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Abstract

Background: The gut microbiota plays an important role in human health and disease by acting as a metabolic organ.
Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases
such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota.
Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate
a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains
functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new
opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs).

Results: Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale
metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to
reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium
adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which
consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn’s disease and has been
suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentismodel, iBif452, comprises 699
reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique
metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how
both organisms interact.

Conclusions: The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii’s demand for acetate and
production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled
reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.

Keywords: Bifidobacterium adolescentis L2-32, Faecalibacterium prausnitzii A2-165, Genome-scale metabolic model,
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Background
Metagenomic sequencing facilitates the study of a large
number of microorganisms in environmental samples
[1]. This technique has been used to study the composi-
tion of gut microbiota [2], its role in human metabolism
[3,4] and its relation to diseases such as atherosclerosis
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[5], obesity [6,7] and Crohn’s disease [8]. In functional
metagenomic studies, it is common to use KEGG
Orthology (KO) [9] to annotate gene functions [10]. KO
can be used to predict the composition ratio of micro-
bial gene families and pathways from the human micro-
biome project [11]. The functional annotation for a large
number of sequenced bacteria, nearly 4,650 bacterial ge-
nomes, is stored in the Integrated Microbial Genomes
(IMG) database, and the genomes are mapped to KEGG
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pathway images [12]. This tremendous new genomic in-
formation adds a new opportunity for systems biology,
as it enables use of information about genome content
for prediction of metabolic phenotypes of species in the
gut [13], or to develop community systems [14] or
supra-model organisms [15]. Therefore, it is relevant
to reconstruct accurate genome scale metabolic models
(GEMs) from KO annotated by metagenomic analysis.
Several methods have been developed to reconstruct

genome scale models from GEMs of closely related organ-
isms [16], KEGG [16-18], and the Model SEED [19]. The
RAVEN toolbox [16] has been used to generate GEMs for
the eukaryotic microorganisms Pichia stipitis and Pichia
pastoris using iIN800, a GEM of Saccharomyces cerevisiae
[20]. However, this method requires a GEM of a closely
related organism. The RAVEN toolbox has another func-
tion to solve this problem by assigning gene to KO using
MUSCLE [21] and HMMER [22]. Then it generates the
draft model by mapping KO to KEGG reactions. The
web-based methods, FAME [17] and MicrobesFlux [18],
are able to produce draft models for ~750 and ~1,200
KEGG genomes, respectively. The disadvantage of both
FAME and MicrobesFlux is that they are limited to orga-
nisms already annotated in KEGG. The Model SEED can
generate a draft model for a desired organism based on
RAST annotation of genes [23]. Even though some of
these methods have computational gap filling methods,
there is still a need for manual curation to obtain a func-
tional model. Manual curation is generally cumbersome
and time-consuming. The lack of visualization, such as
organization and readability of reactions and genes names
into the model Excel file and KEGG maps, can hamper
manual curation of generated draft models.
To facilitate generation of a draft model and manual gap

filling, we assembled an organized reference reaction data
set consisting of common microbial reactions, where
every reaction is assigned with KOs. The reactions were
collected from high quality GEMs and from Rhea, a
manually annotated database of chemical reactions [24],
but not from KEGG reactions. In spite of the accuracy of
KEGG reactions, some reactions need to substantially
manual curation for substrate and co-factor usage, and
the reactions in reconstructed GEMs generally have to be
well annotated in terms of substrate and co-factor usage
and elemental balancing. Our reaction data set can, in
principle, be used to generate draft models for all 4,650
bacteria in the IMG database, KEGG organisms, or other
user-defined organisms annotated by KO.
Here, we used this reaction data set to generate high

quality GEMs for two bacterial genomes from the IMG
database: B. adolescentis L2-32 and F. prausnitzii A2-165.
Bifidobacterium is a dominating genus in the phyla Actino-
bacteria present in the human gut microbiota and Faeca-
libacterium is the most abundant genus among the
Firmicutes. Firmicutes, Bacteroidetes and Actinobacteria
are the most highly abundant phyla in the human gut
microbiota [2]. Both Bifidobacterium and Faecalibacterium
interact with Bacteroidetes [25,26]. Moreover, Bifidobacter-
ium produces acetate to protect the host from infection
[27], and Faecalibacterium has a relation with Crohn dis-
ease [28]. Furthermore, the production of butyrate by Fae-
calibacterium, among others, has been associated with a
healthy state [5,29,30].
Finally, we simulated and compared the interactions

between the two organisms using two approaches for
community modeling: Flux balance analysis [31-33] and
OptCom [34].

Methods
Figure 1 shows a summary of the methods developed and
employed in this study. Reconstruction was based on the
assignment of genes to KOs and this was used to generate
a draft model from the reaction data set. A KEGG map
viewer is helpful in identifying gaps in the reconstruction.

Model reconstructions
Step 1 (Collecting reference reaction data set)
We assembled a reference reaction data set containing
reactions assigned with KO for each KEGG map (see
Additional file 1: Figure S1). For organisms Escherichia
coli K-12 MG1655, Staphylococcus aureus N315 and Sac-
charomyces cerevisiae, we mapped the genes from each
KEGG map to the corresponding reactions contained in
the respective GEMs iAF1260 [35], iSB619 [36] and
iTO977 [37]. The GEM reactions, together with the asso-
ciated KOs, were then added to the reference reaction
data set. In the case the organism had no genes for the en-
zyme or all GEMs lacked the reaction, we downloaded it
from Rhea by the Matlab function get_reaction_from_R-
hea. This function downloads Rhea reactions as XML for-
mat and prints them. To avoid the mismatched metabolite
names between Rhea reactions and the reference reaction
set, we evaluated the metabolite names in the Rhea reac-
tion using its corresponding KEGG reaction. We retained
Rhea metabolite names if they did not exist in the re-
ference reaction data set, and the Rhea reaction and its
corresponding KO were subsequently inserted into the
reference reaction data set. iAF1260 reactions not present
in any of the KEGG maps, especially transporters and re-
actions occurring in the cell wall, were inserted into the
reference reaction data set with the corresponding KO as
the corresponding gene. Moreover, we added the capsular
polysaccharide and teichoic acid biosynthesis reactions,
which are required for cell wall biosynthesis, from the
GEM of Lactobacillus plantarum WCFS [38], because cell
wall could be a significant fraction of gram dry weight of
Gram-positive bacteria. Also we added the methane me-
tabolism from the GEM of Methanosarcina barkeri [39]



Figure 1 Method summary. (I) The gene assigned with KO for each studied organism was downloaded from the IMG database or KEGG.
(II) The KO was mapped with the reaction data set. (III) A draft model was exported to MS-Excel format by our function saveDraftModel, the draft
model was mapped to KEGG maps using our function DrawPathway. (IV) The draft was curated manually from literature and other gene annotations
in IMG files such as TIGRFAMs and Pfam. After this, the model was simulated using RAVEN and MOSEK. (V) The community interaction design described
how the organisms share growth medium components. (VII) Community interaction was converted to XML format. (VIII) Both optCom and FBA
models were generated from XML files.
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and added the siderophore group biosynthesis from the
GEM of Mycobacterium tuberculosis [40]. Finally, the
reactions were organized, ordered and made readable to
facilitate the manual gap filling process.
Step2 (Generating draft models)
We downloaded the gene annotation for each studied or-
ganism from the IMG database [12]. We extracted the set
GK = (gene,KO) for each organism from the downloaded
IMG file using the function get_gene_ko_from_img. For or-
ganisms available in KEGG, the set GK can be obtained
directly using the function get_gene_ko_from_kegg_org_id,
otherwise the users can build the set GK themselves. The
set GK was passed to the function buildDraftModel to
extract reactions using KO identifiers from the reaction
data set. The draft model was exported to an Excel file by
the function saveDraftModel. Finally, we removed the
exchange reaction for metabolites that were not participat-
ing in any cytosolic reaction. All the described functions
are provided in Additional file 2 and can be used in the
RAVEN toolbox.

Step 3 (Gap filling)
The gaps in each model were filled manually by mapping
the model to KEGG maps and inserting the required re-
actions to ensure full connectivity in the model. To find
genes for the filled reactions or metabolic genes, we ex-
tended the search to other available gene annotation in
the IMG database. Both studied organisms have genes
annotated by Pfam [41], TIGRFAMs [42], TC families
[43] and METACYC [44]. Moreover, B. adolescentis L2-
32 has gene annotations by SEED. Annotation with TC
families has no specific gene assignment, so we ran a
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bidirectional blast between the TC protein sequence and
each organism sequence. Also, we searched for the
residual filled reactions by their enzyme name or EC
number in the Pfam database to get the corresponding
Pfam identifiers, and the corresponding genes were
searched in IMG file. Additional file 3: Table S1 contains
the results of this analysis.

Flux balance analysis
Flux Balance Analysis (FBA) [45,46] was used to re-
construct and validate both models using the RAVEN tool-
box and MOSEK (MOSEK Inc.) as a linear programming
solver under the Matlab programming environment (Math-
work Inc.). Equation (1) describes the main formulation of
FBA, where S is a stoichiometric matrix, V is a vector of
flux values for all reactions and C is a weight vector for
each flux in vector V. Typically all values in C are zero ex-
cept the flux of the biomass reaction (Vbiomass) which is
fixed to one. UB is the upper bound for the flux, and LB is
the lower bound for the flux. In FBA, we assumed that the
model grows in a growth medium (GM) which represents a
set of metabolites d, such as a carbon source, ammonia,
phosphate, sulfur. Certain exchange reactions, which carry
flux from the medium to the model (Vd), were fixed to the
model uptake rate gd, for the metabolite d. For example
1 mmol/gDW/h of glucose uptake rate is fixed to flux (Vglc)
which carries glucose from the medium to the model.

Max Z ¼ CTV
S:t:

S:V ¼ 0
V ≤ UB
−V ≤ −LB
V d ¼ gd; ∀d ∈ GM

ð1Þ

Both B. adolescentis L2-32 and F. prausnitzii A2-165
models grow anaerobically in rich media. We assumed
that each model consumed ammonia as a source of
nitrogen, phosphate, H2S or cysteine as a source of sul-
fur, nicotinate and all amino acids having transporter
reactions. In addition, The F. prausnitzii A2-165 model
consumed folic acid from the medium. Xanthine, uracil
and urea transporters were closed.
The compositions of protein, RNA and DNA in the

biomass were estimated from Neidhardt et al. [47]. The
compositions of peptidoglycan and capsular polysac-
charide are the same as in the GEM of Lactobacillus
plantarum WCFS [38].
We used flux variability analysis [48] to evaluate the

predicted fluxes by the COBRA toolbox function flux-
Variability [49] (see Additional file 4: Table S2). To
determine if a studied organism is able to grow on
different carbon sources such as galactose, xylose or
fructose, the transporter flux was fixed to 1 mmol/gDW/
h and the biomass formation was optimized.

Community modeling
In community studies each model was allowed to take up
as much glucose as possible to maximize growth. In FBA
simulations, gd splits into two kinds of reactions with the
first being a distribution of metabolite d to the different
microorganisms in the community and the second being
different transport reactions, where each reaction re-
presents transport of glucose to one organism [31]. In
OptCom, gd became two variables: uptake variable for
growth medium metabolite d, uvald

k , or/and export vari-
able for growth media, evald

k , where k = bif or fap [34] and
where bif is B. adolescentis L2-32 and fap is F. prausnitzii
A2-165. Equation (2) gives the general OptCom problem
formulation for this community. This problem has nonlin-
ear constraint, so it cannot be solved using MOSEK. We
therefore wrote a function generateOptComModel to con-
vert RAVEN Matlab models to GAMS language (GAMS
Development Corporation) and used the BARON solver
hosted on the NEOS servers [50], a free optimization ser-
ver, to solve the optimization problem.

Max Z ¼ vbifbiomass þ vfapbiomass
s:t:

Max Zbif ¼ vbifbiomass ;Max Zfap ¼ vfapbiomass
s:t: s:t:

Sbif V bif ¼ 0 SfapV fap ¼ 0
Vbif ≤ UBbif V fap ≤ UBfap

−Vbif ≤ −LBbif −V fap ≤ −LBfap

vbifglc ≤ uvalbifglc vfapglc ≤ uvalfapglc

vbifacetate ¼ evalbifacetate vfapacetate ≤ uvalfapacetate

uvalbifglc þ uvalfapglc ¼ totalglc

uvalfapacetate ¼ evalbifacetate

ð2Þ

Description of community using XML
We described a community structure without details of
each model as XML format (see Additional file 5), because
LibSBML fails to read an SBML containing a user defined
attribute or XML tag for community features [51]. Both
iBif452 and iFap484 competed for glucose while iFap484
consumed acetate produced by iBif452. The functions ge-
nerateOptComModel and generateComModel used XML
files to generate OptCom and FBA models.

Results and discussion
Reconstruction of reference reaction data set
GEMs elucidate how organisms consume nutrients, car-
bon source, ammonia, phosphate and autotrophic me-
tabolites to build their biomass precursors and produce
chemical byproducts [52]. The biochemical reactions in-
cluded in a GEM are based on experimental or predicted
function of enzymes contained by the studied organism
[53]. Reconstructed GEMs share many components:
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exchange flux, transport, central metabolism, nucleotide,
amino acids, cofactor biosynthesis, cell wall and lipid.
Most GEMs use KEGG maps and literature to illustrate
the content of each component, where it contains one
or more KEGG maps. Additional file 1: Figure S1
(adapted from [54]) shows these components and the
KEGG map name for each component and how flux dis-
tributes to each component and builds the necessary
biomass precursors.
To cover the reactions in Additional file 1: Figure S1, we

built a reference reaction data set from published GEMs
and a manually curated reaction database Rhea. This re-
action data set contained reactions for the central car-
bon metabolism (glycolysis, PP pathway, TCA, pyruvate),
amino acids and nucleotide biosynthesis, cell wall (pep-
tidoglycan, capsular polysaccharide and teichoic acid bio-
synthesis) and cofactors (folate, CoA and NAD+). We
adopted the fatty acids biosynthesis and glycerophospho-
lipd metabolism in iAF1260. Then we included reactions
that connect other carbon resources, such as galactose
and maltose to the main network.
The reactions were organized to facilitate manual revi-

sion and editing of newly reconstructed GEMs. Each reac-
tion was assigned with KOs obtained from KEGG maps.
The reference reaction data set comprises 2,340 reactions
out of which 214 came from Rhea, 1256 unique meta-
bolite and 2146 KOs (see Additional file 6: Table S3). The
reference reaction data set was used to generate a draft
model with an input file containing a gene and its KO.
Additional file 7: Figure S2 shows how the reaction set
covers KEGG maps.

GEMs description
Table 1 shows statistics for the reconstructed GEMs and
comparison with draft models generated by Model SEED.
Table 1 Description of GEMS: iBif452 and iFap484 of B. adole
draft model generating by Model SEED

B. adolescentis L

iBif452

Reactions 699

Unique metabolite 611

Genes 452

Reactions without genes 84

Exchange 59

Transporter 12

Spontaneous 4

FILL 9

Genes from other annotations 7

Coding genes 2428
The iBif452 model comprises 699 reactions, 611 unique
metabolites and 452 genes constituting 18.62% of the total
number of genes. It contains 6 genes from TIGRFAMs
and one gene from Pfam. It needed 9 reactions to become
a connected model. Model iFap484 comprises 713 reac-
tions, 621 unique metabolites and 484 genes, constituting
13.93% of the total number of genes. It contains 6 genes
from TIGRFAMs and two genes from Pfam. It needed 16
reactions to become a connected model. Additional file 8
contains both models as Excel and SBML format.
Both iBif452 and iFap484 have reactions for the central

carbon metabolism and can utilize other sole carbon
sources than glucose, as reported in in vivo studies. iBif452
can utilize galactose, fructose and maltose, which is consist-
ent with in vivo studies [55]. The iFap484 can also utilize
galactose and maltose but cannot utilize xylose, which is
also consistent with in vivo studies [56]. iBif452 features
the bifid shunt pathway or the F6PPK pathway represen-
ting a special Bifidobacteria pathway converting glucose
to pyruvate (see Additional file 9: Figure S3) [57-59]. The
F6PPK pathway includes fructose-6-phosphate phospho-
ketolase converting D-Fructose 6-phosphate to Acetyl
phosphate and D-Erythrose 4-phosphate, compared to the
common part of glycolysis with 6-phosphofructokinase
and fructose-1,6-bisphosphate aldolase. iFap484 has a
Faecalibacterium prausnitzii butyrate producing pathway
(see Additional file 10: Figure S4) [60]. Neither iBif452 nor
iFap484 produces anything when the glucose uptake rate
is 0 mmol/gDW/h and the objective function is biomass
or ATP non-growth association maintenance, so the
models did not generate energy or matter from nothing.
In spite of the two models were validated with FBA in the
following two sections, the comprehensive validation of
the GEMs needs extensive experiments. Since these bac-
teria are not yet well-studied, we think the two models
scentis L2-32 and F. prausnitzii A2-165 in comparison with

2-32 F. prausnitzii A2-165

SEED draft iFap484 Seed draft

663 713 787

691 621 798

543 484 586

90

60

10

4

16

8

3475
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Figure 2 The effect of lactate production on the iBif452 Model. (A) The biomass decreases with increasing the lactate production. (B) The
production of acetate, formate, and ethanol decrease with increasing the lactate production.
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based on recently sequenced, may assist a lot to overcome
some important questions, computing phenotypic states
and describing the genotype-phenotype relationships.

Bifidobacterium adolescentis adolescentis L2-32 validation
Bifidobacterium has predicted genes for biosynthesis of
all 20 amino acids, purines and pyrimidines [57]. How-
ever, Bifidobacterium only grows in complex media,
probably because some of the genes in the biosynthetic
pathway for amino acids are non-functional [57]. We as-
sumed that iBif452 grows in media containing 12 amino
acids for which it has transporter reactions.
The iBif452 model did not produce lactate when bio-

mass or ATP production was optimized, while Bifidobac-
terium produces acetate, lactate, formate and ethanol
in vivo. Under glucose limitation, Bifidobacterium does
not produce lactate because it tries to maximize energy
production by cleaving pyruvate to acetyl phosphate and
formate [61]. Furthermore, the specific rate of sugar
consumption affects the amount of lactate production.
Table 2 Comparison between in-silco prediction of short chai
data

Formate

iBif452

Experimental [62]

Prediction (Biomass)

Prediction (ATP)

iFap484

Experimental [60] 0.97 ± 0.12

Prediction 1.77
For example, the organism produces a large amount of
lactate when it has a rapid sugar consumption, but pro-
duces a small amount of lactate when it consumes a less
preferred sugar like oligofructose [62].
To study the ability of the model iBif452 to produce lac-

tate, we maximized ATP production for non-growth asso-
ciation maintenance, i.e., the reaction ATP +H2O = >
ADP + Phosphate + H. The model produced 3 mmol of
ATP per 1 mmol of glucose and produced only acetate,
formate and ethanol. When the model was constrained to
produce 1 mmol of lactate per 1 mmol of glucose, it pro-
duced 2.5 mmol of ATP and 1.5 mmol of acetate per
1 mmol of glucose.
Figure 2 shows the effect of lactate production on the

iBif452 model when the biomass is an objective function.
In Figure 2A, the model achieved maximum biomass
when there was no production of lactate. In Figure 2B,
with increased production of lactate, the production rate
of acetate, ethanol and formate decreased. The model was
still able to produce acetate without formate because
n fatty acids of iBif452 and iFap484 with experimental

Yield (mmol / mmol glucose)

Acetate Lactate Butyrate

1.47 1

1.23 1

1.5 1

−0.96 ± 0.12 0.05 ± 0.01 1.045 ± 0.15

−1.39 0 1.62
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Bifidobacterium has the fructose-6-phosphate phosphoke-
tolase enzyme, which converts fructose 6-phosphate into
erythrose 4-phosphate and acetyl phosphate and the latter
can yield an ATP when metabolized to acetate. Flux vari-
ability analysis showed the differences between maximum
and minimum fluxes for acetate, formate and ethanol
were 0.0003, 0.011 and 0.011 mmol per 1 mmol of
glucose.
The last results showed that the model aimed to ge-

nerate ATP by converting pyruvate to acetate through
acetyl-CoA and acetyl-phosphate and it therefore has to
regenerate NAD + by forming ethanol, as this is only way
this co-factor can be balanced when there is formation of
acetate (See Additional file 9: Figure S3). Although the
model predicts a flux distribution for the theoretical ratio
between acetate and lactate in Bifidobacterium, it fails to
predict the amount of lactate just like previous GEMs
of lactic acid bacteria [63]. To overcome this problem,
Oliveira et al. constrained the pyruvate formate lyase
Figure 4 Simulation summary results using OptCom and FBA method
numbers are fluxes predicted by OptCom, the red numbers are fluxes pred
was fixed at 0.4 and 0.5 mmol/gDW/h in the iFap484 and iBif452 models re
butyrate is mmol/gDW/h. The unit of biomass is (1/h).
reaction to an interval to deal with lactate production in a
GEM of L. Lactic [64]. Bas Teusink et al. fixed the mea-
sured flux in the GEM of L. plantarum WCFS1 [38].
Milan et al. added new enzyme turnover parameter to
avoid metabolism overflow in GEM of L.lactis [65] based
on flux balance analysis with molecular crowding [66].
Finally, Bas Teusink et al. showed that L. plantarum opti-
mizes its yield when it grows with glycerol to support the
prediction of GEM in lactic acid bacteria [67].
In the present work, we constrained the lactate flux in

the model. When we constrain lactate production with a
yield of 1 (mmol/mmol of glucose), the model produces
acetate with a yield of 1.23 (mmol/mmol glucose), as
listed in Table 2. Flux variability analysis shows acetate
yield having a 0.007 (mmol/mmol glucose) difference
between maximum and minimum fluxes. When the ATP
production for non-growth association maintenance was
used as an objective function, it produced acetate with
a yield of 1.5 (mmol/mmol glucose). Flux variability
s when iBif452 and iFap484 grow together on glucose. The black
icted by the FBA method. ATP non-growth association maintenance
spectively. The unit of ATP, acetate, lactate, ethanol, formate and
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analysis showed that the acetate yield was not different
between the maximum and minimum fluxes. Finally,
when the model was constrained to produce 0.21 mol of
lactate per mol of glucose, it had a growth yield of 37.2
gDW per mol of glucose, which was very close to the
in vivo. Bifidobacterium growth yield of 37.4 gDW per
mol of glucose [68].

Faecalibacterium prausnitzii A2-165 validation
To study the effect of external acetate on butyrate produc-
tion in Faecalibacterium prausnitzii A2-165, biomass pro-
duction was used as an objective function. The model
produces butyrate with a yield of 1.62 (mmol butyrate/
mmol glucose) and co-consumes 1.39 mmol of acetate per
mmol of glucose. The ratio of acetate uptake to butyrate
production was 85.8%, which is close to the 85-90% ob-
served in in vivo studies of F. prausnitzii [69]. Flux varia-
bility analysis shows that the acetate, butyrate, and formate
have a difference of 0.0005, 0.014, and 0.014 mmol/gDW/h
between maximum and minimum fluxes, respectively.
Table 2 shows the comparison between these values with
in vivo studies [60], where F. prausnitzii consumed 10 mM
of glucose and 9.55 ± 1.2 mM of acetate to produce
10.45 ± 1.53 mM of butyrate.
Figure 3 shows a sensitivity analysis of the effect of

acetate and glucose on iFap484 with biomass as an
objective function. The acetate and glucose uptake rate
varied from 0 to 1 mmol/gDW/h. iFap484 cannot grow
without glucose and grows poorly without acetate. This
result is similar to in vivo studies of F. prausnitzii A2-
165, that shows poor growth without acetate in the
medium [69] and the F. prausnitzii strains L2-6 and
ATCC 27766 cannot grow without acetate [70]. The
model predicted increase in growth rate with acetate
supplied was 3.93-fold, close to the in vivo value, where
the increase in growth rate is 3.6-fold [60].
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Community simulation
Both OptCom and FBA methods were applied to iBif452
and iFap484 to simulate how B. adolescentis L2-32 and F.
prausnitzii A2-165 co-culture together. Both organisms
compete for 1 mmol/gDW/h of glucose to maximize their
growth. The model iBif452 generates acetate and iFap484
consumes acetate to produce butyrate, which plays a
critical role in colonic homeostasis and cancer prevention
[71-73].
Figure 4 depicts the prediction of fluxes calculated using

both methods: OptCom and FBA, where biomass was an
objective function. iFap484 consumed 0.57 mmol/gDW/h
of glucose and all the acetate produced by iBif452 to pro-
duce 0.92 mmol/gDW/h of butyrate. With flux variability
analysis, the differences between maximum and minimum
yield of acetate and butyrate were 0.00004 and 0.007
(mmol/mmol of glucose) respectively. There was no sig-
nificant difference between OptCom and FBA simulations.
However, for this simple system, FBA provided faster
simulation than OptCom.
Finally, FBA was used to simulate how a consortium

of iBif452 and iFap484 interact. The composition of the
consortia was varied from 0% to 100% iFap484, while
keeping the total biomass constant, and the objective
function was minimization of glucose uptake rate in
both iBif452 and iFap484. The biomass production rate
was fixed at × % in iFap484 and (1-×) % in iBif452 of
total biomass, where the total biomass growth rate was
0.1 (1/h). Figure 5 shows the increase in butyrate pro-
duction as iFap484 composition increases.

Conclusion
We assembled a reaction set from published GEMs,
where each reaction is assigned with KO. This reaction
set was used to generate draft GEMs for each non-
KEGG organisms. It represented a simple method to
0.5 0.6 0.7 0.8 0.9 1

sition of iFap484

Glucose
Butyrate

t of butyrate and the total glucose consumption change with different
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generate bacterial draft models from KEGG KO, instead
of generating it from KGML [74]. The description of a
community as a XML format can be used together with
the two community simulation methods Optcom and
FBA. This saves time and effort when performing com-
munity modeling.
Community simulations of an acetate producer B. ado-

lescentis adolescentis L2-32 and an acetate consumer
F. prausnitzii A2-165 provided insights into metabolic
cross talk between these two members of the gut micro-
biota. It shows the importance of acetate supply to buty-
rate production, since the growth and production of
Faecalibacterium prausnitzii is severely hampered by lim-
ited acetate supply. This is an initial attempt to approach
the very complex ecosystem and metabolic organ that the
gut microbiota constitutes.
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