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Abstract

Background: Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires
numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting
an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a
programming language such as C or MATLAB) to access the selected solver and display the integrated results as a
function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of
programming sophistication. A modern alternative is to use a graphical programming interface such as SIMULINK to
construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a
visual representation of the inter-relationships between the state variables whose output can be made completely
equivalent to the code-based solution.

Results: As a tutorial introduction, we first demonstrate application of the SIMULINK data-flow technique to the
classical van der Pol nonlinear oscillator, and compare MATLAB and SIMULINK coding approaches to solving the van
der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving
numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator
chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by
both chemical and electrical (diffusive) synapses. We compare the relative performances of the MATLAB and

SIMULINK implementations.

Conclusions: The pattern simulations by SIMULINK are in good agreement with theoretical predictions. Compared
with traditional coding approaches, the SIMULINK block-diagram paradigm reduces the time and programming
burden required to implement a solution for reaction-diffusion systems of equations. Construction of the
block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy
modification and use by non-experts.
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Background in human cortex [6]. Generally, there exist two kinds of
Natural systems exhibit an amazing diversity of patterned  natural patterns [7]:

structures in both living and nonliving systems [1], such
as animal coats (e.g., zebra stripes, leopard spots and fish
spirals), chemicals in a gel [2], laser light in a cavity [3],
charges on the surface of a semiconductor [4], ecological
balance between two species [5] and neuronal activations

e Thermodynamic equilibrium-based, such as crystal
structures in inorganic chemistry and spontaneously
emergent organic polymer patterns. The forming
mechanisms of these patterns have been extensively
studied and well-explained via thermodynamics and
statistical physics: When a system’s temperature
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principle of minimum energy allows the system to
form certain spatial structures.

e Thermodynamics far-from-equilibrium, such as
examples mentioned at the beginning of this section.
These patterns emerge away from thermodynamic
equilibrium, thus thermodynamic theory is not
applicable. The understanding of these patterns may
require application of kinetic theories.

Pattern dynamics research focuses on universal pattern-
forming mechanisms for the latter case. Away from ther-
modynamic equilibrium, some experimentally observed
2D spatial patterns have been reported: Rayleigh-Bénard
convection patterns [8]; reaction-diffusion Turing pat-
terns [9]; Faraday-wave patterns [10]; vibratory granular
patterns [11]; slime-mold spiral patterns [12] and Ca**
spiral waves in Xenopus laevis eggs [13]. Although these
patterns are different in the spatiotemporal scales or
detailed pattern-forming mechanisms, they have similar
structures.

More than half a century ago, British mathemati-
cian Alan Turing strove to understand the spontaneous
processes generating these structures. In his famous
1952 paper [14], he proposed a reaction-diffusion model
explaining potential mechanism for animal coats: At a
certain stage of embryonic development, the reaction
and diffusion between molecules, known as morphogens,
and other reactors, lead to the breaking of symmetry of
the homogeneous state. The morphogens spontaneously
evolve to a non-uniform state, leading to the unique tex-
tures seen on animal skin. The key pattern-forming idea
in Turing’s paper is the system’s spontaneous symmetry-
breaking mechanism, also known as a Turing bifurcation
(spatial instability).

However, for nearly 30 years Turing’s paper drew
little attention for two reasons: morphogens had not
been found in biological systems; negative chemical
concentrations are permitted in Turing’s model, but
are not accepted by chemists. From the late 1960s, a
Brussels team led by Ilya Prigogine (winner of 1977
Nobel prize in chemistry) was endeavouring to prove
Turing’s theory. Prigogine developed a reaction-diffusion
model, Brusselator [15], to show the existence of Turing
patterns that obey the rules of chemical kinetics. The
Brusselator is a mathematical representation of the
interaction between two morphogens, a reactor and an
inhibitor, competitively reacting in time and spread-
ing in space, which could give rise to a symmetry-
breaking transition bifurcating from a homogeneous to
patterned state, either stationary in a spatial (Turing)
structure or in a temporal (Hopf) oscillation [15].
The Brusselator model further revealed the “secret” of
Turing patterns: a coupling between nonlinear reac-
tion kinetics and distinct diffusion rates such that the
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inhibitor should diffuse more rapidly than the activator
[16].

This Brusselator proposed activator—inhibitor interac-
tion is now a well known universal principle explaining
regular pattern formation in chemical [17-19], ecological
[5,20] and physical [21,22] systems, as well as biological
systems [23,24].

As pattern-forming systems essentially consist of cou-
pled differential equations, the simulated patterns are
time- and space-dependent solutions of the differential
equations. The MATLAB built-in fourth-order Runge-
Kutta solver ode45 and custom Euler methods are
common ways to integrate differential systems. The
implementation of these algorithms are well explained and
demonstrated in many studies [25-28]. For example, in
Yang’s book [25], at the end of Part I Yang presents a piece
of concise MATLAB code for efficiently simulating sim-
ple reaction-diffusion systems. With some modifications,
Yang’s programs can be used to simulate pattern forma-
tion in a wide range of applications of nonlinear reaction-
diffusion equations. Some of these examples are discussed
in detail in Part III of Yang’s book. Alternative to MAT-
LAB, there are other options for pattern simulations such
as MEREDYS [29], implemented in the Java programming
language, interpreting the NEUROML model description
language [30]. Besides, there are other programming envi-
ronments applicable to modelling pattern formations such
as COMSOL [31] and MODELICA [32].

Although it is efficient to solve differential equations
in MATLAB or other programming platforms, their code
script-based pattern simulations require high-level pro-
gramming skills to tune the model parameters in order
to examine the pattern dynamics; this limits their uptake
by non-programmers. A few attempts for graphic-based
pattern simulations have been made in the last decades.
For example, READY [33] is an ideal program for getting
started with reaction-diffusion systems. It runs fast (tak-
ing advantage of multi-core architectures), is easy to use
(graphic-based) and runs on multiple platforms. In addi-
tion, there are other Java applets allowing easy pattern
simulations such as Gray-Scott Simulator [34], showing
the Gray-Scott pattern [35]: phenomena in grids of points
that are connected “amorphously” This closely models
the development of a biological system of living cells.
Similarly, Lidbeck has created another Java application
[36] with extensive presets and options, and even allows
3-D of pattern simulations. However, these graphical
user interface (GUI)-based softwares designed mainly for
demonstrations of specific (pre-loaded) models. READY
supports custom models but is written in READY-specific
codes. So technically, READY is still a coding-based plat-
form with a GUI interface. In the community of pattern
dynamicists, there may be a demand for a software plat-
form circumventing the programming burden required to
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implement numerical simulations of biologically-relevant
pattern-forming systems.

The aim of this paper is to introduce SIMULINK mod-
elling for simulating pattern dynamics. SIMULINK, an add-
on product to MATLAB, provides an interactive, graphical
environment for simulating and analysing dynamic sys-
tems. It enables modelling via a graphical programming
language based on block diagrams. SIMULINK has been
used extensively in engineering field [37] such as control
theory and digital signal processing for multidomain sim-
ulation [38] as well as model-based design [39]. Besides,
SIMULINK users have extended its applications in other
areas such as medical device prototyping [40], heat trans-
fer modelling [41,42] and chemical reactions [43].

The present paper introduces the application of
SIMULINK to pattern simulation studies, and it is organ-
ised as follows. We start, for pedagogical reasons, with
a brief demonstration of the SIMULINK in modelling dif-
ferential equations. Then, we construct the well-known
Brusselator model in SIMULINK. By extending the Brus-
selator modelling strategies, we construct a SIMULINK-
based human cortical model [44] (developed by the
authors’ team) that incorporates the pattern-forming
essentials while retaining neurophysiological accuracy:
the cortical model comprises interacting populations of
excitatory and inhibitory neurons which communicate
via chemical (neurotransmitter-controlled) and electri-
cal (gap-junction) synapses. In the model, the interaction
between chemical kinetics and electrical diffusion allow
for the emergence of a comprehensive range of patterns,
which may be of direct relevance to clinically observed
brain dynamics such as epileptic seizure EEG spikes
[6], deep-sleep slow-wave oscillations [45] and cognitive
gamma-waves [46,47].

Finally, we examine the Brusselator and cortical model
pattern dynamics. These simulation results are compared
with the theoretical predictions.

Methods
Consider a generalised reaction-diffusion system for two
reacting and diffusive species {J and V' of the form:

au
o = fu(U, V) + DyV*Uu

(1)
v

ot

The diffusion constant Dy [with units (length)?/time]
is an important parameter indicative of the diffusion
mobility. For a multi-component system, the higher the
diffusivity, the faster the species diffuse into each other.
Here, fi;,v (U, V) is typically a nonlinear function of con-
centrations U and V.

Solving a pattern-forming system in the form of Eq. (1)
requires interpreting the differential operators for time

fyU, V) +DyV*V
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d/dt and space V2. In the following example, we first
model the van der Pol oscillator in SIMULINK to explain
how we interpret the differential operator on time.

Van der Pol oscillator

The van der Pol oscillator was originally developed by the
Dutch electrical engineer and physicist Balthasar van der
Pol [48]. The van der Pol oscillator was the first mathe-
matical model proposed for the heartbeat, and it has also
been used to simulate brain waves [49,50]:

d%x
dg?

=0 @)
dat T

—n(1—a%)

We wish to solve this equation for the case ¢ = 1 with
initial conditions x(0) = 2 and dx/dt = 0 att = O.
The traditional way to solve a second-order differential
equation is to convert to a pair of coupled first-order
differential equations:

X =
NP )
J=u(l—a")y—x

We would now integrate these equations with time

using the MATLAB numerical integrator ode45. This

helps to form the link with the integration in SIMULINK.
We code the first-order van der Pol equations into a

MATLAB function® as follows:

function dydt = vanderpoldemo (t,y,Mu)
$VANDERPOLDEMO
$Defines the van der Pol equation for ODEDEMO.

Copyright 1984-2002 The MathWorks, Inc.
Revision: 1.2 Date: 2002/06/17 13:20:38

%
g
%
g

dydt = [y(2); Mux(1-y(1)"2)xy(2)-y(1)];

To solve Eq. (3), we specify the coefficient u, the initial
conditions and the time-span over which the integration
is to proceed; then pass these values, along with the name
of the van der Pol function, to the Runge-Kutta solver
ode4b:

tspan = [0, 20]

y0 = [2; 0]; Mu = 1;

ode = @(t,y) vanderpoldemo (t,y,Mu);
[t,y] = ode45(ode, tspan, yO0);

% Plot of the solution plot
(t,y(:,1), t, y(:,2))

xlabel ('t")

ylabel ('solution y’)

title(’van der Pol Equation, mu = 1')

The calculated results are plotted in Figure 1.

Alternatively, we may use the SIMULINK construction of
Eq. (2), as shown in Figure 2.

At a first glance, the interface for SIMULINK is com-
pletely different from the code sheet. In SIMULINK, all
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Figure 1 Solution of the van der Pol equation, produced via MATLAB code sheet. Program running time: 0.384 s in variable time-step.
Simulation platform (same for all simulations in this paper): MATLAB R2013a, MAC OS X 10.9.1, XCODE 5.0.2; CPU 2.4 GHz Intel Core i7, memory 8 GB
1600 MHz DDR3.

calculating elements are displayed by blocks. We select
blocks from the SIMULINK library, then connect them to
build a model.

The basic principle to model a differential equation in
SIMULINK is to find the input and output of an integrator.
Since we have:

/[/ ijdt] dt:fjfdt:x @)

then it follows that for a second-order differential
equation, we need at least two integrators. As seen in
Figure 2, we first place an integrator block (the left
block labelled with i) to process the inner integration

of Eq. (4): [ ‘j;ﬁ‘ dt. The output of this integrator reads
dx/dt, which is sent into the second integrator (the right
block labelled with i). We assume the integrated x is
known, thus being used to construct the input of the

2
left integrator block, which is equivalent to 4% \with the

dt?
form:
d%x dx
At :M(l_xz) dr - (5)

The product block (labelled with x) in Figure 2 com-
bines (1 — x?) and dx/dt. The result is amplified by a gain
(triangle block, valued w), then passed through a function
block where x is subtracted. Here, the RHS of Eq. (5) is
constructed.

Modelling a differential equation in SIMULINK requires
forming a closed loop, where the integrated variables are
fed back into the system. Evolution proceeds until reach-
ing the desired final time. The scope block shows the
real-time output of the two integrators; the scope can be
placed anywhere to monitor the response of a sub-system.
The Out1 and Out2 terminals send outputs of two inte-
grators to the MATLAB workspace for further analysis.
The results of this SIMULINK model are exactly the same
as shown in Figure 1.

van der Pol Model

Fcn

dx
dt

S

Out1

Figure 2 SIMULINK built-in example for the van der Pol model called by the MATLAB command vdp.

TI_,D

Scope

D

Out2
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Both MATLAB and SIMULINK allow fixed or self-
adaptive (i.e., auto) time-steps for the Runge-Kutta
solver®. Figure 3 shows that the discrepancy between
MATLAB and SIMULINK Runge-Kutta solvers in either
fixed or auto time-step mode are sufficiently small
(< 10719). Consequently, we can see that the accuracy
of the model simulation does not depend on the mod-
elling platform since MATLAB and SIMULINK share the
same integration algorithm to solve differential equations.
However, modelling in SIMULINK is more straightfor-
ward and intuitive, and requires less programming skill
than the MATLAB code sheet. The original mathematical
equations can be converted into SIMULINK by matching
its pattern with SIMULINK blocks directly. Moreover, in
SIMULINK, by simply adding more blocks, or replacing
blocks, a new model is able to be built in a very short
time. SIMULINK may be an ideal tool to efficiently per-
form the simulations of a mathematical model. In the next
section, we will extend the SIMULINK modelling method
to describe a Brusselator system considering both its tem-
poral and spatial evolutions on 1-D and 2-D Cartesian
grids.

Readers should be aware of the choice of an appropri-
ate differential solver for a specific problem, depending on
the stiffness of differential equations. Applying a wrong
solver may lead to either unstable solution or exceptional
computation time. However, it is practically difficult to
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identify the stiffness of a differential model, thus one
should try at least two different solvers, and compare the
results. If they concur, i.e. give the same solution, they are
likely to be correct. As suggested by MATLAB help file,
it is worthwhile to try ode45 first since it is the most
widely used method. For pattern-forming systems, we can
also compare the numerical solution with the theoreti-
cal prediction to identify the applicability of the solver.
For the demonstrated Brusselator and cortical models,
ode45 and ode23 both work well and give rise to sim-
ilar result; moreover, the numerical solutions match well
with the theoretical predictions in emergent patterns (see
Results and discussion section). So we choose ode45
solver to integrate the differential-equation models in this

paper.

Brusselator model

The Brusselator model describes the competition of
two chemical species in a chemical reaction, and is the
simplest reaction-diffusion system capable of generating
complex spatial patterns. The competition between two
reactors and the introduction of diffusion satisfy the key
requirements for pattern formation [14]. The pattern
dynamics of the Brusselator has been comprehensively
examined in de Wit [15] and other researchers’ work
[51-54]. Here, our purpose is to introduce the
SIMULINK modelling strategies.

X107 (a) fixed time-step: 103 sec

Discrepancy
(=}

|
(8]

L 1 1
100 120 140

L 1
160 180

are 17.3952 and 9.4569 s.
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T T T
)
c 2
©
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O
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Figure 3 Comparision for the van der Pol equation solved from SIMULINK and MATLAB code sheet. Discrepancy over time for the solution of
Eq. (2) is calculated from two modelling methods: SIMULINK and MATLAB code sheet. Both methods use (a) fixed time-step 10~3 s; or (b) auto
time-step. Program running time for SIMULINK in fixed and auto time-steps are respective 1.3410 and 0.7404 s; for MATLAB the corresponding time
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SIMULINK version of Brusselator model
The simplest form of the model reads [55],

I x=n— B+ 1)X 4+ XY + DxV3X

" (©)

5 Y =BX - X*Y + DyV?Y
where X and Y denote concentrations of activator and
inhibitor respectively; Dy and Dy are diffusion constants;
A is a constant and B is a parameter that can be varied to
result in a range of different patterns.

The LHS of Eq. (6) is a partial derivative on time since X
and Y are functions of both time and space. At the RHS,
the spatial derivative is represented by a Laplacian opera-
tor V2. In the numerical simulation, the spatial dimension
of the model is discretised into a grid by using the finite
difference method. In the two-dimensional system the
Laplacian with respect to the concentration field U in
the node (i,)) is calculated along the x and y directions
simultaneously:

201 AL
where
ALUij = Uiprj — 2Usj + Uiy js
Afui,/ = Ujy1 — 22U+ Uj (8)

The /., demonstrators in Eq. (7) are the respective x
and y grid spacings; they define the spatial resolution.
Assuming # = h, = h, (ie, a square grid), the dis-
crete Laplacian operation in a one-dimensional Cartesian
coordinates along the y-axis has the form:

Uijpr —2U;5 + Uij1

2 ~
Viplij ~ 2

)
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for the two-dimensional case, we have

Uip1j+ Uiy —4Uij+ Ui + Ui
2

In SIMULINK, we initialise the Brusselator model as a
column vector consisting of a 60 x 1 grid (spatial resolu-
tion = 1 cm/grid-point) for the one-dimensional case; or
as a 60 x 60 grid for the two-dimensional case. Grid edges
are joined to give toroidal boundaries.

The Laplacian operator V, in Eq. (9) is implemented
as a circular convolution of the 3 x 1 second-difference
kernel LJ{D acting along the y-axis:

v, Ui ~ (10)

2 ) !
Vip~ Lip = 2 -2 (11)
y 1

The two-dimensional Laplacian operator V22D in Eq. (10)
is built up from the sum of two orthogonal Lip operators:

(ool ;fooo0] ;[o1o0

2 _ —

Vip~Lp=, [0 204 (1 -21|= |1 41
*lo10] oo o 010

(12)

where we have again assumed a square grid so that 4, =
hy = h.

In SIMULINK, the 1-D or 2-D Laplacian operator with
toroidal boundaries is processed through two blocks: The
“wrap-around” and “2-D CONV” (can process both
1-D and 2-D convolutions) . The “wrap-around” block
wraps the input matrix on both axes to allow a valid con-
volution in the “2-D CONV” block against the Laplacian
kernel L to return the cyclic convolution. We created
a subsystem to compute the convolution, as shown in
Figure 4.

In Figure 4, the custom block labelled “wraparound”
contains codes extracted from the convolve2 ()
function®.

11—y

P e

: In1
wraparound M

(1 )4——2-D CONV

Out

V2X

MATLAB Function In2

24— 3)

In3

Figure 4 SIMULINK modelling of the convolution with toroidal boundaries. The spatial derivative V2X approximates to the discrete
convolution of X given by the kernal L. X will be fed into the port In1, the kernel L enters In2 and In3.
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function y = wraparound(x, m)
Extend x so as to wrap around on both axes,
"valid"

o° o° o° o

"same" option.
[mx, nx] = size(x);
[mm, nm] = size(m);
if mm > mx | nm > nx
error (‘Mask does not fit inside array’)
end

sufficient to allow a
convolution with m to return the cyclical convolution.
We assume mask origin near centre of mask for compatibility with

mo = floor ((l+mm)/2); no = floor((l+nm)/2); % reflected mask origin
ml = mo-1; nl = no-1; % mask left/above origin
mr = mm-mo; nr = nm-no; % mask right/below origin
me = mx-ml+1; ne = nx-nl+1; % reflected margin in input
mt = mx+ml; nt = nx+nl; % top of image in output
my = mx+mm-1; ny = nx+nm-1; % output size
y = zeros (my, ny);
y(mo:mt, no:nt) = x; % central region
if ml > 0
y(l:ml, no:nt) = x(me:mx, :); % top side
if nl1 > 0
y(l:ml, 1:nl) = x(me:mx, ne:nx); % top left corner
end
if nr > 0
y(1l:ml, nt+l:ny) = x(me:mx, 1l:nr); % top right corner
end
end
if mr > 0
y(mt+l:my, no:nt) = x(l:mr, :); % bottom side
if nl > 0
y(mt+l:my, 1:nl) = x(l:mr, ne:nx); % bottom left corner
end
if nr > 0
y(mt+l:my, nt+l:ny) = x(l:mr, 1l:nr); % bottom right corner
end
end
if nl > 0
y(mo:mt, 1:nl) = x(:, ne:nx); % left side
end
if nr > 0
y(mo:mt, nt+l:ny) = x(:, 1l:nr); % right side
end

The reason we introduce the custom block is that the
SIMULINK built-in 2-D CONV block provides only the
“valid” (non-flux) boundary condition, and cannot handle
periodic boundaries.

Following the ideas of modelling the van der Pol oscilla-
tor, we can easily convert Eq. (6) to SIMULINK blocks, seen
in Figure 5.

SIMULINK versions of Waikato cortical model equations
The authors’ team at the University of Waikato (New
Zealand) has developed a mean-field cortical model which
encapsulates the essential neurophysiology of the cor-
tex, while remaining computationally cost efficient [44].
The model envisions the cortex as a continuum in which
pools of neurons are linked via chemical and electrical
(gap-junction) synapses.

Model background

The Waikato cortical model has a rich history of develop-
ment: The model is based on early work by Liley et al. [56],
with enhancements motivated by Rennie et al. [57] and
Robinson et al. [58]; and has been recently extended to
include electrical synapses (also referred as gap junctions)

[44,47] supplementing neural communications via chem-
ical synapses.
The Waikato cortical modelling assumptions are:

1. Cortical element is the “macrocolumn” containing
~100,000 neurons.

2. There are only two distinct kinds of cortical neurons:
85% excitatory, and 15% inhibitory neurons.
“Excitatory” and “inhibitory” are classified according
to their effects on other neurons.

3. There are three isotropic neuronal interactions:
cortico-cortical (long-range from other
macrocolumns), intra-cortical (short-range within
macrocolumn) and connections from subcortical
structures such as the thalamus and brain-stem. A
macrocolumn with diameter ~1 mm and depth ~3 mm
is sketched in Figure 6. We further assume that
inhibitory connections via their short axons are
locally restricted within a macrocolumn. In contrast,
the axons from excitatory neurons are often longer
and extensively branched, having length ranging
from centimetres to several meters (e.g., in a
giraffe’s neck), allowing exclusively excitatory
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Brusselator reaction—diffusion model (2D space)

2]

<
L‘
To Workspace
L X Matrix
- c N 7| Viewel
AH X“
= Matrix
Initial state X /ot 5%
L <N v
i< 1 Matrix
Pde2 Yo YS 7| Viewel
0
Initial state oY /ot Me}l}rix
v
In1 &
—{Out In2 |-
Gain n3 |4
2-D Convolution
X Laplacian
In1 %
Out n2 [«
Gain In3 |«
2-D Convolution
Figure 5 SIMULINK construction of the Brusselator model.
cortico-cortical connections. Both excitatory and Model equations

inhibitory connections are permitted in local neuron
connections.

4. Neurons exchange information via both chemical and
electrical (gap-junction) synapses. Gap-junctions are
more abundant within inhibitory populations, while
being rare within excitatory neuronal populations.

The authors’ team first introduced gap-junctions into
the cortical model in the paper Gap-junction mediate
large-scale Turing structures in a mean-field cortex driven
by subcortical noise [44]. The cortical model is expected
to exhibit similar dynamics to a chemical reaction-
diffusion system: The interaction between the excitatory
and inhibitory neurons is analogous to to the competi-
tion between the activator and inhibitor of the chemical
reaction-diffusion model, e.g. the Brusselator. The gap-
junction strength between inhibitory neurons also plays
the same role as the diffusion terms in the Brusselator,
which allows a spatial evolution of the patterns. Conse-
quently, it is reasonable that the cortical model exhibits
similar pattern dynamics for those seen in the chemical
reaction-diffusion system.

The neuron populations deliver spike flux ¢,, from
sources Q, at a distance following damped wave equations
[58]:

[(3/0t + vAu)? — VP V2] $up = V¥ A2, Qa (13)

The subscript ab is read “a — b’, the connection from
the presynaptic neuron type  to postsynaptic neuron type
b. a, b can be either e (excitatory) or i (inhibitory). Q, is
the spike-rate flux, which is a mapping from membrane
voltage V,, to population-averaged firing rates:

Qmax
a

- 1+ efc(vafea)/ga (14)

Qu
The total input flux arriving at the post-synapse is given
as,

Map = N o2 +N5 oh + 05 (15)
N—— N e’ N——"

long-range local subcortical

where superscripts o and S distinguish long-range and
local chemical synaptic inputs; N, and Nf , are the
number of such input connections. The cortex is driven
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Figure 6 Schematic representation of the connective topology within a cortical macrocolumn. Only four of the ~100,000 neurons are
shown. The shapes of neurons are determined based on their appearances under microscope: triangles are excitatory (pyramidal) neurons; circles
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by subcortical noise which enters the intra-cortex. Sub-
cortical excitation ¢7; is modelled as small-amplitude
spatiotemporal Gaussian-distributed white noise super-
imposing on a background excitatory “tone” (¢%;) whose
constant level is set via a subcortical drive scale-factor s:
550 = S(8%5) + Ean (D), [5(655) (16)
where &, is the Gaussian-distributed white-noise sources
being delta-correlated in time and space. Inclusion of
white-noise stimulation is motivated by physiological evi-
dence that the cortex requires a continuous background
“wash” of input noise to function normally.
The total input flux @, is the temporal convolution of

the dendrite impulse response H(¢) with the input flux
Myp:

®,;, = (dendrite response) ® (input flux)

= Hb(t) ®Mab(t) (17)

t
= f Hy(t — t') Myp(t)dt'
0

where the dendrite dynamics are modelled by the alpha-
function impulse response

Hy(t) = yyte™ (18)

Reducing y; is equivalent to increasing the time-to-
peak (1/y;) for the hyperpolarising GABA (gamma-
aminobutyric acid) response, as indicated in Figure 7.

By taking derivatives, Eq. (17) becomes

3 2 5
9t tVa| Pap=v; Map(t) (19)

Therefore, the flux received by target neuronal popula-
tions are:

P 2
(atwe) oy = [ NGty + NG Qe+ 835 72 (200)

3 2
(Bt i ”") @i = NyQuv? (20)
Finally, those incoming spikes perturb the soma resting
potentials:

aVy

oot

=V — Vi + peVep®ep + piVisPip + D12V>Vj
—_——

chemical synapses electrical synapses

(21)

We write Dy, as the diffusive-coupling strength between
electrically adjoined e < e, i < i neuron pairs. To
simplify the notation, we write (D1, D2) = (Dee, D).

Symbol definitions for the cortical model are sum-
marised in Table 1.
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Figure 7 Cortical IPSP (inhibitory post-synaptic potential) response (inhibitory alpha-function) curve. With delays in the inhibitory
postsynaptic response (reduction of the inhibitory rate-constant y;), the occurrence of the IPSP peak will be delayed. Here, the position of the peak
shifts from 0.017 to 0.04 s by reducing y; from 58.6to 255~ .

SIMULINK versions of Waikato cortical model equations °
Let us first list the mathematical equations for the Waikato
cortical model and examine their characteristics.

e The cortico-cortical equation

9 2
( et vAeb) — VPV | ¢% = (VAep)* Qe

can be arranged by collecting temporal derivatives to

the LHS:

2

at?

o=V V20—V A PG+ (vA) Qe

(22)

Table 1 Symbol definitions for the cortical model

Symbols

eb,ib
Ye

Yi
()
Tei
Vei"
Ver
A Vé?St
Pe

Pi

D,
Dn

Description

Inverse-length scale for e — b axonal connection
Axonal conduction speed

Maximum firing rate

Sigmoid threshold voltage

Standard deviation for threshold

Constant

Long-range e — b axonal connectivity

Local e — b, i — b axonal connectivity
Excitatory rate-constant

Inhibitory rate-constant

e — b tonic flux entering from subcortex
Neuron time constant

Reversal potential at dendrite

Neuron resting potential

Offset to resting potential

Excitatory synaptic gain

Inhibitory synaptic gain

i <> i gap-junction diffusive coupling strength

e «> e gap-junction diffusive coupling strength

The intra-cortical equations

9 2
(at+7e> cI>eb:|: :;Z fb+N£,Qe+¢§Z]V3

J 2 B 2
a¢ +vi) Pip= I:N,-bQi] Yi

have different RHS, but their LHS are in the same

mathematical pattern:

at ad

Value
4
140
30,60
-585,-58.5
3,5
/3
2000
800, 600
170
50
300
0.04,0.04
0,-70
-64, -64
15,0
1.00 x 1073
—1.05x 1073
0-20
D>/100

2 2
a+ qn—a ®+2 ac1>+ 2o (23)
14 =40 Yo 14

Unit
cm

cms™!

mV
mV

mV's
mV's
cm

cam
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We can move the term y2® to the RHS of the
intra-cortical equations, then the LHS of the
intra-cortical equations have the expression:

2 9 ®
ot2 ot
which is similar to the LHS of the cortico-cortical

equation.
e The soma equation

aVy _
ar

can be re-arranged as

@ + 2y (24)

T S Vit (e Ve Pen+0iVin Pin) +Dpp V2 Vi

Ve 1 rest _ Ao D v?2
ot 1, V35 = Vit (0eVep Pep+piVriv Pin) +Dipp V> Vi)
(25)

Following the ideas of SIMULINK modelling in van der
Pol oscillator, we need two integrator blocks for Egs. (22)
and (24), and two convolution processing for Egs. (22)
and (25).

The strategy for modelling a large system is to focus
on its subsystems first, then connect them together. The
Waikato cortical model has three major parts: cortico-
cortical, intra-cortical and soma equations. Figure 8 shows
how neuronal fluxes are transferred from one to another:
cortico-cortical flux ¢% is delivered to the long-range
targets @, and &,; intra-cortical flux P, and P,
®;, and ®; merge into the soma equations. The out-
put of the soma V, is connected to source neurons to
form the closed loop through the excitatory sigmoid
function:

Qmax
Q = Vet
1+e (Ve—0e) /0

In following sections, we detail the SIMULINK imple-
mentation of the three subsystems (drawn as three blocks
in Figure 8) of the cortical model.
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Cortico-cortical flux The SIMULINK based cortico-
cortical block (see Figure 9) is converted from Eq. (22).
The flux-source Q. is a mapping from the excitatory soma
voltage sent via the Got o block, to the firing-rate received
via the From block. After two integrations, signals will
be passed to the excitatory synapses via port-1 (upper
right corner) and inhibitory synapses via port-2 in the
intra-cortex.

Intra-cortical flux In SIMULINK modelling, we divide
Eq. (16) into two parts: the constant (i.e. dc-level) excita-
tory background s{(¢};) and the one-off kick \/s(¢):f?)$eb.
As illustrated in Figure 10, we use a C1lock block to count
the iteration step. Once the counter is above one, the
“switch” will turn off the kick, allowing only the constant
excitation to enter the intra-cortex (removing the Clock
block would allow on-going noise stimulus from the sub-
cortex). The 2-D spatial white noise are generated by the
Band-Limited White Noise block.

The intra-cortical model describes how post-synaptic
fluxes evolve over time. In Figure 11, the local fluxes (input
via the From block) along with the long-range fluxes
(from input-1 at the left, labelled as ¢¢) and subcorti-
cal drive are summed, then filtered at the post-synaptic
dendrite, thus forming the post-synaptic fluxes @, at the
output port-1 (upper right corner). The ®,, and ®,; flux
models have symmetric structure.

We assume that the cortico-cortical fibres are exclu-
sively excitatory, thus there are no long-range inhibitory
fluxes entering into the soma. Figure 12 shows that
the local inhibitory fluxes ®;, come from local source
Q; only. The ®;, and ®;; models also have symmetric
structure.

Soma voltage Figure 13 presents the soma model of
the excitatory neuronal group. The short-range fluxes
are accumulated at the soma, from ports 1 and 2. The

sigmoid mapping

cortico-cortical

(.. .)<I|>66 =

Neos + 2 |

oVe

= (/)eweeq)ee + p17')16(pte) +...
A

le

ot

[
() =

} ‘
(--)®ei = [NGOZ + . ]2

v; ‘
Tiat = (petei®ei + pithiiPii) + ...
ot A

l

intra-cortical

Figure 8 Flux flows for the Waikato cortical model between its cortico-cortical, intra-cortical and soma equation subsystems.
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Figure 9 SIMULINK-based cortico-cortical wave-equation.

soma voltage V. is converted to firing-rate Q. locally
in this sub-model (block labelled with Q. sigmoid),
then fed back into the cortico-cortical and intra-cortical
models.

Finally, we connect all subsystems to form the com-
pleted Waikato cortical model, as illustrated in Figure 14.
It follows the flux flow-chart of Figure 8, with the
detailed SIMULINK block connections shown in Figure 15.
We argue that such model-based-design is an advan-
tage for representing differential equations in SIMULINK.

Although SIMULINK is useful for rapid prototyping, the
SIMULINK implementation of the cortical model runs
slower than our pre-coded Euler integrationd since it
is time-consuming to interpret the MATLAB function
wrapround (see Figure 4) in SIMULINK. A 60 x 60 grid
(side length 20 cm) 5-s cortical simulation takes ~10 s via
MATLAB Euler integration (fixed time-step 0.8x1072 s),
while ~40 s via SIMULINK (auto time-step and in accel-
erator mode). Thus, it is recommended to avoid using
MATLAB functions in SIMULINK unless necessary.

Clock

s(¢eh >

e ]ﬂﬂﬁ[—;

P
< ) 10ff noise II:Z\
—P

— O Out
Switch

Band-Limited sc
White Noise  \/ 5(925? Add

Figure 10 SIMULINK-based sub-cortical flux.
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Figure 11 SIMULINK-based e — e post-synaptic flux ®.. for the intra-cortex.
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Results and discussion

Brusselator pattern simulations in 1-D space
Before simulation, we first predict the pattern dynamics
of the Brusselator model. Following the work by Steyn-
Ross et al. [44], we applied a linear stability analysis (LSA)

[59] by examining the sign of the real and imaginary parts
of the dominant eigenvalue (wavenumber g dependent)
o4 = a(q) + iw(q) derived from the Jacobian matrix at
a steady-state. LSA states that the stability of the steady-
state: w(q) > O leads to unstable steady-state; a(g) < 0

S % 1%
2@, . S 1
0 ie aq)le q)ie P D, (I)ie — e-SOma
ot? ot =
Initial state
>
X P2
Vi > :
Gain
P
« _ -
B 2 | g —
Nz’i X
X P
Qi »—————P
From

Figure 12 SIMULINK-based i — e post-synaptic flux ®;, for the intra-cortex.
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Figure 13 SIMULINK-based excitatory soma equation.
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Dy .
Q. sigmoid

leads to stable steady-state. The scaled imaginary part
w(q)/2m predicts the oscillation frequency of the pattern
at the wavenumber q. Considering different combinations
of the sign of @ and w, there are four main classes of insta-
bility, summarised in Table 2. Following these rules, the
LSA shown in Figure 16(a) and (b) predict respectively a
Hopf and Turing instability. The simulation in the upper

panel shows a homogeneous oscillations, in the bottom
panel exhibits a frozen spatial structure. Both simulations
are in good agreement with the LSA predictions.

Brusselator pattern simulations in 2-D space
Brusselator simulation in a 2-D space has more vari-
eties than in a 1-D space. These 2-D patterns will have

i

short-range ®..

(93 — P

short-range @
Out > Czc
short-range @,/
e-soma Q. Display

o

o — Dy

long-range source short-range ®;

-

short-range ®.;

short-range .

Out > Qi
short-range @,

i-soma @, Display

o

short-range ®;;

Figure 14 Overview of the SIMULINKimplementation of the Waikato cortical equations.




Wang et al. BVIC Systems Biology 2014, 8:45
http://www.biomedcentral.com/1752-0509/8/45

Page 15 of 21

|<—— intra-cortical equations ———

A\
From

o
>

—
o L

e-soma equation

cortico-cortical equation

From

sigmoid function !
short-range .. Goto From Goto
>( 2 ) -
short-range @;, -

1
oy M 0w o St
e —- -

From

e
>0

- ’..1’ y
@ ®.; —i-soma —|_

1-soma equation -

®;; —i-soma

>C1 ) “-e.
short-range ®,; Goto From ~ < _Goto
D D )
I3 w2 ,
short-range ®;; |

Goto-From connection.

__________________________________________

Figure 15 Detailed connection diagram for the SIMULINK-based Waikato cortical equations. Solid arrow: direct connection; dashed arrow:

unique spatial Turing structures that we cannot infer
from the LSA. To precisely predict the Turing pattern
dynamics, we derived the amplitude equations [54] for
the Brusselator model at the onset of a Turing instabil-
ity. The amplitude equation describes a reduced form
of a reaction-diffusion system yet still retains its essen-
tial dynamical features. By approximating the analytic
solution, the amplitude equation allows precise predic-
tions of the pattern dynamics when the system is near
a bifurcation point. In simple words, the amplitude
equations may offer a guidance for model parameter
settings corresponding to specific patterns, e.g., Turing
pattern textures.

An application of the multiple-scale expansion [60]
on the Brusselator model yields the following amplitude
equation for the Turing mode [61]:

o)
g A= H DV Zi—g 1Z11* Zi—h (1221* + 1Z31%) Za
(26)

Table 2 The onsets of four main classes of instability

where
_ _ 2 (1-Ap 2
/'L—(B_BC)/BC) V_A<1+Ar]>+z4’u’
__ 38An+5(An)%—8—8(An)® = 5An+7(An)%2—3—3(An)?
&= 9437 (1+An) = A3p(1+An) ’
n = +/Dx/Dy

in which B, is the critical value (see [54] for its set-
ting) for Turing condition. Here, Z(; 53y describes slow
modulations of the Turing pattern, in short we call it
Turing amplitude. The equations for Z; and Z3 can be
obtained from Eq. (26) by simple permutation of the
indices. Indexed subscripts indicate that three amplitudes
correspond to their respective wavevectors q"l, q> and g3
oriented at 120° angular separations (see Figure 17). Ide-
ally, the resonance of the three wavevectors result to a
hexagonal or stripes modes. Practically, these modes may
mix to form distorted patterns.

Following the work by Verdasca et al. [61], we applied
linear stability analysis to the steady-state solutions of
Eq. (26), leading to the pattern prediction diagram, shown

Pattern stability

Bifurcation Critical wavenumber Eigenvalue (0, = o + iw) Spatially Temporally
Turing qg#0 0g=0 Unstable Stable
Hopf g=0 a=0,w#0 Stable Unstable
Turing-Hopf qg>0 a=0,w#0atg=0 Unstable Unstable
Wave qg#0 a>0w>0 Wave instability
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Figure 16 Brusselator simulation in 1-D space. Left column: dispersion curve of real (&) and imaginary (w) parts of dominnat eigenvalues
predicting the emergent pattens for two sets of parameters: (@) A = 2.5,B=9,Dx = 7,Dy = 10; (b) A = 2, B = 4.8, Dy = 2, Dy = 10. H: Hopf
mode with @ > 0,w > 0 at wavenumber g = 0; T: Turing mode with @ > 0,w = 0 at g # 0; DT: damped Turing with @ < 0 at g # 0; DH: damped
Hopf with @ < 0 at g = 0. Right column: one-dimensional Brusselator model of length 60 cm with periodic boundary condition evolves in time
running rightwards during 30 s. Colour indicates the local concentration of the reactant: [red] high concentration, [blue] low concentration.

in Figure 18. The diagram comprises of three stability
curves revealing the stability of specific Turing modes:
a honeycomb-like hexagonal structure, stripes, and reen-
trant honeycomb. Verdasca et al. denote the hexagonal
mode as H;; and its reentrant form as Hgy (see [61] for

Figure 17 Wave vectors of a hexagonal pattern. Superposition of
three wave vectors at an angle of 120 degree with each other to form
a hexagonal pattern.

Verdasca et al.’s explanation on the subscripts 7 and 0). In
this study, u is a bifurcation control parameter, the value
of which leads to a stable (solid curve) or unstable (dashed
curve) mode.

For the 2-D spatiotemporal simulation of the Brusse-
lator model, SIMULINK was set to 50-s simulation time
in auto time-step mode, allowing the pattern-forming
system to organise itself sufficiently. Figure 18 predicts
the stabilities of stripes (red), Ho (blue) and H, (black)
modes for the Turing instability of the Brusselator model.
From the range of solid curves, we have the summary
of parametric space where a specific mode is stable: The
stripes mode is stable when ;< < uJ; the hexagonal
mode is stable (H, and Hp) when . < w; or u > ,u;lr. H,
and Hy interact at u, where they exchange mode stability,
that is, H; will transit to Hop when 1 crosses jip, from its
LHS to the RHS.

To verify the predictions from the bifurcation diagram,
we select five different values of u then examine the
simulated patterns:

(a) p =0.0495 falling into a range where only Hy, is
stable;

(b) w =0.1100 falling into a range where stripes and H,
modes coexist;

() p =0.3994 where only the stripes structure is stable;

(d) w =0.7000 again falling into a bistable range where
stripes and Hy coexist;

(e) w =1.4802 where only Hy is stable.
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Figure 18 Turing mode stability of the Brusselator model in 2-D space. Each coloured stability curve represents specific mode: red = Stripes,
blue = Ho, black = Hy. Solid and dashed curves correspond to stable and unstable modes respectively, according to mode stability analysis. Five
representative u values are selected for comparison of theoretical predictions for mode stability against practical simulations (shown as subplots).
Colour of the pattern indicates the local concentration of the reactant: [red] high concentration, [blue] low concentration. Model parameters:

In Figure 18, we see good agreement between
SIMULINK simulated patterns and theoretical predictions.
Clear Hy, stripes and Hy structures are observed at (a),
(c) and (e) cases respectively. (b) and (d) show mixed
states between forward and backward stable structures.
Consequently, we can conclude that by increasing p, the
distance to the critical point, positively, Brusselator forms
sequentially from Hy, to stripes, to Ho.

In summary, to construct the Brusselator model in
SIMULINK, we first place an integrator block to repre-
sent time derivative. The temporal integrator’s output will
be fed back into the system to engage with the system’s
evolution, then form the input of this integrator block,
closing the loop. The model parameters can be adjusted
by tuning the settings of the blocks A and B as well as
two gains (labelled Dx and Dy respectively). The real-time
spatiotemporal evolution of X and Y are monitored via the
Matrix viewer block. The simout block delivers the
solution of Eq. (6) to the MATLAB workspace for future
analysis. The solution is a three-dimensional matrix with
the third dimension the same length as the time span.

In the next section, we will implement the SIMULINK-
based cortical model and examine its clinically-relevant
pattern dynamics.

Cortical model stability and simulations

The work by Steyn-Ross et al. [44] suggests that the
strong gap-junction diffusivity (large Dy value in the
model equation (21)) provides a natural mechanism
for Turing bifurcation that leads to the spontaneous
formation of Turing labyrinth patterns of high and low

neural activity that spread over the whole cortex, allowing
multiple, spatially separated cortical regions to become
activated simultaneously. Figure 19 illustrates the emer-
gence of such cortical Turing patterns provoked by a
strong inhibitory diffusion Dj. It is possible that the
Turing spatial synchrony explains the cognition “binding”
phenomenon, which is, widely separated neural popu-
lations that are anatomically unconnected are in very
similar states of activity, thereby becoming functionally
connected and giving rise to coherent percepts and
actions.

At the vicinity of a Turing instability, a weak Hopf
instability can be induced in parallel by prolonging the
timing of delivery of inhibition at chemical synapses. This
permits slow Hopf oscillations with the spatial structure
maintained. Specifically, a reduction of the inhibitory rate-
constant y; in Eq. (20b) below a critical value ~30.94 s~!
is sufficient to produce a complex dominant eigenvalue
at zero wavenumber whose real part is positive; thus
suggesting a global Hopf oscillation.

In Figure 20(d), setting y; = 29.45 s~ ! predicts a ~0.95
Hz Hopf oscillation. Independently, a Turing instability is
boosted with moderately strong inhibitory diffusion D, =
1 cm? above its critical value 0.9066 cm?. Cortical Turing—
Hopf interactions lead to beating patterns revealed in the
time series recorded in Figure 20(b) for a single pixel on
the cortical grid. The Fourier spectrum shows two fre-
quency components whose difference matches with the
ultra-slow envelope frequency, which is likely to be the
weakly-damped resonance at ~0.152 Hz.

Steyn-Ross et al. [46] posit that the interacting low-
frequency Hopf and Turing instabilities may form the
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SIMULINK is set to auto time-step mode. Simulation running time ~30s.
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Figure 19 Simulated cortical Turing patterns. Four snapshots (a-d) taken from a 3-s simulation of the cortical Turing pattern of the excitatory
firing-rate Q. commencing from a homogeneous equilibrium. The top panel is the 3-D Q. plot, and the bottom panel is the same information
viewed on a bird's-eye image. The gap-junction diffusity D, = 1 cm?. The cortical model is initialised as a 100 x 100 grid with 20-cm side-length.

substrate for the cognitive state, namely, the “default”
background state for the non-cognitive brain. These slow
patterned oscillations may relate to very slow (<0.1 Hz)
fluctuations in BOLD (blood-oxygen-level dependent)
signals detected using fMRI (functional magnetic res-

state will be suppressed with elevated levels of subcortical
drive during goal-directed tasks [64-68].

The effect of embedding MATLAB functions in
SIMULINK running efficiency

onance imaging) of relaxed, non-tasked human brains
[62,63]. Steyn-Ross et al. [47] also predict that this default

Although SIMULINK has an intuitive programming logic
and comparable accuracy to MATLAB, it sometimes runs

(a) 25 oorlica! interacting Turing and Hopf instgbilities (d)a eigenvalue dispersion curve of the cortical model
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Figure 20 Beating-wave patterns of the cortical model. With strong gap-junction diffusion D, and carefully chosen inhibitory rate-constant y;,
eigenvalue dispersion curve (d) predicts a mixed pattern of Turing and Hopf instabilities. &« and w are the real and imaginary part of the dominant
eigenvalue respectively. Through a 400-s SIMULINK simulation, the Fourier spectrum (c) indicates a 0.15-Hz ultra-slow oscillation of the beating
pattern (b) zoomed from (a) Q. time evolution of the point at position (1, 30) shown in (e) 25-x25-cm grid (100 x 100 grid-points) 3-D plot.
Simulation running time ~75 min. (Figure modified from [46]).
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much slower than MATLAB, e.g., in the demonstrated
Brusselator and cortical model simulations. The reason
is that we embed MATLAB functions wraparound in
the model to expand the SIMULINK capability. Once
a MATLAB function block is present, the MATLAB
interpreter is called at each time-step. This drastically
reduces the simulation speed. So, one should use the
built-in blocks whenever possible. Without using MAT-
LAB function blocks, SIMULINK shows a higher per-
formance than MATLAB, e.g., see the description of
Figure 3. MathWorks Support Team also presented com-
prehensive guidance to speed up the SIMULINK simula-
tion, which are available at http://www.mathworks.com/
matlabcentral/answers/94052. In the further optimisation
of our SIMULINK model, we will consider replacing MAT-
LAB function with the MEX S-function, which may help
to accelerate the simulation in the merit of its direct
communication with the SIMULINK engine (avoid the
time consuming compile-link-execute cycle). The build
of MEX S-function requires higher level programming
skills, so we only address a more accessible method
(embedding MATLAB function) for non-experts in this

paper.

Conclusions

The strategy for modelling differential equation models
in SIMULINK is addressed in this paper. To construct
a system of differential equations in SIMULINK, we can
directly convert the mathematical terms and operators
to the SIMULINK graphical block diagrams. The key idea
for programming differential systems in SIMULINK is to
form a closed loop, such that the solution of the system
can evolve in this loop. The accuracy and reliability of
the SIMULINK modelling method has been examined via
comparing a van der Pol oscillator represented in MAT-
LAB code-script and SIMULINK block-diagram, showing
the SIMULINK model has comparable performance with
the code-script version.

Using a well-known Brusselator model, we demon-
strated two main SIMULINK modelling strategies for a
reaction-diffusion system: interpretation of 2-D convolu-
tion with the periodic boundary condition; hybrid pro-
gramming in SIMULINK with MATLAB functions. The
pattern simulations of the Brusselator in SIMULINK are
in good agreement with the predictions via bifurcation
theories.

Following the pattern-forming theories, we introduced
a cortical model with competitive neuronal interactions
and diffusions. Unlike the simple Brusselator, the cor-
tical model is a complicated system comprised of dis-
tinct cortical connections. Here, we showed how to build
these subsystems in SIMULINK. Finally, we connected
all subsystems to form the completed Waikato corti-
cal model. The simulations of the cortical model exhibit
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Turing and mixed Turing—Hopf patterns, the clinical rel-
evance of which is briefly discussed. As the main aim
of this paper is to introduce SIMULINK modelling, read-
ers are referred to Steyn-Ross et al.’s recent publications
[6,44-47] for comprehensive investigations of the cortical
model.

Endnotes

*vanderpoldemo is a MATLAB pre-coded function

bfixed time-step ODE solvers are not built into
MATLAB, but they can be acquired from a release by the
MathWorks Support Team:
http://www.mathworks.com/matlabcentral/answers/
uploaded_files/5693/ODE_Solvers.zip

¢The two-dimensional circular convolution algorithm
was written by David Young, Department of Informatics,
University of Sussex, UK. His convolve2 () code can
be downloaded from MathWorks File Exchange:
http://www.mathworks.com/matlabcentral/fileexchange/
22619-fast-2-d-convolution

dMATLAB simulation codes were written by Alistair
Steyn-Ross. The complete codes, plus README files and
movies of cortical dynamics, are available from the web
site: http://www?2.phys.waikato.ac.nz/asr/
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