources such as RNA-seq or proteomics.
For commonly studied organisms, the desired informa-
tion is publically available in databases such as Gene Ex-
pression Omnibus (GEO), the Center for Information
Biology Gene Expression database (CIBEX) and Array
Express.
Second, using the appropriate dataset, genes that are

differentially up-regulated or highly expressed under the
desired condition are identified. From this set of genes
and their corresponding DNA sequences, codon fre-
quency and probability can be determined for codon
pair usage (codon context). The python script used to
generate the condition-specific tables and matrices is en-
titled ‘CodonUsageAnalysis’ (see Additional file 1). The
output of this analysis is a 61 by 61 matrix termed the
‘codon bias matrix’ (the three stop codons were excluded
from this matrix). We chose to focus on codon context
rather than individual codons as previous studies suggest
that codon context may be more important for gene
optimization [29-32] and that this context directly corre-
lates with translation elongation rate [33]. In particular,
steric hindrance of charged tRNAs by adjacent codons
can be avoided by considering the impact of adjacent
codon pairing [30].
Third, the condition-specific matrix can be used to

reconstruct a series of codon optimized genes that
would follow the codon bias rules of the condition of
interest. By considering each adjacent codon pairing in
the chain, we probabilistically reconstruct the DNA se-
quence from the protein sequence utilizing the codon
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Figure 1 Condition-specific codon optimization utilizing systems level information and codon context. a. A generic workflow to enable a
condition-specific codon optimization algorithm in any organism from gene expression data. b. The control codon matrix is compiled from all
6,666 protein-coding genes in S. cerevisiae and serves as a point of comparison for condition-specific matrices. The first amino acid is indicated by
the first column, and the second amino acid by the first row. The color indicates probability between 0 (red) and 1 (blue). c. The high expression
codon optimization matrix is compiled from the 100 most highly expressed protein-coding genes in S. cerevisiae [35]. d. The stationary phase
codon optimization matrix is compiled from the 50 most highly expressed protein-coding genes in S. cerevisiae grown for 3 days, compared to
an exponential population [38]. e. The matrix drift from the control matrix (as indicated by Frobenius matrix norm) versus number of genes used
to generate the codon usage matrices was plotted for codon usage matrices generated from a random sampling of genes (red squares) and the
most highly expressed genes [35] (green triangles). The random data sets were fit with a power regression model. Standard deviations from five
independent samples were used to generate error bars.

Lanza et al. BMC Systems Biology 2014, 8:33 Page 3 of 10
http://www.biomedcentral.com/1752-0509/8/33
context probabilities stored in the condition-specific
matrix (performed via a python script entitled ‘GeneDe-
sign’ included as Additional file 2). As an example, if the
first two amino acids of the protein sequence are methio-
nine followed by cysteine, there are two possible corre-
sponding DNA sequences: ATGTGT and ATGTGC. The
condition-specific matrix stores the probability in which
each pairing occurred in the set of up-regulated genes for
a given condition. GeneDesign assigns a DNA sequence
based on the corresponding probability. For example, if
60% of Met-Cys pairs are ATGTGT and only 40% are
ATGTGC, GeneDesign will probabilistically select ATG
TGT 60% of the time and ATGTGC 40% of the time for
each occasion that a Met-Cys pair is present in the peptide
sequence. As a result of the probabilistic design, several
variants of codon optimized genes are generated. More-
over, this process also ensures a balance in codon usage
rather than the exclusive use of specific codons which
can result in bottlenecks with the formation of charged
tRNA-amino acid complexes and reduced translational
efficiency [27].
Finally, after GeneDesign has been used to generate one

or more condition-specific codon optimized sequences,
the corresponding DNA can be synthesized and introduced
into the cellular host of interest. Functional assays can be
used to determine the highest performing variant.

Generation of condition-specific codon bias matrices for
S. cerevisiae
In order to validate our hypothesis and this approach,
we selected two heterologous genes of interest, applied
the approach as outlined above, expressed the resulting
optimized genes in S. cerevisiae, and measured resulting
protein activity. For comparison, we generated a control
table and codon context matrix (hereafter referred to as
the control matrix), which were assembled using the
protein coding sequences of 6,666 S. cerevisiae genes.
The control table is identical to the CUTG from GenBank
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for S. cerevisiae, which is used commercially. A colored
representation of the control matrix is shown in Figure 1b
(see Additional file 3 for full data set) with the y-axis
representing the first codon and the x-axis representing
the second codon in a pair. Each square represents the
probability of a codon pair occurring given that the first
codon is specified, with the color blue representing a
probability of one and red representing a probability of
zero. The two solid blue columns correspond to a second
codon for methionine (ATG) or tryptophan (TGG), both
of which have no synonymous codons and therefore have
a probability of 1. Amongst the synonymous codons how-
ever, there is variation between the columns, indicating an
overall genomic preference for particular synonymous co-
dons. There is very little variation between rows, indicat-
ing that the choice in second codon is not influenced
much by the choice in first codon. Since this control
matrix incorporates codon context for nearly all protein
coding genes in S. cerevisiae, the probability values are an
average of codon usage across the entire genome. As a re-
sult, the columns become indicative of the frequency of
each codon, with the rarest indicated in red.
In contrast, the matrices made for the subset of high-

est expressed genes and genes expressed in stationary
phase (Figures 1c-1d, respectively) have significant vari-
ation between rows (see Additional file 3 for full data
set). In order to compare the difference between the
control matrix and condition-specific matrices we quan-
tified the drift using the Frobenius matrix norm of the
difference between the matrices. This metric is well
established as a quantitative tool to determine drift be-
tween matrices of the same size [34]. A smaller Frobe-
nius matrix norm indicates higher similarity between
matrices, such that identical matrices have a norm of
zero. We first evaluated the drift between the control
matrix and sets of randomly selected genes as a control.
Random sets of 30, 50, 100, 150, 200, 250 and 300 genes
were selected in five independent events and the average
matrix norm was calculated (Figure 1e). As the number
of randomly considered genes increases, the Frobenius
matrix norm or drift relative to the control condition de-
creases in a power regression fashion (of the form y =Axb).
This behavior is expected, as the inclusion of more genes
in a codon usage matrix will result in an averaging effect
that begins to resemble the control matrix composed of all
gene sequences. Next, we calculated the drift between the
control matrix and the highest expressed genes in S. cerevi-
siae [35]. The higher drift demonstrates that these genes
exhibit a vastly different codon usage than the control
matrix. The difference in codon usage between highly
expressed genes and the rest of the genome has been previ-
ously noted [16], suggesting evolutionary pressure on
codon usage. This further supports the use of only a subset
of genes for determining codon usage bias.
Condition-specific optimization of eGFP for high
expression outperforms wild-type and control variants
Initially, we sought to investigate the importance of
condition-specific codon optimization by re-coding an E.
coli fluorescence protein for high, constitutive expression
in yeast. To do so, we established a CUB based on the
100 most highly expressed genes during growth in YPD
media [35]. The associated condition-specific table and
matrix were assembled as described above (Figure 1c,
see Additional files 3 and 4 for full matrices and tables,
respectively). An E. coli optimized green fluorescent pro-
tein (eGFP) was selected as a reporter protein as it is
poorly translated in yeast. Eight sequence variants of
eGFP were generated and compared to the wild-type se-
quence. One variant was optimized using the control
table, one variant using the high expression table, three
variants using probabilistic design based on the control
matrix and three variants using probabilistic design
based on the high expression matrix. The sequences for
each of these variants can be found in Additional file 4.
Each variant, including wild-type eGFP, was inserted into
the p41K-GPD yeast expression vector and transformed
into S. cerevisiae BY4741 [36] and fluorescence was
screened in mid-log phase of YPD growth using biological
triplicates. We observed that, on average, the eGFP vari-
ants generated using the high expression matrix are statis-
tically better expressed than those variants generated
using the control matrix (p-value = 6.1e-6) and better than
the wild-type eGFP (p-value = 1.4e-6) (Figure 2). While all
three of the high expression matrix-generated variants
outperform the wild-type eGFP, only two of the three con-
trol matrix-generated variants outperform wild-type eGFP.
These results demonstrate that optimizing codon usage
specifically for high expression was effective and that the
probabilistic design is suitable for generating functional
variants.
We also tested the eGFP variants generated using the

control and high expression table rather than a probabil-
istic matrix-based design. While there was no statistical
difference between the two conditions, expression of
these variants were higher than any of the matrix-
generated conditions. This result is not surprising given
the short length of the gene (251 amino acids). However,
a table-optimized approach lacks codon diversity which
may ultimately become a bottleneck and decrease en-
zyme fitness for large metabolic engineering endeavors
with multiple genes [23,27,37]. The fact that two table-
optimized genes were similar is not unexpected either,
as there was a difference between the most abundant
codon for only six of the 20 amino acids in the two ta-
bles, and thus the genes codon optimized by both tables
were highly similar on a sequence basis. Nevertheless,
these results illustrate that the probabilistic method used
to choose codons from the condition specific matrix



Figure 2 Optimization for a high expression condition results
in eGFP expression exceeding the wild-type. In addition to
wild-type eGFP, eight variants were generated. The high expression
variants were made from a codon usage table (HT) and matrix
(H1-H3) constructed using the 100 most highly expressed genes in
yeast grown in rich media. Control variants were constructed from the
standard usage table (CT) and control matrix (C1-C3). eGFP protein
expression was measured using flow cytometry for yeast grown in
YPD. Biological triplicates were used to calculate standard deviations,
indicated by error bars and p-values were calculated using a t-test to
determine statistical significance (described in text of paper).
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gives better results than that from the control matrix. As
such, this is the first proof-of-concept demonstrating
that using condition-specific data can improve codon
optimization gene design over the traditional CUB
methods.

High expression and stationary phase optimization of
CatA
Next, we sought to codon optimize a catechol 1,2-dioxy-
genase gene (CatA) from Acinetobacter baylyi in S. cerevi-
siae to enable the production of muconic acid, a useful
polymer precursor, in the stationary phase. This condition
was chosen as it is often desirable to delay gene expression
until stationary phase to increase product output and sep-
arate growth and production phases. To optimize under
these conditions, a codon usage matrix was calculated
using the 50 genes most differentially upregulated when
comparing three day cultures to exponential growth [38]
(Figure 1d, see Additional file 3 for full matrices). This
data was downloaded from a previous study available
under the GEO reference E-TABM-496. We designed
three CatA variants using a probabilistic design based on
the stationary phase matrix (named stationary #1 through
#3), three similarly designed using the control matrix
(named control #1 through #3), and two using the high
expression matrix used above for eGFP (named high
expression #1 through #2). Finally, we included wild-type
A. baylyi CatA and a variant that was codon-optimized
for expression in S. cerevisiae by Blue Heron Biotech-
nology using traditional codon optimization methods
(referred to as the Blue Heron variant). These sequences
are included in Additional file 4. Expression of these ten
variants was determined using a previously described
protein activity assay [22] during various stages of
growth (6, 18 and 24 hours post inoculum). We calculated
the catalytic rate, Vmax (mM/min*μg protein), for each
variant (Figure 3a).
In exponential phase (6 hours of growth), the Vmax for

wild-type CatA is significantly higher than the Blue
Heron variant (p-value = 0.002). This illustrates again
that traditional codon optimization approaches can often
result in poor performance. The most highly expressed
variant after 6 hours of growth is high expression #1
whereas the lowest expressed variant is stationary #1.
Toward late exponential phase and early stationary

phase (18 hours), the CatA expression pattern shifts for
each variant. Compared to the 6 hour time-point, the
cellular catalytic level (Vmax) at 18 hours decreases for
many of the constructs including the control variants #1
and #2, high expression #1, and the Blue Heron variant.
By comparison, Vmax for stationary #2 and #3 is un-
changed between 6 and 18 hours, and for stationary #1,
Vmax actually increases. At 18 hours, the average Vmax

for the stationary variants is significantly higher than the
average for the control variants (p-value = 0.013) and the
Blue Heron variant (p-value = 0.026). While the station-
ary phase variants either maintain or increase their Vmax,
the activity of the control variants decreases signifi-
cantly. Moreover, at this timepoint, the control variants
perform worse than the A. baylyi wild-type gene.
The disparity between the average Vmax for the stationary

and control variants is even more significant (p-value =
4.7e-4) at 24 hours. Furthermore, outside of high expres-
sion variant #1, the stationary variants #1 and #3 demon-
strate the highest Vmax values. The profile for stationary
#1 is particularly interesting as it was among the worst
during exponential phase and among the best at stationary
phase. These results provide further demonstration that
codon optimization based on condition-specific CUBs can
outperform traditional approaches. By doing so, we were
able to design three CatA variants which outperformed
both a commercially-optimized sequence (Blue Heron
variant) and three control CatA variants in stationary
phase.
We have previously demonstrated that catalytic cap-

acity is just as important as catalytic rate for the CatA
enzyme [22]. To measure this, cultures with each variant
were grown for 18 hours and then spiked with 1 mg/ml
catechol. Resulting muconic acid (normalized to cell
count) was measured via HPLC for each of the variants



Figure 3 Optimization for stationary phase results in CatA variants that are improved at late growth. Ten CatA variants were generated,
including wild-type and a version optimized by Blue Heron Biotechnology. The three stationary phase variants (S1-S3) were made from a codon
usage matrix constructed using the 50 most highly expressed genes after three days of growth (see Supplementary Matrices). The two high-expression
variants (H1-H2) were made from a codon usage matrix constructed using the 100 most highly expressed genes in yeast grown in rich media. The three
control variants (C1-C3) were constructed from the control matrix). Two assays were conducted to measure activity. a. Cells expressing the CatA variants
were grown for 6, 18 or 24 hours prior to bulk protein extraction. The Vmax (mM/min*μg protein) for conversion of catechol to muconic acid was
determined for the bulk protein. Biological triplicates and technical triplicates were measured to determine standard deviations. b. Cells expressing the
CatA variants were grown for 18 hours in 30 mL before spiking the media with 1 g/L of catechol. After 24 additional hours of growth, 1 mL of
supernatant was extracted and analyzed using HPLC, as previously described [22], to determine total muconic acid production. Normalized
muconic acid levels (mg/L*OD600) are reported and standard deviation was determined using biological triplicates and p-values were calculated
using a t-test to determine statistical significance (described in text of paper).
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(Figure 3b). In this assay, the stationary #1 variant out-
performed all other variants, including the high expres-
sion #1 variant (p-value = 0.036). Overall, this variant
had a catalytic capacity that was 2.6-fold higher than the
wild-type version and nearly 2.9-fold higher than the
Blue Heron optimized version in the stationary phase—
the condition used to optimize this gene. These results
highlight the importance and potential of condition spe-
cific codon optimization, and demonstrate for the first
time that codon optimization can be used to control
translation for specific environmental conditions.

Analysis of transcription factor-regulated genes suggests
codon usage is linked to gene regulation
Based on the utility of condition-specific CUBs, we were
interested in exploring the potential link between tran-
scriptional and translational regulation. Utilizing a sys-
tems biology perspective, we concentrated on key global
transcription factors in yeast. Specifically, we sought to
calculate the CUB matrices for genes regulated by six-
teen global transcription factors for S. cerevisiae: Cbf1p,
Dal82p, Gcn4p, Gln3p, Hap4p, Hsf1p, Leu3p, Mbp1p,
Msn4p, Nrg1p, Pho4p, Rtg3p, Skn7p, Ste12p, Tec1p, and
Upc2p. Codon usage matrices for the gene targets regu-
lated by each of these global regulators were compared
with the control matrix derived from all 6,666 protein
coding genes (see Additional file 3 for all matrices). The
Frobenius matrix norm was calculated for all pairwise com-
binations of the 17 matrices (control and 16 transcription
factors) and this data set was used to generate a colored
table, with darker colored cells representing a higher
Frobenius matrix norm, and thus more distinct matrices
(Figure 4).
The matrices for Rtg3p targets and Cbf1p targets are

both most similar to the control matrix whereas Gcn4p
and Hsf1p targets are most dissimilar in their codon
usage compared with the control dataset. In general,
Figure 4 clearly shows that the genetic targets of transcrip-
tion factors have very disparate codon usage compared to
the aggregate of coding regions. Furthermore, each tran-
scription factor matrix is more similar to the control con-
dition than to another transcription factor matrix. This
result further supports the averaging effect seen by using
all protein coding genes to create CUB tables, as opposed
to a subset. The fact that distinct patterns in codon usage
appear for each transcription factor suggests that genetic
regulation has co-evolved with codon usage. This finding
supports the central hypothesis of this work – that tran-
scriptional profiles (in the form of gene expression data)
can be used to predict optimization schemes for transla-
tional regulation (in the form of codon optimization).

Conclusions
Here, we demonstrate the utility of a condition-specific
codon optimization method that utilizes both systems-
level information and codon context to generate a set of
potential variants using a probabilistic algorithm. While
we demonstrated the effectiveness of this algorithm using



Figure 4 Drift of transcription-factor codon matrices reveals diverse codon usage relative to the control matrix. The genetic interaction
targets for sixteen S. cerevisiae transcription factors were identified using the Saccharomyces Genome Database (yeastgenome.org). Using those
corresponding gene target sequences, codon usage matrices were constructed for each transcription factor. Frobenius matrix norms were
calculated for all matrix pairs, including the control matrix (Figure 1b) using MATLAB. The Frobenius norms represent drift between matrices and
darker colored cells represent higher drift. A value of zero means the matrices are identical.
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yeast and microarray data, the approach should be generic
and easily adaptable to other hosts and other high-
throughput datasets. While the consideration of codon
pair bias and probabilistic design to create variants has
been demonstrated previously [30,32], this is the first
example to demonstrate that gene expression data can
be used to generate high-expressing variants for a spe-
cific condition. In the case of the CatA gene, the S1
variant was high-expressing in stationary phase and
low-expressing in exponential phase, resulting in the
highest productivity of muconic acid of all of the vari-
ants. This is of considerable interest as it offers a previ-
ously unidentified method of control at the translational
regulation level for heterologous gene expression.
It should also be noted that this is the first work to study

a specific codon optimization strategy in S. cerevisiae in
depth. Previous codon optimization strategies have been
primarily validated using prokaryotes [3,11,30,37], en-
dogenous expression data [14,15,17], or limited heterol-
ogous gene variants [7,39]. In contrast, we expressed two
heterologous genes in S. cerevisiae, eGFP and CatA, which
were each optimized for different growth conditions. In
each case, we observe improved protein expression using
the condition-specific optimization technique outlined
here. Specifically, eGFP expression was successfully opti-
mized for high expression in rich media, and the CatA en-
zyme was optimized for high expression in stationary
phase growth, with the highest expression variant result-
ing in 2.9-fold higher product yield over a commercially
optimized variant. Finally, we demonstrated that tran-
scriptional regulation is indeed linked to translational effi-
ciency through the significantly different codon utilization
patterns of distinctly regulated genes.
Codon optimization is an important synthetic biology
tool that enables recombinant DNA expression. The al-
gorithm we define here is simple to execute and host ag-
nostic. As our ability and desire to produce chemicals in
a renewable and environmentally-friendly capacity in-
creases [40,41], the necessity for optimized heterologous
expression will likewise increase. Furthermore, many of
these processes will be carried out under diverse, non-
standard environmental conditions, including changes in
temperature, pH, mineral concentration, carbon source,
oxygen level, and cell growth phase. The condition-
specific approach to codon optimization described here
will be a key tool to identify gene variants with the ideal
codon usage for any particular condition.

Methods
Microarray data analysis
Codon usage profiles were assembled using publicly avail-
able microarray data, downloaded from the Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Data
pre-processing and normalization was performed using
the Robust Multichip Average algorithm [42-44], and Bio-
conductor's Affy package in R version 2.15.1. Differentially
expressed genes were identified using the Linear Models
for Microarray Data (LIMMA) package. Probe sets were
matched with S. cerevisiae genes using information in-
cluded in Affymetrix's Expression Console Software.
Genes with an adjusted p-value less than 0.05 and a log-
fold change greater than one or less than negative one
were considered differentially expressed. A subset of dif-
ferentially expressed genes (typically 50) was used to gen-
erate a condition-specific codon usage table and matrix, as
described in the Results and discussion.

http://www.ncbi.nlm.nih.gov/geo/
http://yeastgenome.org
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Plasmid construction
Yeast expression vectors were propagated in Escherichia
coli. All experiments were conducted using S. cerevisiae
strain BY4741. The sequences of all genes used in this
study are available in Additional file 4. The wild-type
and Blue Heron Biotechnology-optimized CatA variants
were taken from a previous study [22]. All other CatA
variants were assembled using IDT’s gBlocks. The ten
CatA sequences were assembled in the p413-TEF vector
[45]. The wild-type eGFP gene was amplified from the
pZE-eGFP [46] plasmid using primers TAAAACACCAG
AACTTAGTTTCGACGGATTCTAGAATGCGTAAAG
GAGAAGAACTTTTCA and AGGTCGACGGTATCGA
TAAGCTTGATATCGAATTCTTAAACTGCTGCAGCG
TAGTTTTCG. The other eight eGFP variants were as-
sembled using IDT’s gBlocks. The eGFP genes were
cloned into the p41K-GPD plasmid [36] using yeast
homologous recombination and overlapping sequences
and a high efficiency, lithium-acetate transformation.
The formation of correct plasmids was confirmed using
DNA sequencing. For each variant, three biological rep-
licates were isolated and stored.

Growth and media conditions
YPD media contains 20 g/L yeast extract, 10 g/L peptone
and 10 g/L glucose. Minimal media contains 6.7 g/L nitro-
gen base, 20 g/L glucose. Minimal media was supple-
mented with amino acids; 0.77 g/L of CSM –His (MP
Biomedicals) for p413 vectors and 0.79 g/L of CSM for
p41K vectors. Media for p41K vectors was supplemented
with 200 μg/L of G418. Bacteria were grown in lysogeny
broth with ampicillin. All yeast strains were grown at 30°C
and bacteria at 37°C. Agar plates were grown in standing
incubators and cultures in shakers operating at 225 rpm.

Flow cytometry
Flow cytometry was used to determine eGFP expression.
Stationary phase culture was used to inoculate 6 mL of
YPD at an OD600 of 0.005. Cells were grown for 12 hours,
allowing cultures to reach mid-log phase. Cells were pel-
leted and re-suspended in cold water. Fluorescent expres-
sion profiles were determined using a FACS Fortessa.
Forward scattering had a voltage setting of 209 and amp-
gain of 1.00, side scattering a voltage of 209 and ampgain
of 1.00 and fluorescence a voltage of 308 and ampgain of
1.00. Forward and side scattering data were linear and
fluorescence was collected on a logarithmic scale. Thresh-
old was set to a forward scattering value of 5000 with an
OrOperator and area scaling of 0.71. Gating and statistical
analysis of the data was performed using FlowJo 7.6.

CatA activity assay
Yeast minimal media was inoculated at an OD600 of 0.1
using stationary phase cultures of the CatA variants.
Flasks contained 200 mL, 100 mL and 50 mL of media
for the 6, 18 and 24 hour growth experiments respect-
ively. After the designated time period, cells were pel-
leted and protein was extracted as previously described
[22]. Total protein was determined using a Bradford
assay. Vmax values were measured on a microgram of pro-
tein basis using a kinetic assay measuring the conversion
of added catechol to muconic acid, which can be detected
at 288 nm. All biological replicates were included and
measurements were done in technical triplicate. Catechol
was mixed with protein extract at four concentrations,
0.1, 0.2, 0.3 and 0.4 mM, and Lineweaver-Burke plots were
used to calculate Vmax in units of mM/min*μg protein. A
higher Vmax corresponds to more CatA enzyme in the
protein extract.

Muconic acid production
High pressure liquid chromatography (HPLC) was used
to measure the intercellular conversion of catechol to
muconic acid in S. cerevisiae cultures as previously de-
scribed [22]. Triplicate yeast cultures expressing each
CatA variant were grown in 30 mL of media for 18 hours
with a starting OD600nm of 0.1. After 18 hours, cultures
were spiked with 1 mg/mL of catechol and grown for an
additional 24 hours. At this point, 1 mL of supernatant
was filtered and analyzed using a Zorbax SB-Aq column
(Agilent Technologies). The injection volume was 2.0 μL
and the mobile phase was 84% 25 mM potassium phos-
phate buffer (pH = 2.0) and 16% acetonitrile with a flow
rate of 1.0 mL/min. The column was maintained at 30°C
and the UV–vis absorption was measured at 280 nm.
Muconic acid production levels were calculated using a
standard curve. Cis,cis-muconic acid standards were pur-
chased from Sigma-Aldrich and cis,trans-muconic acid
was provided by Draths Corporation.

Matrix drift analysis
The Frobenius matrix norm is defined as the square root
of the product of the trace of the conjugate transpose of
the matrix and the matrix itself:

jjA jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
i−1

Xn
j¼1

aij
�� ��2

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace A � Að Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmin m;nf g

i¼1

σi2

vuut

The drift between any two codon usage matrices was
determined by taking the difference between the matri-
ces (excluding stop codon usage) and the Frobenius
matrix norm of that resultant matrix of differences, or
||A-B||F where A and B represent two distinct matrices
of identical size.
The genetic interaction targets for sixteen S. cerevisiae

transcription factors were identified using the Saccharo-
myces Genome Database (yeastgenome.org). Using those

http://yeastgenome.org
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corresponding gene target sequences, codon usage
matrices were constructed for each transcription factor.
Frobenius matrix norms were calculated for all matrix
pairs, including the control matrix using MATLAB.

Additional files

Additional file 1: Python script ‘CodonUsageAnalysis’ to read gene
sequence(s) as a text file and determines the codon distribution,
which is output in a .txt file.

Additional file 2: Python script ‘GeneDesign’ Python script to read
a protein sequence and a specified codon distribution, using this
information to stochastically construct a corresponding gene
sequence.

Additional file 3: Color-coded 64×64 codon usage matrices for
various conditions discussed throughout the manuscript.

Additional file 4: Gene sequences, supplementary codon
distribution tables.
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