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Abstract

Background: Model rejections lie at the heart of systems biology, since they provide conclusive statements: that the
corresponding mechanistic assumptions do not serve as valid explanations for the experimental data. Rejections are
usually done using e.g. the chi-square test (χ2) or the Durbin-Watson test (DW). Analytical formulas for the
corresponding distributions rely on assumptions that typically are not fulfilled. This problem is partly alleviated by the
usage of bootstrapping, a computationally heavy approach to calculate an empirical distribution. Bootstrapping also
allows for a natural extension to estimation of joint distributions, but this feature has so far been little exploited.

Results: We herein show that simplistic combinations of bootstrapped tests, like themax ormin of the individual
p-values, give inconsistent, i.e. overly conservative or liberal, results. A new two-dimensional (2D) approach based on
parametric bootstrapping, on the other hand, is found both consistent and with a higher power than the individual
tests, when tested on static and dynamic examples where the truth is known. In the same examples, the most
superior test is a 2D χ2 vs χ2, where the second χ2-value comes from an additional help model, and its ability to
describe bootstraps from the tested model. This superiority is lost if the help model is too simple, or too flexible. If a
useful help model is found, the most powerful approach is the bootstrapped log-likelihood ratio (LHR). We show that
this is because the LHR is one-dimensional, because the second dimension comes at a cost, and because LHR has
retained most of the crucial information in the 2D distribution. These approaches statistically resolve a previously
published rejection example for the first time.

Conclusions: We have shown how to, and how not to, combine tests in a bootstrap setting, when the combination
is advantageous, and when it is advantageous to include a second model. These results also provide a deeper insight
into the original motivation for formulating the LHR, for the more general setting of nonlinear and non-nested models.
These insights are valuable in cases when accuracy and power, rather than computational speed, are prioritized.

Keywords: Model rejection, Bootstrapping, Combining information, 2D, Insulin signaling, Model Mimicry, Likelihood
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Background
A key tool in systems biology is mathematical modeling
[1]. Modeling allows for a more complete analysis of the
true relationship between experimental data and possi-
ble mechanistic explanations, compared to what is feasible
using only classical biochemical reasoning. Nevertheless,
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because the data are limited and the systems are highly
complex, and because many of the model parameters have
to be estimated and cannot be uniquely determined, draw-
ing mechanistic conclusions from modeling is challeng-
ing. For instance, it is hard to produce validated models,
or to find core predictions, i.e. model predictions with
low uncertainty [2-4].While model validation, in the strict
sense, is not possible [5], model rejection and hypothe-
sis testing are possible and highly useful applications in
modeling, also for biological research [2,3,6-13].
Formally, model rejectionmethods evaluate whether the

null hypothesis, H0, that a specific model has generated

© 2014 Johansson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Johansson et al. BMC Systems Biology 2014, 8:46 Page 2 of 19
http://www.biomedcentral.com/1752-0509/8/46

some given data can be rejected or not. One common way
to do this is to test whether the residuals, i.e. the differ-
ences between the simulated and measured data points,
are too big. This can be checked using the χ2-test statis-
tic. Alternatively, one might also wish to check whether
the residuals are too correlated. This can be done using
the whiteness test or the Durbin-Watson (DW) test [2,14].
However, there is a problem. These tests are dependent
on analytical derivations for the distributions of the test
statistic under H0, but these derivations are based on a
number of assumptions, which might not be fulfilled [2].
For instance, some commonly used assumptions are that
the experimental noise is normally or log-normally dis-
tributed, that the parameter estimates have converged,
and that the parameters appear linearly in the model
[15-18]. Because many of these assumptions are unful-
filled in systems biology problems, it is problematic to
use these analytical expression. Some of the reasons why
the assumptions often are unfulfilled include that the
availability of data in systems biology examples often is
severely limiting, that the signal-to-noise ratio is poor,
that the number of parameters that appears non-linearly
and/or are unidentifiable often are high, and, for model
comparison approaches, such as the likelihood ratio test,
that the tested models are not nested [18-24]. For more
information on these assumptions and limitations, we
refer the reader to our previous paper [2].
To help overcome the problem of unfulfilled assump-

tions, one may try to replace the analytical expressions
with empirical distributions of the test statistics. One
way to derive the empirical distributions is to use boot-
strap approaches. In general, bootstrap samples are arti-
ficially generated data sets, where the distribution of the
bootstrap samples should reflect the variability of the
data. Although most mathematical proofs for bootstrap
approaches usually also are derived under asymptotic con-
ditions, an almost asymptotic setting is often achieved
already for moderate sample sizes. There are two types
of bootstrap approaches: parametric and non-parametric
[25-27]. Non-parametric bootstrap samples are generated
from the original data set by drawing with replacement.
Parametric bootstrap samples are generated from a spe-
cific model, e.g. an error model, that also incorporates
some null-hypothesis about the underlying system. There
is a rich literature for both parametric and non-parametric
methods and their applications to statistical testing in
biology [9-11,28-33].
A specific but seemingly unexplored advantage of using

a bootstrap setting is that it allows for the natural com-
bination of different test statistics (Figure 1). This advan-
tage comes because, using bootstrapping, such combined
statistical distributions can be calculated empirically,
whereas the combination of such distributions analyti-
cally largely remains an unresolved problem. There is a

field that deals with the combination of information (CI)
[34], but this field primarily deals with combinations off
different data sources, as in meta-analysis. For the combi-
nation of different statistical tests, one approach that has
been considered is to combine the p-values [35-37]. There
are some straightforward simplistic ways in which you
could do these combinations. For instance, given two tests
statistics, TA and TB, for a specific model and data set, one
could look at the maximum or minimum of the respective
p-values etc. [34,37]. This corresponds to the principle of
rejecting only if both tests reject, or if at least one of them
rejects, respectively. However, there is a need to evaluate
such naive combinations, in general and in the context of
systems biology, and to provide more refined alternatives.
In this paper we examine how one could, should, and

should not combine test statistics using parametric boot-
strapping. The analysis shows that such above simplistic
strategies to combine p-values are unsound, i.e. the tests
are overly conservative or liberal, and in order to avoid
this issue, one can instead use our proposed joint two-
dimensional distribution of these test statistics. Analysis
on simple examples where the truth is known demon-
strates the potential gain in power obtained by including
an extra dimension. Furthermore, it is found that a ben-
eficial combination may be to combine two χ2 statistics,
where the second one comes from the ability of a sec-
ond model to describe data from the first, tested, model.
This leads to a new and more general motivation for
the log-likelihood ratio test (LHR), in the more general
sense of non-nested nonlinear models. Importantly, our
2D approach allows for an easy illustration of when and
why a combination of tests is advantageous, and when
and why an additional model is helpful. Finally, our results
and new approaches are also repeated and illustrated on
a previously published example from insulin signaling,
with real data, and with a biological question that now is
resolved statistically for the first time.

Methods
Theoretical Setting
The herein presented bootstrap approach is applicable to
any predictor-based model, i.e. for any model that can
return a vector of predicted outputs ŷ(θ), given a vector
of parameters θ . Importantly, this includes both linear and
nonlinear, as well as static and dynamic, models. Never-
theless, since most models in systems biology are based
on nonlinear ordinary differential equations (ODEs) [38],
we here present the method in an ODE-based framework.
In the results section, examples of both linear, nonlinear,
static, and dynamic models are included.
Let the states in the model be denoted x, and let the

time derivatives, ẋ, of these states be governed by a non-
linear smooth function, f. The states, x, usually correspond
to the amounts or concentrations of particular molecular
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Figure 1 Symbolic illustration of the advantage with the new herein presented 2D approach to combining test statistics. The values of the
two test statistics, A and B, are plotted on the positive x- and y-axes, respectively. The points correspond to bootstrap samples of pairs of these
values, and the color of the cloud represent the probability density at the point: red means high density, i.e. a high probability to find a point there,
and blue low. The 1D projections of the cloud are plotted on the negative x- and y-axes. The difference between a 1D analysis of these tests,
considered independently, and the herein considered 2D approach, is found by comparing the two points p1 and p2. These two points correspond
to two different hypothetical pairs of (A,B)-values, as calculated from the original data. If such a data point lies sufficiently outside the empirical
distribution, the null hypothesis used to generate the empirical distribution is rejected. As can be seen, both p1 and p2 lies within the 1D
distributions, and have essentially the same p-values, if the tests are two-sided. This stands in stark contrast to the situation in 2D: there p2 lies within
the cloud, but p1 lies clearly outside. For this reason, the observation p1 would only be rejected in a 2D analysis, and not in a 1D analysis. Note that
the main reason for this 2D advantage to be exploited is both that the 2D cloud does not lie parallel to either of the axes, and that the considered
point just like p1 lies in a place that exploits the thinly populated areas that only are revealed in 2D.

compounds. The function f is usually given by summing
up kinetic rate expressions of the involved compounds,
assuming mass action laws, or in some cases, more
detailed rate equation expressions such as Michaelis-
Menten dynamics [39]. Let the function f (x, θ ,u) depend
on the states, the parameters, and some input signals, u.
Let the initial values for the states be denoted x0, and note
that these most often are defined as part of the parameter
vector θ . Finally, let the model outputs, ŷ, be determined
by a smooth nonlinear function g(x, θ ,u), which, just like f,
may depend on the states, the parameters, and the inputs.
With these notations, the state-space description of the
model may be written as:

ẋ = f (x, θ ,u) (1)
x(0) = x0 (2)

ŷ = g(x, θ ,u) (3)

The noise, v, is assumed to enter only additively, and only
in the measurement equations. Hence, with the measured
output denoted as y, the assumption is that

y(t) = ŷ(t, θ) + ν(t), ν ∼ D (4)

for all t, and where ν follows the distribution D. A
model, M(θ), is defined by the specific choice of the

functions f and g, i.e. by the model structureM, and some
parameters, θ .

Model implementation
All models have been implemented and analyzed using
MATLAB® R2011b [40]. Static models were fitted using
standard linear regression methods, such as polyfit. ODE
models were implemented using the Systems Biology
Toolbox (SBTB) [41] and the add-on package SBAO.
Parameters of ODE models were estimated using the
global optimization algorithm simannealingSBAO, avail-
able in SBTB, by minimizing the χ2-test statistic.

Bootstrap setting
A bootstrap sample, b, is an artificial vector of observa-
tions. A set of such bootstrap samples, Bi, is generated
with the intent of representing the natural variation of
the experimental data set, according to some specific pro-
cedures and assumptions. Here we consider parametric
bootstrap samples, i.e. samples that have been gener-
ated from a specific model structure, denoted Mi, whose
parameters have been fitted to agree with the experi-
mental data. If nothing else is noted, the default set size,
also called cloud size, used in this paper is 1000 samples
per set.
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The bootstrap samples are generated by adding noise,
drawn from the assumed distribution D, to a simulated
output of a given model. In this paper, the assumed noise
distribution is Gaussian with a mean of 0, and a stan-
dard deviation of 0.5 and 0.75 for the static and dynamic
case, respectively. These noise level were chosen to be in
the order of 5-10% of the average model output. Con-
versely, the assumed noise level for the insulin signaling
test case corresponds at each time point to the noise in
the experimental data. However, for the first and second
time point, where the signal has been normalized, and the
noise therefore is zero, an average noise level for the data
set is assumed.
Each bootstrap sample corresponds to a new realiza-

tion of the noise with the same measurement signals and
time points as in the observed data. The empirical distri-
bution of any given test statistic, such as the χ2 or DW, is
obtained by fitting the model of interest to all bootstrap
samples, and then for each fit, calculating the appropriate
test statistic.

Empirical testings and conceptual basis behind the
methods
A statistical test is a formal procedure for checking if a null
hypothesis, here denotedH0, can be rejected. In practice,
a test maps a given set of observations, denotedZ , to a test
statistic, T (Z). A p-value for a given test statistic is the
cumulative probability of that value and all other values
that are even more extreme, given the distribution under
H0, whereH0 typically corresponds to the hypothesis that
the model you are testing is true. In a bootstrapping envi-
ronment we construct these distributions empirically, as
described in the section Bootstrap setting, rather than
using analytical expressions for them (see also Figure 2
and the detailed descriptions below).
More specifically, if the null hypothesis that the model

is true is correct, then bootstrap samples, generated from
the fitted model, actually represent real samples from
the true Data Generating Process (DGP). Thus, under
H0, the joint distribution of any number of Goodness Of
Fit (GOF) statistics represents the distribution that we
would expect to see if we were able to repeatedly sam-
ple from the true DGP, and each time were to fit our
model and calculate a corresponding vector of GOF statis-
tics. We can therefore calculate the probability, underH0,
of seeing a vector of GOF statistics at least as extreme
as the original observed vector of GOF statistics, i.e. a
p-value.
These p-values are calculated by estimating the den-

sities of these GOF-distributions and then, as described
for each test below, evaluate these at the coordinates of
the observed data Z to obtain the desired p-value. The
null hypothesis is then rejected if the observed vector

of test statistics is very unlikely under H0. Usually this
amounts to specifying a significance level α and checking
whether the observed value(s) is more extreme than the
corresponding threshold.
In this paper we consider a seemingly unexplored poten-

tial with bootstrap approaches: that they, unlike analytical
approaches, allow for an easy calculation of the joint
distribution of several test statistics. Consider a vector
of k such test statistics, (T1,T2, . . . Tk). Given the null
hypothesis that the tested model is true, one can then
generate data that is assumed to come from the true
DGP, and for each data series calculate corresponding
values for all these k test statistics. These values then
form vectors of values, and each vector constitute a point
in a k-dimensional space. These points together form
an approximation of the true k-dimensional distribution
if the null hypothesis is true. Finally, the experimental
data series Z also corresponds to such a point, and we
can use a multi-dimensional density estimation to see
whether or not it is realistic to assume that the experi-
mental point lies within the obtained distribution. This
idea can in principle be used for any number of combined
test statistics, but the computational cost of approximat-
ing a multi-dimensional distribution grows quickly with
the dimension. Therefore, we here limit ourselves to com-
binations of two test statistics, i.e. to k = 2 and to 2D
distributions.

One-dimensional tests of a single model
The bootstrapped χ2-test
The χ2-test evaluates the size of the residuals, which
are defined as the differences between the measured and
predicted outputs:

ri(tj) := yi(tj) − ŷi(tj, θ) (5)

The test statistic, Tχ2 , is given by the residual sum of
squares

Tχ2 =
∑
i,j

(yi(tj) − ŷi(tj, θ)

σi(tj)

)2
(6)

where the summation runs over all time points, tj, and
all measurement signals, yi. An empirical distribution of
Tχ2 is obtained by generating bootstrap samples from a
model and fitting this model to the samples, as described
above. The resulting distribution is evaluated using MAT-
LAB and the empirical cumulative distribution function,
ecdf. A p-value, pχ2 , underH0, is obtained by considering
a right-tailed (unless otherwise specified) distribution and
interpolating the value of the cumulative empirical distri-
bution at the coordinate corresponding to the χ2-value of
the original data set.
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Figure 2 A graphical summary of the proposedmethod steps for a 2D χ2 vs DW analysis. Encircled numbers correspond to the steps
described in the model algorithm. The starting point is some data set, Z , a model structure,M1, to be investigated, and two test statistics. First the
model is fitted to the experimental data and then the fitted model is used to generate bootstrap samples. Next, the model is fitted to all bootstrap
samples. The resulting two-dimensional cloud is used to generate a density estimation. The cutoff plane is defined as the equidensity contour that
goes through the coordinates of the experimental data (red square). The corresponding p-value is equal to the portion of the distribution below the
plane, i.e. outside the corresponding density contour line. The p-value is then used for decision on whether or not to reject either model.
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The bootstrapped Durbin-Watson test
The DW test can be used to test whether the residuals in
Equation (5) are too correlated or anti-correlated. The test
statistic, Tdw, is given by

Tdw =
∑

i,j>2
(
ri(tj) − ri(tj−1)

)2∑
i,j ri(tj)2

, 0 ≤ Tdw ≤ 4 (7)

The numerator is a measure of the covariance of adjacent
residuals, the denominator for the respective variance. For
perfectly uncorrelated residuals the test statistic is equal
to two. A value close to zero indicates a positive corre-
lation, whereas a value close to four indicates a negative
correlation. In this paper we have chosen to look only at
correlation, and not at anti-correlation and therefore cho-
sen a left-tailed distribution. An empirical distribution of
Tdw is obtained by generating bootstrap samples from a
model and fitting this model to the samples, as described
above. The resulting distribution is evaluated using MAT-
LAB and the empirical cumulative distribution function,
ecdf. A p-value, pdw, under H0, is obtained by consider-
ing a left-tailed distribution and interpolating the value
of the cumulative empirical distribution at the coordinate
corresponding to the DW value of the original data set.

Simplistic combinations of bootstrapped tests
In this paper, p-values obtained from an empirical 1D
χ2-distribution and an empirical 1D DW distribution are
combined in various ways. Four of these ways are referred
to as simplistic. These combination tests are defined as
follows:

pmin : = min
(
pχ2 , pdw

)
pmax : = max

(
pχ2 , pdw

)
pmean : = (

pχ2 + pdw
)
/2

pprod : = pχ2 ∗ pdw

and the interpretations and motivations behind the com-
binations are described in the corresponding section in
Results (Simplistic combinations of bootstrapped tests).

Two-dimensional tests of a single model
Bootstrapped two-dimensional χ2 vs DW test
Now follows a description of the novel algorithm for a
joint two-dimensional χ2 vsDW test. Although described
as a combination of these two specific tests, the method
is generalizable to any combination of two test statistics,
by simply replacing one or more of the test statistics.
Our proposed algorithm consists of the following steps
(Figure 2).

Algorithm:
Given a model,M1; an experimental data set, Z ; two
test statistics, Tχ2 and Tdw; and a significance level α:

1. Fit the model to the original data set Z and let θ̂M1
denote the estimated parameter vector. Calculate the
statistics T M1

χ2 (Z) and T M1
dw (Z) according to (6) and

(7) respectively.
2. UseM1(θ̂M1) to generate a set of bootstrap samples.

This set is denoted B1.
3. FitM1 to each bootstrap sample, b, in B1 and

calculate the corresponding test statistics for each fit.
This results in one set of χ2-values and one set of
DW-values, which together form a two-dimensional
cloud:

• C1, cloud 1, consisting of T M1
χ2 (B1) and

T M1
dw (B1).

4. Estimate (see below) the two-dimensional empirical
distribution ρ1(C1).
Let ρ1(Z) := ρ1(T M1

χ2 (Z),T M1
dw (Z)) denote the

obtained density at the coordinate corresponding to
the χ2 vs DW values of the original data set Z . For
the given distribution, we define the cutoff plane as
the equidensity contour that goes through ρ1(Z).

5. Using the two-dimensional distribution, calculate the
p-value for the given modelM1,

pM1
χ2−dw :=

∫
ρ1<ρ1(Z)

ρ1
(
T M1

χ2 (B1),T M1
dw (B1)

)
dT M1

χ2 dT M1
dw

(8)

If pM1
χ2−dw < α, thenM1 should be rejected.

Two-dimensional density estimation
The two-dimensional density of a cloud is estimated con-
tinuously with a smooth Gaussian kernel [42,43], and
evaluated over a grid, i.e. a 2D histogram. The integral in
Equation 8 is then approximated by summing over all bins.
The total volume is then normalized to one.

Two-dimensional p-value calculation
The calculations of p-values in 2D introduces some new
considerations, and a few comments are in order. Con-
sider Figure 1, and the property A, considered as a 1D
distribution. Then, the probably most commonway of cal-
culating the p-value is p = 1 − p(A < A(Z)). Turning
to 2D distributions, this formula can no longer be used,
since there now are two properties, A and B. Instead a
more general formula is needed. One such option is to use
some formula based on the probability density function,
ρ. Then the corresponding formula is p = 1 − p(ρ >

ρ(Z)) = p(ρ < ρ(Z)) (Equation 8). In general, the p-
value should give the probability that the obtained value,
or an even more extreme one, is found, under the given
null hypothesis, and this is ensured by both the 1D and
2D formulas. Note, however, that the 2D formula, using
ρ, includes all regions of low density, even the ones where
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the model is surprisingly good, similar to a two-tailed test
in one dimension. A more detailed discussion on these
issues is found in the Discussion, and in Additional file 1:
Figure S4.

Tests involving twomodels
Bootstrapped two-dimensional χ2 vs χ2 test
Our proposedmethod for a two-dimensional χ2 vs χ2 test
is similar to the two-dimensional χ2 vs DW test, where
the DW test statistic has been replaced by the χ2-statistic
of a second model. The detailed steps are explained in the
Additional file 1 and in Additional file 1: Figure S1.

Bootstrapped log-likelihood ratio test
Given some data Z , and two models M1 and M2, an
empirical distribution of the LHR, TLHR, is obtained by
generating bootstrap samples from either model (H0)
and fitting both models to the samples, as described
above. The resulting distribution of log-likelihoods (χ2-
differences) are evaluated usingMATLAB and the empiri-
cal cumulative distribution function, ecdf. A p-value, pLHR,
under H0, is obtained by considering a two-tailed dis-
tribution and interpolating the value of the cumulative
empirical distribution at the coordinate corresponding to
the LHR value of the original data set. These steps are
explained in detail in the Additional file 1.

Test cases

Static models
Two static models are considered; MS1, a straight line,
andMS2, an exponential curve (Figure 3A-B).

MS1: f (x) = θS11x + θS12 = ŷ
MS2: f (x) = θS21ex + θS22 = ŷ

Dynamicmodels
Two dynamic non-nested examples are considered;MD1,
mass action kinetics, and MD2, Michaelis-Menten kinet-
ics with one free parameter (Figure 3C-D).

MD1: ẋ1 = −θD11x1, x1(0) = 10, ŷ = x1
MD2: ẋ1 = −θD21x1

0.01+x1 , x1(0) = 10, ŷ = x1

Analyses of methods
The receiver operator characteristic
The power of a statistical test is often determined by
the relationship between the false positive rate (FPR) and
the true positive rate (TPR) [44]. A false positive is the
rejection of a true model, whereas a true positive is the
rejection of a false model. The dependency of the TPR
on the FPR is called a Receiver Operator Characteris-
tic (ROC) curve. The more concave the curve, i.e. the
larger the Area Under the Curve (AUC), the better the
discrimination between true and false models. Here, ROC

curves are constructed by considering a large number of
artificially generated data sets, on which two hypotheses
are tested, of which one is the true underlying model. The
obtained p-values for each hypothesis and data set are cal-
culated and for any given FPR (i.e. p-value) the TPR is
obtained.

Type I error rate
For a given significance level α, it is expected that 100 ·
α % of all true values would be rejected. If the observed
FPR is higher than the expected FPR, the test is prone to
making type I errors, and is considered liberal. In con-
trast, if the observed FPR is lower than the expected FPR,
the test is considered conservative. This method property
is evaluated by considering a large number of artificially
generated data sets, where the true model is known, and
where the calculated p-values thus can be compared to the
underlying truth. Any given significance level, i.e. stated
FPR, can thus be compared to the observed FPR, and
the resulting relationship can be plotted in a graph (e.g.
Figure 4). Ideally, the expected FPR should coincide with
the observed FPR. A convex plot would indicate a conser-
vative test, whereas a concave plot would indicate a liberal
test.

Results
Test cases
In this paper we have employed an ensemble of vari-
ous bootstrap methods on both static (Figure 3A-B) and
dynamic (Figure 3C-D) test case models. We tested these
approaches on static linear examples mainly for the fol-
lowing two reasons: firstly static models are common in
science and our methods should therefore aim to be appli-
cable to these kind of problems; secondly the solutions
to the corresponding optimization problems are for these
static linear examples unique and analytically attainable.
In contrast, we also performed our analysis on two test
cases in an ODE-framework. Parameters in ODE models
usually have to be estimated, often by solving non-convex
optimization problems, and it is then not guaranteed that
the optimal solution will be found. In both settings, the
number of parameters in the test case models were kept
low, in order to more reliably evaluate the methods.
In each setting, static and dynamic, we let both mod-

els serve as the underlying truth to create 500 artificial
data sets each. For each such data set both models served
as H0, and were consecutively fitted to the data, and
the Goodness of Fit (GOF) was evaluated using various
bootstrap approaches, starting with the simplistic com-
binations described earlier. Thus, for each setting and
bootstrap approach, this resulted in 1000 true positives
and 1000 true negatives, which were used to construct
ROC curves to evaluate the power of the tests.
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Figure 3 The static and dynamic examples where the truth is known. (A) The static model structures, where x and f (x) are the input and
measured output, respectively, and where the θs are unknown parameters to be estimated from the data. (B) Vertical lines are data points (mean
plus/minus standard deviation) from an example of a bootstrap from the model structureMS1, and the green and blue lines are corresponding fits
from the two model structures. (C) The two dynamic model structures, involving a decay of the substrate X1, which occurs via mass action or
Michaelis-Menten kinetics, respectively. (D) Vertical lines are data points (mean plus/minus standard deviation) from a bootstrap generated by
MD2, and the blue and green lines are corresponding model fits by the two model structures. Equations and details regarding fits etc. are found in
Materials and Methods.

Combining χ2 and DW statistics
The χ2-test is used to check whether the residuals, i.e. the
differences between the model output and the data points,
are too big. Conversely, the DW test is used the check if
these residuals are too correlated. Both tests are useful in a
model rejection scenario, and in the below analysis, look-
ing at how these tests can be combined, the two tests are
used as in their bootstrapped form (Methods).

Simplistic combinations are unsound
The first part of the analysis concerns the simplistic
combinations: pmin, pmax, pmean, and pprod (Methods).
Although simple, these tests are not without interpreta-
tion, and several of them are what at first might seem like
the obvious idea [34-37]. The options min and max cor-
responds to rejecting if either or if both individual tests
reject, respectively. Themean could be thought of as a bal-
ancing between the two extremes, and prod, the product,
could be thought of as the joint probability.
All these four simplistic combinations can be discarded

based solely on an analysis of their observed and expected

type I error rate. These rates are plotted for all four tests
in Figure 4, and the interpretations of these curves is as
follows. If the plotted lines lie away from the identity
line, the expected false positive rate does not coincide
with the observed false positive rate, and if this deviation
from the identity line is large we call the test unsound. A
large deviation means one of two things: either the test
is liberal (if the line is above the identity line), or the test
is conservative (if the line is below). A liberal method is
generally regarded as unacceptable, since one wants to be
able to trust rejections, but a small level of conservative-
ness could be accepted, so long as the test is useful. In
both the static (Figure 4A) and the dynamic (Figure 4B)
case, the tested combinations are unsound. The min (yel-
low diamonds) and prod (brown triangles) approaches are
strikingly liberal, themax approach is highly conservative
(cyan squares), and the mean (gray stars) switches from
below to above. These plots should be compared to the
single tests: χ2 (red triangles) andDW (blue circles) which
lie along the identity line. This difference between the sin-
gle tests and the simplistic combinations clearly illustrates
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Figure 4 Type I error rate plots for the single test statistics and their simplistic combinations. Type I error plots show the Expected False
Positive Rate (EFPR), which is the stated number of erroneous rejections of a true model, versus the observed number of rejections, Observed False
Positive Rate (OFPR). (A) Static example (B) Dynamic examples. As can be seen, only the single test statistics, and none of the combinations, lie
along the identity line. The simplistic combinations are therefore disregarded from further analysis.

that the deviations from the identity line are big. Since
the results are essentially the same for both the static and
dynamic cases, the results were deemed sufficiently con-
vincing to be able to reject all of the tested simplistic
approaches as unsound.

A two-dimensional approach is both sound and informative
The second part of the analysis considers the 2D analysis,
combining the χ2 and the DW tests (Methods, Figure 2).
Although a precursor to the 2Dmethods presented herein
has been mentioned and outlined in previous papers [2],
this is the first time all the implementation details have
been solved, and the performance of the method is tried
on examples. One of the novel details concerns the den-
sity estimation. In contrast to the simplistic combinations,
this 2D approach is sound, or only slightly conservative,
for both the static (Figure 5B) and the dynamic (Figure 5D)
case. The conservativeness is tolerated, since the test is
informative, as can be gathered from the Receiver Opera-
tor Characteristic (ROC) curves in Figure 5A andC. These
ROC curves are to be interpreted as follows. On the x-
axis, the rate of erroneous rejections are plotted; this value

is therefore to be as small as possible. On the y-axis, the
rate of correct rejections are plotted; this value is there-
fore to be as high as possible. Taken together, this means
that the AUC should be as big as possible, especially for
the region of interest where the FPR is below 0.1. This
region of interest was chosen because in biology α is rarely
higher than 0.05. From Figure 5A,C it is clear that the new
2D approach (green squares) outperforms both χ2 (red
triangles) and DW (blue circles) considered as individual
tests.

Introducing a secondmodel
Replacing the DW test statistic with the χ2-test statistic of a
secondmodel
The above 2D approach (Figure 2) can be generalized to
combinations of other tests as well. An important aspect
of this is that one can consider a combination of two
χ2 tests, where the second χ2 test comes from a sec-
ond model,M2 (Methods, Additional file 1 Methods, and
Additional file 1: Figure S1). It is therefore intuitively sen-
sible to test whether such a usage of two models is an
advantageous usage of this 2D approach. This property
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Figure 5 ROC and Type I error rate curves for the 2D χ2 vs DW analysis (green squares) compared to its two single constituent tests, χ2

(red triangles) and DW (blue circles). The ROC curves (A,C) show the ability of the different tests to successfully reject the models that should be
rejected (TPR), while rejecting as few as possible of the true models (FPR). In other words, a steep rise, and a high AUC is evidence of a good test.
Since tests in practice only are used with p-values below 0.05, only the first part of the plot is shown (FPR< 0.1). The Type I error rate plots (B,D)
examine the same ability of producing correct p-values as in Figure 4. However, the combination used here (2D χ2 vs DW, green squares) does lie
close to the identity line, together with the single test statistics. The upper plots, (A,B), show the results for the static example, and (C,D) for the
dynamic example. As can be seen, the 2D χ2 vs DW test is consistent (B,D) and superior to both of its constituents tests, which is evident from the
greater AUC in both the static and the dynamic case (A,C).

of one model’s ability to imitate the behavior of a sec-
ond model is known as model mimicry, and the idea of
using this in a model selection setting has been utilized by
e.g. [11].
This second model can in itself be an uninteresting

model, i.e. we are then not necessarily interested in the
second model as an explanation of the original data, but
only in how it interacts with the model being tested. Such
a model is called a help model. Alternatively, the sec-
ond model could be a competing model and its ability
to describe the original data is then of equal importance
as that of the first model. If this latter situation is the
case, one would typically perform the analysis with both
models serving as H0, generate bootstrap samples from
each model, and so on (Additional file 1: Figure S1). This
version of the 2D test then becomes a form of model com-
parison, even though there are important differences. For
instance, this 2D analysis, unlike model discrimination
tests like the conventional non-bootstrapped LHR, can
result in all four cases of rejecting none, either, or both of
the models. In contrast, a conventional non-bootstrapped

LHR can only result in the rejection of the simpler of the
two models, or none of them. Furthermore, in this new
setting, the twomodels do not have to be nested, i.e. one of
the models does not have to be a special case of the other,
and the models can be general nonlinear ODEs.
The results on the same dynamic and static examples

as before are plotted in Figure 6. As can be seen from
Figure 6B and D, this 2D χ2 vs χ2 method (purple cir-
cles) also has some slight issues with conservativeness,
but from Figure 6A and C, it is clear that this slight
conservativeness should be tolerated: the new 2D ver-
sion outperforms the previous 2D method (the purple
circles lies above the green squares, and thus has greater
AUC).

The bootstrapped LHR test is the best approach in the case of
a good helpmodel
The final test included in this comparison is a boot-
strapped version of the LHR (Methods, Additional file 1
Methods). This method has no issues with conser-
vativeness (Figure 6B and D, orange triangles), and
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Figure 6 ROC and Type I error rate curves for the approaches utilizing a help model compared to the 2D χ2 vs DW test. The structure and
interpretation of the plots are the same as for Figure 5: (A,C) are ROC curves, (B,D) are type I error curves, (A,B) are for the static, and (C,D) for the
dynamic example. As can be seen, all methods are consistent, or weakly conservative. The ROC curves show that the 2D χ2 vs χ2 test (purple circles)
is better than the 2D χ2 vs DW test (green squares), and that the bootstrapped LHR (orange triangles), is best of all. In contrast LHP (pink diamonds)
is completely uninformative, as it lies along the identity line.

outperforms all the other methods in terms of a ROC
analysis (Figure 6A and C, orange triangles are on top).

Newmotivation for the LHR test in themore general case of
bootstrapping non-nestedmodels
It is now clear that there are examples where the LHR
is advantageous to the 2D χ2 vs χ2 analysis; let us now
understand why this is the case. At a first look, it seems
like it should be the other way around: that the 2D χ2

vs χ2 analysis should be superior, almost by definition.
The reason for this is that the information in the LHR is
contained in the 2D χ2 vs χ2 analysis. The close relation-
ship between the two methods can be seen by comparing
a cloud from the analysis plotted in the χ2 vs χ2 plane
(Figure 7A), with the same cloud plotted in the LHR vs
log-Likelihood Product (LHP) plane (Figure 7B). As can
be seen, the shape of the cloud and its relation to the red
dot is identical, only tilted 45 degrees. This relation also
follows from simple linear algebra.
A further inspection of the cloud in Figure 7A, which

is taken from the static example, reveals that the cloud is
of a character that makes a 2D approach superior to the
individual tests: just as the cloud in Figure 1, the cloud in

Figure 7A lies away from the axes, and the red dot can
be distinguished better in a 2D analysis, than by looking
along the individual axes. However, when the cloud has
been tilted to the LHR vs LHP plane (Figure 7B), the red
dot can be separated from the cloud when considering
only one of the directions: the LHR direction. That this
preservation of the information is preserved when pro-
jecting the 2D cloud to the LHR line is also corroborated
by the fact that the LHP is, for this example, completely
non-informative (the pink diamond lines in Figure 6A,C
follow the identity line). In other words, the 1D LHR has
extracted virtually all the relevant information of the 2D
cloud.
All this means that if there would not be any price to pay

for doing a 2D analysis, the LHR and 2D χ2 vs χ2 anal-
ysis would be equally good. However, there is a price to
pay for moving to a 2D bootstrapping analysis, and this is
the reason why the LHR bootstrapping analysis is supe-
rior. There are several components to this price. First, the
estimation of a distribution is more cumbersome. Sec-
ond, and more importantly, this 2D estimation converges
slower than a corresponding 1D density estimation. This
has to do with the curse of dimensionality, which simply
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Figure 7 Choice of help models. (A,B) A beneficial help model. Green circles correspond to bootstrap samples from a static example cloud. The
red dot correspond to a measured data point example, that makes use of the tilting of the green cloud away from the axes. The shape of the green
cloud and the distance to the red symbol is invariant when one transforms from the χ2 vs χ2 plane (A) to the LHR vs LHP plane (B). Importantly, the
distance between the red symbol and the green cloud can be seen in the 1D projection to the LHR plane. (C-F) Illustration of how a bad,
hyper-flexible, help-mode can be understood. (C)Model fit (blue dashed) to data (red vertical lines) for the hyper-flexible help-model. (D) same as in
(A) but where the help-model is the hyper-flexible model. This cloud does not lie away from the axis, but parallel to the x-axis. Hence, all information
is already contained within one dimension, and transforming to the LHR vs LHP plane will not help. (E) The 1D χ2 test (red) and the LHR (orange)
empirical distributions for the case of a hyper-flexible model, each being the mirror image of the other. (F) A ROC analysis comparing a good help
model with the bad hyper-flexible help-model in the static example. As before, 1D LHR (solid orange) is on top, above the 2D χ2 vs χ2 plot (solid
purple) and the 1D χ2 (solid red). Those are the plots with the good help-model. The new plots with the bad hyper-flexible help-model lie below,
and LHR becomes equally bad as the two-tailed χ2 test (the orange dashed and red dashed lines are superimposed). The 2D χ2 vs χ2 test (dashed
purple) is slightly better, but still worse than the χ2 test.

means that the same number of points quickly become
more scarcely packed as the dimensions increase, and
that a corresponding density estimation will be based on
fewer and fewer neighboring points. This reduction in
convergence speed can also be seen in Additional file 1:
Figure S3, where the LHR has converged already with
cloud sizes of ∼ 1000 data points, but where the 2D χ2

vs χ2 analysis requires at least two more orders of mag-
nitude for its convergence. Finally, there are also other
prices of moving to a 2D analysis, such as the inabil-
ity to clearly define a one-sided or two-sided test (see
Discussion). The existence of such additional factors is
also reflected by the fact that the 2D test does not con-
verge to the same ROC curve as the LHR test (Additional
file 1: Figure S3).

Choosing the secondmodel
Having established that the inclusion of a second help
model may improve the statistical power of tests eval-
uating the first model, leads to the natural question of
whether all help models would do. The answer to this
is “no”: if the help model is too simple or too flexible,
the advantage is lost, and the resulting model comparison
tests - LHR or the 2D χ2 vs χ2 analysis - perform worse
than the other sound tests presented herein.
As an example of this, consider the completely flex-

ible model, which simply goes through all data points
(Figure 7C). If this model,Mflex, is used as the help model
instead of the suggested competing model in the static
example, the 2D cloud collapses to a line: since the cost
of the help model is always zero (Figure 7D). Therefore,
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there is no 2D advantage to make use of, and the LHR
distribution will simply be zero minus the χ2 distribu-
tion (Figure 7E), and LHR thus performs as bad as the
two-tailed χ2 test (Figure 7F, orange dashed line and red
dashed line are superimposed).
In the Additional file 1, another simple help model is

considered: a constant model that simply approximates a
data-series with its mean value. Here, the picture is a lit-
tle bit more mixed. For the static example, the model is
too simple, and the two-model tests are in-advantageous
(Additional file 1: Figure S5) . For the dynamic test case,
the constant model does provide some additional infor-
mation: the 2D χ2 vs χ2 analysis performs slightly better,
and the LHR test slightly worse, than the single χ2-test
(Additional file 1: Figure S2A).
Finally, for all of the above examples with too simple or

too flexible models, the 2D χ2 vs χ2 analysis is superior to
the LHR test, showing that the LHR is more sensitive to
the situation of having chosen a bad help model.

Application to insulin signaling
As a real modeling example, we used data and models
from a previous work [45]. In that paper we analyzed
experimental data from insulin signaling in primary
human adipocytes. Some of the experimental data are
shown in Figure 8B. The data consist of a time series which
displays an overshoot: the response increases rapidly from
zero, and reaches a maximal value around 1 min, and
then decreases to an intermediate steady state value. The
observed response is caused by the addition of 100 nM
insulin at time zero to previously unstimulated fat cells,
and the measurements are performed using SDS-PAGE
and immunoblotting to determine the degree of auto-
phosphorylation of the insulin receptor (IR). The data are
normalized such that the first point is zero, and the max-
imal value is 100. For further details regarding the data,
we refer to [45]. Using mathematical modeling, we were
able to reject several model structures aspiring to explain
these data, and we used model selection tools, such as the
Akaike Information Criterion (AIC) [46,47], on surviving
competing hypotheses.
Here, we re-examined one of the models, Mi,c, from

[45], that could previously not be unambiguously rejected.
The model structure of Mi,c and the chosen help model,
Mi,b, are included also in this paper for convenience
(Figure 8A). Mi,b, the smaller model, contains only three
reactions: insulin binding with auto-phosphorylation of
the receptor, internalization with dephosphorylation, and
recycling back to the plasma membrane. Mi,b fits to
the data with a distinct overshoot, reaching an inter-
mediate quasi-steady state after a couple of minutes
(Figure 8B, blue dashed line). Mi,c, on the other hand,
is considerably more detailed in terms of the binding,
auto-phosphorylation, and internalization, but it does

not contain any recycling. Mi,c fits to the data in a qual-
itatively very different way (Figure 8B, green solid line).
Mi,c has its maximum almost immediately after stimula-
tion, but thereafter never reaches any quasi-steady state as
Mi,b does. Instead the signal declines almost linearly dur-
ing the observed time period. This example is of biological
interest, since the rejection ofMi,c would suggest that the
recycling is a necessary mechanism to explain the data.
This conclusion would follow becauseMi,c is amore com-
plex, and a more realistic interpretation of the underlying
biological system in all other aspects except recycling.
In [45], an AIC analysis and a χ2-square test were per-
formed on the various competing models and although
Mi,c was discarded based on its lack of agreement with
data and the fact that inclusion of a recycling reaction
yielded a better model, neither of these results were sta-
tistically convincing. Indeed, although the results pointed
towards the rejection of Mi,c, it was pointed out already
in [45] that a more accurate analysis would require a more
generally applicable method such as bootstrapping.
In the re-analysis of this insulin signaling example, the

analysis was done using all bootstrapped tests that have
been found sound on the simpler test cases, where the
truth was known. Unlike in those examples, here the truth
is not known, but subsequent experimental analysis of the
system has revealed that Mi,c indeed should be rejected.
The results are summarized in Figure 8E. As can be seen, a
bootstrapped χ2-test yielded p= 0.06, and a bootstrapped
(left-sided) DW test yielded p = 0.05, both on the border
of rejection. A 2D χ2 vs DW analysis did in this case not
improve this value because the resulting cloud and data
point (Figure 8C) did not lie in an informative configu-
ration (as explained in Figure 1), p = 0.065. Conversely,
for the 2D χ2 vs χ2 the cloud and data point did lie in
an informative configuration (Figure 8D). As a result, the
two best methods on the test cases, the 2D χ2 vs χ2 and
the bootstrapped LHR showed improved performance as
compared to the above tests, yielding p-values that were
clearly below the threshold (Figure 8E), p = 8 ∗ 10−4 and
p ∼ 0 respectively. Also, the internal order of these meth-
ods was preserved: LHR was better than the 2D χ2 vs
χ2. These findings are the same as in all tested examples
with a sufficiently good help model, and speaks for their
generality.

Discussion
In this paper we have extended the traditional parametric
bootstrap approach to also look at combinations of differ-
ent test statistics, here exemplified by the χ2-test statistic
and the DW test statistic. We have shown how simplis-
tic combinations, as considered in the literature, of these
two statistics are unsound, but that a two-dimensional
empirical distribution, as enabled by the bootstrap setting,
is both sound and informative. We have further shown
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Figure 8 Insulin signaling case. Panel (A) shows the model structures of two models of early insulin receptor signaling,Mi,c and the chosen help
modelMi,b . This example was analyzed previously [45] and is of interest, since the rejection ofMi,c would suggest that the recycling is a necessary
mechanism to explain the data. Depicted in panel (B) is the experimental data Z (red error bars), and fits ofMi,b (blue, dashed line) andMi,c (green,
solid line). The measured data represent the increased auto-phosphorylation of the insulin receptor in response to 100 nM insulin in isolated
primary human adipocytes, as measured by SDS-PAGE and immunoblotting. Panel (C) shows the bootstrapping cloud in the χ2 vs DW plane, when
the bootstraps have been generated byMi,c (green circles, cloud size = 104). As can be seen, the cloud lies along the axes, and there is no benefit
of using a 2D analysis. Panel (D) shows the χ2 vs χ2 scatter plot of theMi,c cloud (green circles, cloud size = 104) generated after fitting both
models to bootstrap sets fromMi,c . The corresponding χ2-values for the experimental data (Z) is also plotted (red box). As can be seen, the cloud
lies away from the axis, and the experimental data point explores the obtained direction. Panel (E) summarizes the results. As the clouds have
indicated, the χ2 vs DW combination does not improve upon the individual tests, but still lies on the border of rejection. The χ2 vs χ2 tests on the
other hand perform better than the individual tests, and the LHR is best of all.

that it is even more informative to replace the DW statis-
tic with the χ2-statistic from a second model, resulting
in a two-dimensional χ2 vs χ2 test. However, the one-
dimensional bootstrapped LHR is found to be even better,
and an analysis of this has led to a new motivation and
understanding of the LHR, in the more general case of
nonlinear and non-nested models.
A 2D bootstrap approach may be superior to a cor-

responding 1D approach, but there is in fact a trade-
off between negative and positive aspects. One positive
aspect is of course that a 2D analysis contains more
information than a 1D analysis, since e.g. the insights con-
tained in two statistics can be combined. Second, even
though one in principle can combine test statistics in 1D
as well, Figure 4 shows that the simplistic combinations
give inconsistent results, and therefore are unacceptable.
Conversely, a 2D-combination of the same test statistics is

sound (Figure 5B,D). A third positive aspect of 2D com-
binations is that they have a higher power than either
of the 1D tests including only one of the test statistics
(Figure 5A,C). All these positive aspects are due to the
benefit illustrated in Figure 1, where it is clear that only the
2D combination of the test statistics reveal that the indi-
cated point lies outside the empirical distributions. There
are, however, also several negative complications inherent
in the addition of an extra dimension, and these compli-
cations are solvable to different extents. The first compli-
cation concerns the more complicated density estimation
that is required in 2D, but this has been resolved in the
herein presented 2D approaches. The second complica-
tion stems from the relative scarcity of neighboring points
in two dimensions and its effect on the density approxi-
mation. If the same number of points is used to estimate
a 1D distribution and a corresponding 2D distribution,
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the end result will be a worse approximation for the 2D
distribution, simply because of the curse of dimensional-
ity. This second complication can probably be completely
overcome by adding more points to the estimation of the
empirical distribution, but the addition of more points
comes at the price of a higher computational cost. The
third complication is that a right-tailed, left-tailed, or
two-tailed tolerance interval cannot be clearly defined
in two dimensions. This issue is described more below.
Finally, the positive aspects of the additional dimension
only appears if the resulting cloud does not lie along one
of the axis, but as in Figure 1, in a direction that is not par-
allel to the axis. All in all, this means that the advantages
of a switch to a 2D approach are not guaranteed, while the
negative consequences are guaranteed. For this reason the
choice between 1D and 2D is a trade-off.
Similarly to the issue of the second dimension, our

results seem to indicate that the addition of a second
model provides an advantage, compared to analyzing a
single model based only on its own residuals, but there is
in fact also here a trade-off between positive and negative
aspects. The positive aspects are clear from the examples
where we use a help model that is roughly equally good as
the tested model: then the ROC curves have a higher area
under the curve (Figure 6A,C), and because themodel that
should be rejected in the insulin signaling example gives a
lower p-value (Figure 8E). These positive sides mean that
the additional information provided by a second model
provides valuable knowledge regarding the quality of the
first model. More specifically, this arguably means that the
second dimension from the second models in the exam-
ples implies 2D clouds that do not lie along any of the axes,
but, as in Figure 1, in a direction that is not parallel to
the axes. A final positive aspect of this bootstrapped two-
model approach is that it goes beyond the capacity of a
normal model comparison test, e.g. LHR, since the result-
ing conclusion can be that none, either, or both models
are rejected. A standard model comparison test can never
reject both models. The negative aspects of adding a sec-
ond model are of two types: i) those that have to do with a
2D approach, and which are described above, and ii) those
that are associated to the fact that not all additional mod-
els provide an improvement. As is clear from e.g. Figure 7F,
it is clear that a poorly chosen model yields a worse test
compared to a mere χ2-test. The second negative aspect
is that it is for the non-nested cases not possible to know
in advance when a model is good or poor help model.
Here it should be re-stated that the 2D χ2 vs χ2 test is
more robust towards bad help models than the LHR test
in all examples tested herein. In summary, a help model
should not be too flexible or too inflexible, and one can see
whether the right complexity of the help model has been
struck from the shape of the cloud: if it lies along one of
the axes it is too flexible or too inflexible.

One of the negative aspects mentioned above needs a
little further clarification: the definition of the empirical
tolerance intervals, which are used to calculate the empir-
ical p-values. First, the 1D versions of the methods that
we are using either operate in a one-sided way (χ2 and
DW, Additional file 1: Figure S4A), or a in a two-sided
way (LHR, Additional file 1: Figure S4B). There is no obvi-
ous translation of sides and tails in a 1D distribution, to
a 2D equivalent. We here adopt the definition of the 2D
tolerance region(s) as the region(s) with highest proba-
bility density (Equation 8). In practice this is similar to a
two-sided cutoff since one may reject a model because it
is unrealistically good at describing the data, compared
to the given noise level. However, there are differences,
such as the possibility to have several fragmented regions
instead of a single joint one. Therefore, when comparing
our method with a 1D-version of the same test, one could
consider defining the 1D tolerance interval(s) in a like-
wise manner (Additional file 1: Figure S4C-D), since this
more closely mimics the cut-off we do in 2D. However,
all comparisons here are done with the one-sided or two-
sided 1D-versions of the methods, since it is those that
are used in practice, and those that our method should
out-compete.
A key validation step, and a demonstration of the useful-

ness of the results herein, is that they are corroborated on
a real-world example, which now has been resolved sta-
tistically for the first time: we can now reject Mi,c with
a p-value that lies clearly below the threshold. We have
confidence that this rejection of Mi,c is correct, because
in more recent works we have experimentally shown,
by blocking internalization and measuring a downstream
component, that recycling of the receptor does play a
major role in insulin signaling [3]. We have also measured
the amount of internalized insulin receptor and shown
that there is far too little internalized IR to explain the
observed overshoot. However, even though we in light of
these new data have rejected this model, it is interesting
to observe that it was possible, with our new method, to
reject Mi,c based only on the data available at the time
of [45].
There are some limitations when interpreting the results

that should bementioned. First, the results are only shown
for three example cases, and there is no guarantee that
they hold for all other examples. Nevertheless, the results
are essentially the same for all these three examples: 2D
is better than 1D for the static and dynamic examples,
and for all examples the tests with a non-extreme help
model are better than the single rejection tests, and LHR
is best of all. Therefore, since the examples include static,
dynamic, linear, nonlinear, and real-world aspects, these
overall trends probably have some generality. Second, the
generality is also limited by the fact that we do not have
analytical proofs for the results. This, however, is normal
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for bootstrap approaches. Third, another limitation with
this approach is that it only considers the usage of a sin-
gle help model or help statistic. However, this is not a
major limitation, since we anyway only advocate the usage
of these methods in special cases, where power and accu-
racy, rather than computational speed, are desired. In
other words, our suggestion is to use this approach only
in cases where you have a specific model that requires a
more detailed analysis. Also, it is unlikely that a general-
ization of this approach to 3D would be beneficial, since
then the price of estimating density in a high-dimensional
space, and the corresponding slower convergence due to
the curse of dimensionality, would be even more severe.
It is important to put our results in relation to

the existing literature in related fields, such as statis-
tics [17,19,47,48], systems biology [1,2,38], economet-
rics [15,49], mathematical psychology [11], phylogenetics
[30,31,50] etc. First, our method is advantageous only in
cases where you have a particularly important and chal-
lenging rejection case, where computational time is not
a big issue. This stands in contrast to the typical situ-
ation of AIC and Bayesian Information Criterion (BIC),
where a big number of models can be sorted through a
simple criterion [44,46,47,51]. Similarly, the herein pre-
sentedmethods are not suitable to the sub-field of optimal
experimental design for the purpose of improved model
rejection, since such studies requires an optimization over
different experimental designs, which in turn mandates
less computationally heavy approaches [12,13,52]. Sec-
ond, the perhaps most commonly used method for model
rejection, the χ2-test, has a problem - that the degrees
of freedom in the χ2 distribution usually is unknown
[2] - but this problem is overcome by using the meth-
ods considered herein. However, this is not a new result,
but is true for all bootstrap approaches, characterizing
the distribution empirically. Third, there are a number of
commonly used test statistics that we have not considered
[18,24,53]. For instance, as an alternative to the DW test
to measure correlation among the residuals, the whiteness
and the run test may be used. It is still unknown whether
our results for how to combine test statistics holds also for
these other tests. The final, and now following, two com-
parisons with literature have to do with the LHR and with
Bayesian approaches.
The herein presented analysis presents a new way of

showing why and when the LHR is advantageous com-
pared to an individual χ2-test, for themore general setting
of nonlinear and non-nested models. Since LHR has been
both extensively used and studied in the literature, it is
important to relate this claim to previous results. LHRwas
first advocated by Neyman and Pearson in 1928 [15,48],
and the basic χ2 distribution relation for nested linear
models was known already in the 30’s [15,54]. These
results were generalized to the important case of non-

nested models by Cox in [16,17] and to the case of nei-
ther of the competing models being true by Vuong [15].
However, these results are of limited use, since they rely
on analytical derivations of mean and variance terms [49],
and the results by Vuong do not even apply to time-series
models [15]. Also note that there are important cases
where the traditional likelihood ratio test is not applicable,
e.g. for usage in stochastic models based on the chemical
master equation. All of these limitations can be avoided,
by adopting a bootstrap approach. This approach basi-
cally only relies on the ability to draw bootstrap samples
in a way that approximates the true data gathering pro-
cess. The simulation based type of bootstrap approaches
studied herein was originally proposed by Williams et al.
[25]. The Williams approach has all the essential quali-
ties of how we implement the bootstrapped LHR herein:
both models are fitted to the data, and the fitted parame-
ters are used to generate bootstrap samples that explicitly
incorporates the null hypothesis that the used model is
true, and finally both models are fitted to all bootstraps
and corresponding distributions of LHR values are cal-
culated. This approach has also been widely used using
minor modifications [9,10,55], including an approach
where the bootstrap samples are generated using draw-
ing with replacement of the residuals [33]. There are also
some papers where theoretical properties of the Williams
approach have been investigated. For instance [49], shows
that the empirical distribution of Williams asymptotically
converges to the correct distribution under certain condi-
tions. However, none of those papers use a 2D approach
such as ours to achieve an intuitive understanding for why
the LHR may be advantageous: that it incorporates the
potential added value of the 2D approach compared to the
individual χ2-tests, without paying the price of a 2D den-
sity estimation. The most important and novel part herein
is perhaps that it allows the user to quickly check whether
and why the bootstrapped LHR is advantageous or disad-
vantageous to use compared to the individual χ2-test: it
depends on whether the second χ2-test yields a cloud that
lies away from being parallel to the axes, which in turn
requires that the help model is neither too simple, nor too
complex (see Results: Choosing a second model).
The final important comparison with literature con-

cerns that with Bayesian approaches. Bayesian approaches
are centered around the combination of a prior distribu-
tion or belief with experimental data to obtain a posterior
distribution. Although Bayesian calculations in practice
can be done using simple calculations like the BIC,
the perhaps most common approach involves Markov
Chain Monte Carlo (MCMC) [51,56], and such calcula-
tions have big similarities to bootstrap approaches. One
important such MCMC-based approach, which has been
used in systems biology, is the Bayes Factor (BF) [8,57].
BF can be viewed as a generalization of the LHR to a
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Bayesian setting. In particular, this means that the like-
lihoods are integrated over the prior distributions of the
parameters, to obtain the ratio of the marginalized dis-
tributions. Methods to do these marginalizations have
been investigated in e.g. [58], and simplified calculations,
not requiring the likelihood, using Approximate Bayesian
Computations (ABC), are considered e.g. in [59]. This
inclusion of the parameter uncertainties is important,
because in systems biology the parameters are often unde-
termined [4], and an important continuation of this work
will therefore be to compare the LHR with future exten-
sions of the herein presented frequentist approaches to
also include parameter uncertainty. On this note, it should
be mentioned that we have done a small analysis to see
the effect of the inclusion of such parameter uncertain-
ties on a specific cloud by exploiting the profile likelihood
(PLH) (Additional file 1: Figure S6) [60]. This small scale
analysis indicates that although the results may change
upon such an inclusion, the change is not big compared
to other uncertainties within the method. Another way to
take parameter uncertainty into account is by introducing
an initial step of non-parametric bootstrapping into the
bootstrap sample generation, as done e.g. in [11]. Once
parameter uncertainty is taken into account in the boot-
strap setting in this way, there is a striking similarity to
the Bayesian Posterior Predictive (BPP) checks [11,50,61].
In BPP, the predicted distribution of future experiments
is compared to the observed data. This is done by gen-
erating new data by sampling and simulating from the
posterior distribution, and then comparing the resulting
distribution of goodness-of-fit (GOF) with the GOF from
the experimental data [11,50,61]. With all these similari-
ties pointed out, it should also be recalled that Bayesian
approaches are never identical to frequentist approaches,
since frequentist approaches do not require a prior.

Conclusions
In a bootstrap setting, it is possible to obtain joint distribu-
tions for combinations of test statistics in a more straight-
forward way than is possible in an analytical setting, but
this possibility has previously been little explored. We
here show that such combinations often do provide addi-
tional knowledge not contained in the individual tests, but
that the considered simplistic combinations, likemax and
min, yield inconsistent, i.e. overly conservative or liberal,
results (Figure 4). A new 2D approach (Figure 2), on the
other hand, is only mildly conservative (Figure 5B,D), and
is superior to the individual tests (Figure 5A,C). These
results were obtained on both a static and dynamic case,
where the truth is known (Figure 3). On the same exam-
ples, a 2D χ2 vs χ2 test is superior to a 2D χ2 vs DW
test (Figure 6A,C), where the additional χ2-value comes
from the ability of a second model to describe boot-
strap samples from the tested model (Additional file 1:

Figure S1). The 2D χ2 vs χ2 test is, in turn, outper-
formed by the 1D bootstrapped LHR (Figure 6A,C). These
results are also confirmed on a previously published rejec-
tion example from insulin signaling in human fat cells,
which has now been statistically resolved for the first time
(Figure 8E).
Further analysis of these results show that whether or

not a 2D combination is advantageous depends on a
balancing between positive and negative aspects. The pos-
itive sides are found if the cloud as in Figure 1 lies in a
direction non-parallel to either of the axes, and the price
to exploit this is e.g. that density estimation in 2D con-
verges more slowly, and that one cannot define one-sided
or two-sided cutoffs for the tolerance regions. Similarly,
the additional model only provides a benefit if it is of
a rightly balanced ability to describe the data; otherwise
using the additional model worsens the performance. It
is because of these balancing acts between positive and
negative aspects that LHR may be the better choice: if
the additional model is of appropriate complexity, LHR
extracts all the useful information of the χ2 vs χ2 plot with
a one-dimensional analysis, which thus avoids the esti-
mation of a 2D density (Figure 6A,C). This analysis thus
provides a new motivation for the LHR test, which is valid
in the case of non-linear and non-nested models.
In summary, these results provide useful insights into

the important systems biology problem of model rejec-
tion: when to use, and when not to use, 2D approaches
and additional models. These methods are to be exploited
in challenging and important cases, when accuracy and
power rather than computational speed are prioritized.
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