
Lee et al. BMC Systems Biology 2014, 8:5
http://www.biomedcentral.com/1752-0509/8/5
RESEARCH ARTICLE Open Access
Designing a parallel evolutionary algorithm for
inferring gene networks on the cloud computing
environment
Wei-Po Lee*, Yu-Ting Hsiao and Wei-Che Hwang
Abstract

Background: To improve the tedious task of reconstructing gene networks through testing experimentally the
possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure
instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer
large networks by the evolutionary algorithm, it is necessary to address two important issues: premature
convergence and high computational cost. To tackle the former problem and to enhance the performance of
traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the
latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a
promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to
implement parallel algorithms for inferring large gene networks.

Results: This work presents a practical framework to infer large gene networks, by developing and parallelizing a
hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce
programming model and is executed in different cloud computing environments. To evaluate the proposed
approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae
sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been
analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors
and the computation time can be largely reduced.

Conclusions: Parallel population-based algorithms can effectively determine network parameters and they perform
better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be
distributed to the cloud computing environment to speed up the computation. By coupling the parallel model
population-based optimization method and the parallel computational framework, high quality solutions can be
obtained within relatively short time. This integrated approach is a promising way for inferring large networks.

Keywords: Gene network inference, Systems biology, Evolutionary algorithm, Swarm intelligence, Parallel model,
Cloud computing, MapReduce
Background
Model
Gene regulatory networks (GRNs) play important roles
in genetic systems and are involved in various biological
processes during the development of living organisms.
Through analyzing the interactions between genes, we
can uncover some complex behavior patterns and study
* Correspondence: wplee@mail.nsysu.edu.tw
Department of Information Management, National Sun Yat-sen University,
Kaohsiung, Taiwan

© 2014 Lee et al.; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
genetic systems in detail. Gene network construction has
been considered to be one of the most important issues
in systems biology research. It is a procedure used to
manipulate experimentally measured time-series data for
building a model that can describe the observed pheno-
typic behavior of a system to be studied. To save the
effort of testing experimentally which interactions in
the gene networks are possible and then deriving the
network accordingly, an automated reverse engineering
procedure has been advocated [1,2]. This work means to
. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:wplee@mail.nsysu.edu.tw
http://creativecommons.org/licenses/by/2.0

Lee et al. BMC Systems Biology 2014, 8:5 Page 2 of 19
http://www.biomedcentral.com/1752-0509/8/5
establish a practical computational methodology for the
inference of real gene networks.
To infer a network with the desired system behavior,

the crucial steps are to select a network model and then
to find the most suitable structural parameters for the
network. Many models have been proposed to address
different levels of biological details, ranging from the
very abstract (involving Boolean values only) to the very
concrete (including full biochemical interactions with
stochastic kinetics). To capture the underlying physical
phenomena of a gene network, this work adopts one of
the most popular concrete models, the S-system model,
to represent a gene network. The S-system model is a
type of ordinary differential equation (ODE) model. It
comprises a specific set of tightly coupled ODEs in
which the component processes are characterized by
power law functions [2,3]. In the coupled S-system
model, the systematic structure can be described as:

dxi
dt

¼ αi
YN
j¼1

x
gi; j
j −βi

YN
j¼1

x
hi; j
j ð1Þ

In the above equation, xi is the expression level of
gene i and N is the number of genes in a genetic net-
work. The non-negative parameters αi and βi are rate
constants that indicate the direction of mass flow. The
real number exponents gi,j and hi,j are kinetic orders that
reflect the strength of the interactions from gene j to i.
The above set of parameters defines an S-system model.
To infer a coupled S-system model is, therefore, to de-
termine all of the 2N(N + 1) parameters simultaneously.
The above inference of an S-system model is a large-

scale parameter optimization problem that is very time-
consuming. After analyzing the structural characteristics
of gene networks, Maki et al. proposed an efficient strat-
egy to divide this inference problem into N separated
small sub-problems, each of which corresponds to one
gene [4]. In other words, in a decoupled S-system, the
original tightly coupled system of non-linear differential
equations is decomposed into several differential equa-
tions [5,6], each of which describes a specific gene that
can be separately inferred. Although addressing gene
network inference in the above-described way can sub-
stantially reduce the computational complexity, it is not-
able that the computational cost will still grow linearly
when inferring large networks.
One major goal in gene network reconstruction is to

minimize the accumulated discrepancy between the gene
expression data recorded in the data set (the desired
values) and the values produced by the inferred model
(the actual values). The performance of a certain model
can be defined directly as the mean squared error (MSE)
over the time period. For the decoupled model described
above, the evaluation function of the i-th sub-problem
can thus be given as the following:

MSE ið Þ ¼
XT
t¼1

xai tð Þ−xdi tð Þ
xdi tð Þ

� �2

; for i ¼ 1; 2;…;N

ð2Þ
where xdi ðtÞ is the desired expression level of gene i at time
t, xai ðtÞ is the value generated from the inferred model, T
is the number of time points in measuring gene profiles,
and N is the number of genes in the network.
In real-world situations, the number of data points

available is often smaller than that of the parameters to
be determined. It is thus possible to obtain many feasible
solutions with various combinations of network parame-
ters (meaning different network structures/topologies).
To solve the structure problem, prior knowledge or as-
sumptions are required. Some researchers proposed to
incorporate the structural/topological properties of the
biological networks (such as the degree distribution of
the nodes in a scale-free network or the presence of net-
work motifs) with the gene expression data in the evalu-
ation process. For example, some inference methods
intend to limit the number of GRN connections to be as
small as possible because gene regulatory networks are
typically known to be sparsely connected. In such a case,
a small penalty term that measures the connection be-
tween the genes can be added to the fitness function to
discourage the connections [7,8]. There are also other re-
searchers who suggest using expert knowledge to deter-
mine the models, such as taking the form of parameter
constraints to account for the prior domain knowledge to
restrict the search of network parameters [9].
It is worth noting that prior knowledge is not always

available. Additionally, the topological properties within
the relatively small size genome-scale networks are not
sufficient enough to provide practical information, even
if they have been studied in sophisticated network mod-
eling to better understand the corresponding biological
details. Therefore, without losing generality, in this work,
we simply take the mean square error (as shown in
equation (2)) to define evaluation function. We focus on
how to design a parallel computational model to infer
decoupled S-system and how to distribute the relevant
computation to a cloud computing environment.

Algorithm
Although the non-linear ODEs mentioned above can
more accurately capture the system dynamics of gene
networks, they are difficult to solve by traditional local
optimization techniques [3,10], such as the conjugate
gradient method, Newton’s method, and the Nelder-
Mead simplex method. These techniques rely on the de-
rivative of the evaluation function or a comparison of

Lee et al. BMC Systems Biology 2014, 8:5 Page 3 of 19
http://www.biomedcentral.com/1752-0509/8/5
the evaluation function at the vertices of a simplex in the
parameter space. Thus, they are not suitable for the
optimization problem here. Global optimization tech-
niques for parameter estimation are better choices than
the above-described local techniques for finding the global
optimum and are more suitable for biological systems.
Among global parameter estimation methods, the

methods that use deterministic strategies are superior
for finding the global optimum, but these are computa-
tionally more expensive. In contrast, the methods with
stochastic strategies can have solutions that are near the
global optimum within a reasonable amount of time.
Population-based approaches (such as evolutionary algo-
rithms, EAs) are stochastic methods, and they have been
used in many studies to infer the S-system model (e.g.,
[5,6,11-13]).
Adopting a reverse-engineering approach to derive

GRNs in their early work, Tominaga and his colleagues
employed a conventional simple genetic algorithm (SGA)
to infer genetic networks with the S-system model [14].
Their results showed that SGA can successfully evolve
small scale GRNs (around 5 genes). Following Tominaga’s
work, Kikuchi et al. proposed an incremental optimization
strategy with a novel crossover technique [5] for network
inference. The modified SGA has a better performance
while inferring the S-system model; however, the modified
approach is computationally expensive since it has to deal
with too many parameters simultaneously. Ho et al. also
proposed an intelligent two-stage evolutionary algorithm
(iTEA) that used orthogonal matrices to decide better
solutions [7]. iTEA has shown its great power in the
reconstruction of gene networks, but the orthogonal
matrices will become bigger for large scale networks
(e.g., 30 genes) and the computational time thus in-
creases dramatically. There are other works proposed
for further performance improvement, for example,
[5,13,15-18]. However, they share the common problem
of scalability. To tackle this problem, we adopt this type
of global optimization technique and develop a new
parallel model to enhance the search performance and
speed up the computational process.
Using EAs to infer large gene networks that involve a

large number of genes, two inherent features of EAs must
be considered seriously. The first is premature conver-
gence, which has the negative effect of losing population
diversity before the goal is reached. To overcome this
problem, parallel-model EAs have been proposed to divide
the original population into several subpopulations to
maintain population diversity, and their efficiency has
been confirmed (e.g., [19,20]). The other problem that
must be addressed is the inordinate amount of time that is
required to perform evaluations for all of the individuals.
To enhance the search performance and speed up the
computation at the same time, it is therefore critical to
develop parallel models for EAs and execute the parallel
models in high-performance computing environments.

Computational platform
As mentioned above, a decoupled S-system model with
N genes decomposes the original non-linear differential
of S-system into N differential equations. It means that
the original task that contains 2N(N + 1) parameters
altogether is now transferred into N sub-tasks; each sub-
task has 2(N + 1) parameters (i.e., αi, gi,1..N, βi, hi,1..N for a
specific gene i) and can be independently performed.
The decoupled S-system model allows us to perform the
sub-tasks in a parallel way and then to assemble the re-
sults to obtain a final complete model. This characteris-
tic perfectly matches the pre-requirement of distributed
computing. Moreover, the population-based inference al-
gorithm can also be parallelized to speed up the compu-
tation. Combining the above ways of parallelism, large
scale networks containing hundreds or thousands of
genes can thus be inferred.
Conceptually, the central idea of the parallel EA is to

divide a large population used in a sequential version of
EA into multiple smaller subpopulations and to distribute
them on separate computational nodes so as to perform
the evaluations on separate processors concurrently. Al-
though parallel computers can be used to speed up EAs,
they are expensive and usually not available in a campus
environment. One promising choice is to utilize cloud
computing, and the MapReduce programming model pro-
vides an easy-to-implement framework with fault toler-
ance capabilities [21-23]. This framework has been used
to successfully solve many large-scale scientific computing
problems, including problems in the life sciences [24-26].
The goal of MapReduce is to deploy a large amount of

time- and memory-consuming tasks to all computing
nodes that process tasks in parallel by user-defined algo-
rithms. Figure 1 shows the overall flow of a MapReduce
process in which one master and many slave machines
are organized. The MapReduce framework contains two
main phases, map and reduce, that are controlled by the
master machine (i.e., by the driver program in it). In the
map phase, the driver loads the input data, divides it
into sub-tasks for the computing nodes (they are slave
nodes and named mappers in this phase), and instructs
these nodes to perform some calculations according to
the user-defined program for mappers (UDPm). The re-
sults are saved to immediate files. In the reduce phase
(after the calculations on mappers have been completed),
the driver asks the computing nodes (namely, reducers in
this phase) to collect the results from the intermediate
files and requests them to execute the user-defined pro-
gram for reducers (UDPr). Then reducers combine all the
sub-results to form the output. If the calculations must be
performed iteratively, the driver will continuously repeat

…

m1

m2

mk

…

r 1

r 2

r j

Data to be solved

Split into
sub-tasks
by the driver

The
driver

mappers
(do calculations

by UDPm)

reducers
(do calculations

by UDPr)

sub-tasks

Assign tasks to
mappers and then
to reducers

Save
results

Retrieve
results

Local write

Remote load

Intermediate
files on local

disks

Results

Output files

Output
results

Figure 1 The general workflow of a MapReduce process.

Lee et al. BMC Systems Biology 2014, 8:5 Page 4 of 19
http://www.biomedcentral.com/1752-0509/8/5
the above two phases until the stopping criterion is met.
Parallelization in the MapReduce framework is achieved
by executing multiple Map and Reduce tasks concurrently
on different machines in the cluster that runs the model.
This framework deals with almost all of the low-level de-
tails, including the data distribution, communication, fault
tolerance, etc. In this way, the users can concentrate on
the algorithms and define the map/reduce methods for
their applications. An example is given about how to use
the above MapReduce method to perform computation
for a decoupled S-system in the Additional file 1.
Apache Hadoop is an open source implementation of

MapReduce written in Java. Apart from MapReduce,
Hadoop also provides the Hadoop Distributed File
System (HDFS) to reliably store data across hundreds
of computers. The cluster is a single master cluster
with a varying number of slave nodes. The slave nodes
can act as both the computing nodes for MapReduce
and as data nodes for the HDFS. Hadoop MapReduce
has been used in several bioinformatics research stud-
ies [27,28]. For example, it has been employed to de-
velop algorithms for the analysis of next-generation
sequencing data [29,30], to implement systems for
sequence alignment [31], and to develop proteomic search
engines [32].
Although the Hadoop MapReduce framework can

effectively reduce the runtime for large-scale data-
intensive applications, it has some limitations [33]. One
limitation is job latency, which means the time spent on
running background tasks, such as the time spent to
schedule, start, and finish a MapReduce job. The other
limitation is input data processing, which means the
need to read the input data from the HDFS every time a
MapReduce job is executed. These limitations decrease
the efficiency of the framework, especially in applica-
tions that involve iterative computations. An alternative
MapReduce framework is Twister, which can store input
data in memory between iterations [34]. However, stor-
ing data in this way has another disadvantage: it re-
quires the data to fit in the collective memory of the
cluster so that the framework can be effective; this
approach is unfeasible for tasks that have a large
amount of data. In addition, Twister has a weak fault
tolerance capability, but this capability is very import-
ant for population-based computations that require a
large number of iterations and must be protected from
hardware or network failures.
To infer large gene networks from the expression pro-

files, in this work, we present a parallel evolution-based
optimization algorithm and distribute the algorithm to
the cloud computing environment to speed up the com-
putation. Considering the critical factors and the current
use popularity, we chose to use Hadoop MapReduce for
our application. To evaluate the proposed approach, ex-
periments have been conducted, and the results have
been analyzed. They show that our approach can be suc-
cessfully used to infer networks with desired behaviors
from four real-world biological datasets. Also, the evolu-
tion algorithm with a parallel model can improve the
performance of network inference. Most importantly,

Lee et al. BMC Systems Biology 2014, 8:5 Page 5 of 19
http://www.biomedcentral.com/1752-0509/8/5
using the MapReduce framework, the computation time
for the inference algorithm can be substantially reduced,
such that large networks can be inferred.

Methods
Optimization algorithm
To infer network parameters, we adopt a hybrid population-
based approach that includes both genetic algorithm
(GA) and particle swarm optimization (PSO) procedures
to exploit their respective advantages. This approach is
revised from an algorithm that we developed previously
for parameter optimization while evolving a fully con-
nected gene network as a whole. The original version of
our optimization algorithm has been shown empirically to
outperform other relevant algorithms on many popular
benchmark problems [16], because it can effectively
achieve a balance between local search (exploitation) and
global search (exploration). In this study, we make some
modifications and apply the revised algorithm to the
decomposed S-system problem. As described in the back-
ground section, the set of parameters that correspond to
each gene in the decoupled S-system model can be in-
ferred separately. Therefore, our hybrid algorithm is used
to optimize the set of network parameters for each gene
sequentially, as illustrated in Figure 2 (only the flow for
Gene 1 is indicated as an example). In this figure, the indi
(1≦i≦pop_size) is a possible solution (i.e., named an in-
dividual in GA or a particle in PSO) included in the
population for a specific gene. After the parameters for
all of the genes are determined, they are combined to
form the solution. The following subsections briefly de-
scribe how the proposed approach operates in both se-
quential and parallel ways.

The sequential model
The first step of using a population-based search method
to solve an optimization problem is to define an appropri-
ate representation to characterize the problem’s solution.
Figure 2 The main flow of our optimization algorithm.
To infer a gene network, we take a direct encoding
scheme to represent solutions for both the GA and PSO
parts, in which the network parameters related to the
decoupled S-system model are arranged as a linear string
chromosome of floating-point numbers. That is, for each
gene i in a network with N gene nodes, the solution is rep-
resented as (αi, gi,1, gi,2, …, gi,N, βi, hi,1, hi,2, …, hi,N). As the
parameter range of kinetic orders gi,1~N, hi,1~N ∈[−3, 3]
have been widely used as the default search space for evo-
lutionary algorithms (e.g. [5,7,8,17]), we thus choose to
use the same range in this study. For the rate constants,
several range settings have been taken, such as αi, βi ∈[0, 10],
[0, 15], and [0, 20] in the literature (e.g. [5,8,17]). Based on
a preliminary test, we found no significant difference for
using these ranges. The rate constants represent the ratio
between the synthesis and degradation process. For sim-
plicity, the range from 0 to 10 is considered suitable to
evaluate the constant rate between the two processes.
Hence, in this study the ranges for αi, and βi are both set
to [0, 10].
The next step is to define a fitness function for the

evaluation of candidates and to use the results as a form
of selective pressure to derive better solutions. In this
study, we directly use the mean squared error function
shown in the above section (i.e., equation (2)) as the fit-
ness function. With the above representation and evalu-
ation function, we can then perform the hybrid approach
to determine the network parameters.
As shown in Figure 2, in this algorithm a random

population is first generated and evaluated. Then, the in-
dividuals (particles) are ranked according to their fitness
and are separated into two parts. The first part includes
elites (i.e., the best p% individuals of the entire popula-
tion); these individuals are preserved and enhanced by
the PSO procedure and are sent directly to a candidate
list that is being prepared for the next generation. The
second part includes individuals with a lower perform-
ance compared with those in the first part (i.e., the worst

Lee et al. BMC Systems Biology 2014, 8:5 Page 6 of 19
http://www.biomedcentral.com/1752-0509/8/5
(1-p)% individuals); they are discarded. To replace the
removed individuals, the same number of individuals is
produced to form a parent pool, in which some individ-
uals are randomly generated (i.e., r%), and the remainder
(i.e., (1-p-r)%) are randomly selected from the ones that
were already improved by the PSO procedure. Then, this
parent pool is used to create new individuals through
the GA procedure, and the newly created individuals are
sent to the candidate list. Once a new candidate list is
formed, the individuals in this list are again ranked ac-
cording to their fitness values, and the new population is
used for the next generation. The above procedure is re-
peated until the termination criterion is met.
In our experiments, p has a fixed value (which is esti-

mated from a preliminary test), while the randomness
rate r is a variable whose value can be changed during
the run to control the population diversity (i.e., to coord-
inate the progress of the PSO and GA parts). For ex-
ample, the randomness rate can increase linearly in
proportion to the generation number to maintain the
overall population diversity; the PSO tends to perform a
local search at the end of the run, which implies that a
high rate of randomness is desirable.
In the PSO procedure shown in Figure 2, the particles

are potential solutions moving in the search space de-
fined by the parameters. Each particle has its own
position and velocity. The position is the current value
of the model parameter, while the velocity is a vector of
numbers that are added to the position coordinates of
the particle in order to move the particle from one time
step to another. To enhance the individual performance,
the main operator here is velocity updating for the parti-
cles, which combines the best position reached by the
swarm of particles and the best position reached by a
certain particle during its movement history. The algo-
rithm causes the particles to move toward the best pos-
ition in the swarm. In this study, the velocity and the
position of a particle at time step t + 1 are updated from
those at the previous time step t by the following rules
(which were modified from the original PSO [35]):

vtþ1
id ¼ χ wvtid þ c1r

t
1 ptid−x

t
id

� �þ c2r
t
2 ptgd−x

t
id

� �� �
ð3Þ

xtþ1
id ¼ xnid þ vtþ1

id ð4Þ

χ ¼ 2

2−φ−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2−4φ

p			 			 ð5Þ

In the above equations, vid and xid are the velocity and
position of particle i in dimension d, pid is the previous
best position of particle i, pgd is the best position in the
swarm, and w is the inertia weight, which controls the
momentum of the particle by weighting the contribution
of the particle’s previous velocity. The coefficients c1 and
c2 are two positive acceleration constants; they are often
determined empirically. The variables r1 and r2 are ran-
dom values within the range [0, 1]. The products c1r1
and c2r2 thus stochastically control the overall velocity
of a particle. In addition, χ is the constriction factor
that was originally introduced in [35] to constrict the
velocities of particles and to achieve an exploration-
exploitation balance during the search. Finally, φ is a
parameter often used to control the convergence charac-
teristics of the PSO. It is the summation of c1 and c2,
and has to be larger than 4.
As mentioned above, the GA part is used for the cre-

ation of new individuals to replace the individuals who
were discarded. In this procedure, the tournament selec-
tion strategy is employed to choose parent pairs. For the
selected particles old1 and old2, the crossover operator is
implemented as described below to create two new par-
ticles new1 and new2:

new1 xidð Þ ¼ old1 xidð Þ þ old2 xidð Þð Þ=2−φ1
� old2 vidð Þ ð6Þ

new2 xidð Þ ¼ old1 xidð Þ þ old2 xidð Þð Þ=2−φ2
� old1 vidð Þ ð7Þ

In this operator, φ1 and φ2 are uniform random vari-
ables (different from the parameter φ in equation (5))
that have values between 0 and 1. If the position of a
newly created particle falls outside the specified range, it
is set to the maximal value allowed (i.e., xid-max). As can
be observed, this operator mainly serves to incorporate
the velocities of the two parents; it produces two chil-
dren with positions between the two parents but that ac-
celerate away from the current location to increase the
population diversity. Then, the non-uniform mutation is
performed to fine-tune the numerical values of the indi-
viduals. This operator causes a parameter pk in a se-
lected individual to be changed to pk′, where

pk
0 ¼ pk þ Δ t;UB� pkð Þ if a random digit is 0 8ð Þ

pk � Δ t; pk � LBð Þ if a random digit is 1 9ð Þ
�

In the above equations, LB and UB are the lower and
upper bounds of the parameter pk and t is the iteration
number. The function Δ(t, y) (the often-used function
as described in [36]) returns a value between 0 and y
such that the probability of Δ(t, y) will be close to 0 as
t increases.

The parallel model
The GA-PSO approach described above has been ex-
tended with a parallel model to enhance the search per-
formance and to reduce the computational time in the
network inference. Conceptually, parallelizing the above

Lee et al. BMC Systems Biology 2014, 8:5 Page 7 of 19
http://www.biomedcentral.com/1752-0509/8/5
procedure involves dividing a large population into mul-
tiple smaller subpopulations so that they can be addressed
on separate computational nodes simultaneously. Depend-
ing on the subpopulation size, two types of parallel models
are typically used: coarse-grained and fine-grained. The
best choice depends mainly on the machine availability
and the type of application task. Because of the hardware
limitation, in this work we adopt a coarse-grained model
and distribute the computation in the cluster computing
environment to achieve parallelism.
A coarse-grained model divides the whole population

into a small number of subpopulations; each subpopula-
tion can be evaluated by the original GA-PSO independ-
ently on a separate processor. In this model, any change
for a particle occurs only in a local subpopulation. A
communication (migration) phase is introduced in the
parallel model to periodically select some promising in-
dividuals from each subpopulation and send them to
other subpopulations. A common strategy is to use the
selected individuals to substitute for the worst individ-
uals of the neighboring subpopulations. In this way, the
algorithm has a higher probability of maintaining popu-
lation diversity and protecting good solutions that are
found locally.
Our coarse-grained GA-PSO performs island model

parallelism (called iGA-PSO). Ideally, each subpopulation
is distributed to one or more available computational
node(s). In this way, the subpopulations can be independ-
ently executed at the same time to speed up the solution
search process. However, because the MapReduce frame-
work is adopted in this work to realize the distributed
computing, the dispatch of islands to the computational
nodes has to follow the corresponding design principles
and to work in a non-traditional manner. For example,
the particles in the same island may be arranged in differ-
ent computational nodes in the map phase and later
grouped together in the reduce phase. Here, we focus on
the operational flow of iGA-PSO in the conceptual level.
How the iGA-PSO works on the MapReduce framework
is described in the following section.
The distributed iGA-PSO code continues for a certain

number of iterations before migration occurs. Because of
the variation in the machine specifications (e.g., the CPU
and memory utilities) and the discrepancy of the evalu-
ation time in the individuals, computers that run differ-
ent subpopulations can take different amounts of time
to complete the corresponding evolution. To perform
migration as in the original island model, our work uses
a synchronized strategy to organize the distributed com-
putation. In other words, the communication phase can
start only when all of the subpopulations have been exe-
cuted for a predefined number of generations. After ex-
changing individuals in the communication phase, all of
the subpopulations continue independently again. The
above procedure operates iteratively until the termin-
ation criterion is met.
To implement the above model, a binary n-cube top-

ology is configured in which each cube node corre-
sponds to one of the networked computers. In this
model, migration occurs only between immediate neigh-
bors along different dimensions of the hypercube, and
the communication phase involves sending a certain
number of the best individuals of each subpopulation to
substitute for the same number of the worst individuals
of its immediate neighbors at regular intervals. Figure 3
illustrates the concept of the model and the operations
with an example (n = 3).

Parallelizing iGA-PSO on a cloud computing framework
To utilize the above parallel model to solve the problem
of high computational load, we implement our iGA-PSO
algorithm with the MapReduce programming model on
the Hadoop cloud computing framework. As mentioned
before, we have to decompose the original problem and
parallelize the algorithm (i.e., iGA-PSO). Then, we also
have to arrange different operations of the algorithm for
the Map and Reduce modules, so that the framework can
distribute the computation accordingly. Figure 4 depicts
the work flow of how to transfer the parallel iGA-PSO to
the MapReduce framework for inferring a decomposed
S-system model. As shown, in this application the opera-
tions of iGA-PSO cooperate with each other in the
map and reduce phases. This parallel implementation
mainly includes four user-defined objects (specified by the
Hadoop MapReduce working model) that are described
below. More technical details about the user-defined ob-
jects are described in a Additional file 1.
The first user-defined object is the map method (de-

signed for the Mapper). This object allows the algorithm
to execute the operations independently without waiting
for others, and thus carries out the parallel computing.
In the decomposed S-system model, the set of parame-
ters for each individual gene can be independently in-
ferred, and this characteristic matches the purpose of
using Mappers for problem solving. In our iGA-PSO al-
gorithm, some operations for optimizing the parameters
that correspond to a specific gene can be executed con-
currently (including the computation of updating a par-
ticle’s position and velocity, the fitness evaluation for
each particle, and the determination of the best-so-far
result for each particle (i.e., pbest)). They are thus ar-
ranged to be executed in the mapper phase. Such an ar-
rangement means creating some input files by following
the format specified by the MapReduce framework (see
the third object below). According to the files, this
framework will distribute particles (when they are to
perform the operations mentioned above) to different
Mappers to achieve the parallelism automatically.

I5

I7

I1 I2

I3 I4

I8

I6

Gene 1

Gene 2

…..

Gene n

Combine
results

Communication
Phase

GA-PSO
Computation

Record the best

New Particles

Yes

Yes

No

No
Termination?

If (iteration = migration)

Figure 3 The parallel model of our iGA-PSO approach.

Lee et al. BMC Systems Biology 2014, 8:5 Page 8 of 19
http://www.biomedcentral.com/1752-0509/8/5
The second user-defined object is the reduce method
(designed for the Reducer). In contrast to the above map
method, this method deals with the operations that
involve results generated by others. Some operations
in our iGA-PSO algorithm need to wait for others and
they are thus allocated in the reduce phase (including
the execution of selection, crossover, and mutation in
the GA procedure, the operations of migration among
different islands in the parallel model, and the determin-
ation of the global best result, i.e., gbest). In the MapRe-
duce framework, the particles have to be re-distributed
to the computational nodes (working as the Reducers
in this phase) before they start to perform the above
Figure 4 Overview of the proposed framework: iGA-PSO with the Had
operations. Here, we group the particles that deal with
the same genes together, and each group of particles is
dispatched to a Reducer.
The third and the forth user-defined objects are input

and output formats respectively. The former will be read
and processed by the map method; the latter, transferred
to output records by the reduce method. This is for cre-
ating a data string for each particle to specify its role
and record the relevant information (see the input file
format in Figure 5), so that different operations regard-
ing to the iGA-PSO algorithm can be performed cor-
rectly on the MapReduce framework in different phases.
In this study, there are two types of data defined in each
oop MapReduce model.

Lee et al. BMC Systems Biology 2014, 8:5 Page 9 of 19
http://www.biomedcentral.com/1752-0509/8/5
string: the identifier for the recognition purpose in the
MapReduce process; and the particle state for indicating
the states of the particles used in the iGA-PSO algo-
rithm). The first type of data includes three different
identifiers: (1) gene-id, which is assigned to a particle at
the initialization phase to indicate which gene this par-
ticle is responsible for, and it is used to distribute the
particle to a specific Reducer in the reduce phase; (2)
island-id, that each particle is assigned with; and (3)
particle-id, which is an identification number of a par-
ticle and is used for tracing the computational result of
the particle. The second type of data indicates the most
recent particle states: the position, velocity, and fitness,
the pbest-position of a particle, and the gbest-position of
the swarm. Here, the fitness means the performance of
this particle, and the other entries describe the particle
states (as described in the above iGA-PSO). With the
above two types of data, this MapReduce framework can
activate the corresponding operations in the map and re-
duce phases, respectively. Details about the control flow
and the data format settings of the MapReduce model
for this application are described in the Additional file 1.
As shown above, the proposed approach can efficiently

distribute the iGA-PSO algorithm to the map and re-
duce phases. In this way, our approach can fully exploit
the computational power of the cloud computing system
to perform parallel computation for network inference.
Figure 5 The proposed input/output file format for the Mapper and R
The proposed framework is able to remedy the scalabil-
ity problem and be used to infer large gene networks.

Results
To assess the performance of our parallel iGA-PSO in a
cloud computing environment, we used the well-known
open-source software GeneNetWeaver 3.1 (GNW 3.1,
[37]) to create several datasets. GNW was designed for
generating in silico benchmarks of gene expression pro-
files by extracting network modules from prior in vivo
studies (such as S. cerevisiae [38,39]) and connecting/
expanding these modules to form test networks. In other
words, each benchmark is composed of hundreds of
genes (that form the real biological sub-networks), and
the network can be inferred by computing algorithms
without performing an in vivo experiment in advance.
According to the GNW tutorial, the benchmarks used in
the competition of gene network inference in DREAM
challenges were created in this way [40].
In the experiments, four datasets were generated from

the software GNW 3.1. They included a 25-node (data-
set 1), a 50-node (dataset 2), a 100-node (dataset 3), and
a 125-node (dataset 4) yeast S. cerevisiae sub-networks.
Then we used this software to produce the time series
data for each test network. In the generation of time
series data, we left most of the settings at the default
values suggested in GNW 3.1 as in DREAM4, for
educer.

Lee et al. BMC Systems Biology 2014, 8:5 Page 10 of 19
http://www.biomedcentral.com/1752-0509/8/5
example, the perturbation of the time series, the model
of noise in microarray, and the normalization after add-
ing noise. To increase the complexity of the network
modeling for rigorous verification, the duration of the
time series and time points were approximately 1.5 times
of the default settings (changing from 21 to 31 time
points). The main reason for generating datasets by
GNW 3.1 rather than directly taking the datasets of
DREAM challenges lies in that our evaluation procedure
requires a set of different sizes networks with certain
scale differences to compare the corresponding speed-up
rates. As far as is known, there has not been any work
that infers S-systems to characterize the gene networks
used in the DREAM challenges, so no results of the
same type are yet available for performance comparison.
With the above datasets, two phases of experiments

were arranged and conducted. The first phase was to
evaluate the performance of our network inference
method without (i.e., GA-PSO) and with the island
model (i.e., iGA-PSO for virtual parallelism), by run-
ning the code on one sequential machine. In the second
phase of the experiments, the iGA-PSO method was
implemented on the Hadoop MapReduce framework to
speed up the gene network reconstruction (i.e., real
parallelism), and the amount of time required to com-
plete a run of network modeling using different methods
was compared.

Performance of the proposed algorithm on a sequential
machine
The first experimental phase involves examining whether
the coarse-grained parallel model can further improve
the search quality of the original method. Therefore, for
the above four datasets, the optimization algorithm with
two different settings was used to infer the networks. The
first setting was the original GA-PSO (without the island
model), which can also be regarded as the iGA-PSO with
only one island of the population. The second setting was
the GA-PSO with the island model in which different num-
bers (2 and 4 in the experiments) of subpopulations were
used. In the experiments, the migration procedure was ac-
tivated every m iterations (10 or 20 in the experiments),
and the number of migrants to be exchanged was 5% of
the sub-population. For each subpopulation, the migrants
were chosen randomly from the top 20% particles of a sub-
population to replace the worst 5% of its neighbors. These
values were chosen based on a small pilot study.
Twenty independent runs of 200 iterations were con-

ducted, in which the population size was 8,000 for the first
dataset, and 10,000 for the other datasets. As mentioned
above, the proposed approach includes PSO and GA
parts, and a certain amount of individuals are randomly
generated to form the parent pool for the creation of new
individuals (see Figure 2). In the experimental runs, we
chose a proportion of 70% of the individuals for PSO im-
provement and a static rate of 10% for random individuals
(i.e., p was 0.7 and r was 0.1). Table 1 shows the results:
the mean (i.e. Avg in the table), the best and worst per-
formance of all runs; and the standard deviation for each
set of experiments are listed. As seen, the method that in-
volved working with a parallel model (i.e., iGA-PSO) out-
performed its original form with regard to the results of
the average, standard deviation, and best and worst fitness
values for all four datasets. In addition, among the settings
for iGA-PSO, the combination with island number 4 and
migration interval 10 gave better results than the other
combinations.
The results in Table 1 indicate that the parallel model

can successfully enhance the performance of the original
network inference method. This is consistent with other
island-based EA works. It is because that using multiple
subpopulations can effectively keep groups of particles
evolving separately in different islands for some pre-
defined generations, and this strategy has successfully
maintained the diversity of each group of particles. Hence,
each island would not be dominated by the elite particles
in other islands. The algorithm can then prevent the so-
called premature situation (meaning converging too fast)
and can explore more regions of the solution space to find
better solutions.
The inferred (by iGA-PSO) and actual network behav-

iors are compared. Figure 6 shows the results of the 25-
node network as a representative, in which the network
was inferred in a decomposed way (i.e., gene by gene).
Here, the x-axis represents the time points and the
y-axis is the concentration levels of genes. To present
the results clearly, in this figure we divided the results
for this dataset into several sub-figures. As can be ob-
served, very similar network behaviors were inferred for
genes in this dataset. To provide a holistic evaluation for
all datasets described above, we produced a scatter plot
for each dataset to illustrate the inferred versus real ex-
pression values for all genes and all time points. Figure 7
presents the results for all the four datasets. In the fig-
ure, the x-axis and y-axis are the concentrations of the
actual and inferred networks respectively, and the coord-
inate of each data dot represents the concentration of a
gene at some time point. Thus, the diagonal of the scat-
ter plot indicates the perfect data fitting. As shown in
Figure 7, the data dots all locate at around the diagonal
of each sub-figure, and these results confirm the per-
formance of our iGA-PSO approach.
To investigate the effect of virtual parallelism (i.e., run-

ning the island model algorithm on a sequential ma-
chine) in more detail, we collected the results to analyze
the computational cost of obtaining a successful solution
using the methods with different subpopulations. Here, a
“try until success” recursive strategy is used, in other

Table 1 Results obtained by the proposed algorithms with different settings for dataset 1 to 4

GA-PSO iGA-PSO (i = 2) iGA-PSO (i = 4)

Migration (m) - m = 10 m = 20 m = 10 m = 20

25 genes (dataset 1) Avg 0.1437 0.1312 0.1246 0.1195 0.1240

Best 0.1256 0.1117 0.1113 0.1026 0.1083

Worst 0.1678 0.1516 0.1429 0.1311 0.1460

SD 0.0149 0.0103 0.0085 0.0107 0.0093

50 genes (dataset 2) Avg 0.2288 0.2031 0.2098 0.1944 0.2002

Best 0.1813 0.1572 0.1606 0.1519 0.1515

Worst 0.2516 0.2305 0.2267 0.2158 0.2254

SD 0.0187 0.0174 0.0156 0.0147 0.0180

100 genes (dataset 3) Avg 0.3947 0.3759 0.3765 0.3656 0.3711

Best 0.3570 0.3304 0.3501 0.3337 0.3411

Worst 0.4571 0.4067 0.4140 0.3957 0.3961

SD 0.0272 0.0168 0.0176 0.0148 0.0160

125 genes (dataset 4) Avg 0.2275 0.2197 0.2216 0.2177 0.2210

Best 0.2111 0.2043 0.2053 0.2056 0.2087

Worst 0.2497 0.2383 0.2468 0.2299 0.2374

SD 0.0105 0.0096 0.0112 0.0068 0.0087

Lee et al. BMC Systems Biology 2014, 8:5 Page 11 of 19
http://www.biomedcentral.com/1752-0509/8/5
words, independent experimental runs were performed
sequentially until a successful run was obtained. In our
network inference application, a successful run means
that the solution obtained from the run has a fitness
value that is lower than a threshold (measured by the
evaluation function). Based on the above criterion, we
summarize the results of different methods and present
them in Table 2.
Given the chance of success from running a single ex-

periment and the cost of running a single experiment,
the recursive strategy described above allows us to calcu-
late the expected computational cost x for a certain
method using the following equation:

x ¼ C � P þ C þ xð Þ � 1−Pð Þ ð10Þ

In this equation, C is the computational cost of run-
ning a single experiment with this method, and P is the
probability of obtaining a successful run with this
method (the experiments are probabilistically independ-
ent). By solving this equation, we can obtain x =C/P.
Suppose that we have conducted a few independent runs
in which M of them succeeded and N of them failed;
then, the distribution of the probability of success P can
be described as ([41]):

f Pð Þ ¼ PM 1−Pð ÞN
B M þ 1;N þ 1ð Þ ð11Þ
in which B(∙,∙) is the Beta function. Thus, we can calcu-
late the expected cost of x as:

Ep x½ � ¼ ∫10
C
P
� PM 1−Pð ÞN
B M þ 1;N þ 1ð Þ dP

¼ C
B M þ 1;N þ 1ð Þ ∫

1
0P

M−1 1−Pð ÞNdP

¼ C � B M;N þ 1ð Þ
B M þ 1;N þ 1ð Þ ð12Þ

By the definitions B(m, n) = Γ(m)Γ(n)/Γ(m + n) and
Γ(x + 1) = xΓ(x), the above result can be simplified to:

Ep x½ � ¼ C �M þ N þ 2
M þ 1

ð13Þ

With this estimation approach, if we assume that the
cost of conducting a run using the method of one popu-
lation of 8000 individuals is C, and for this method we
have M = 12 and N = 8, then the expected computational
cost of obtaining a successful run with this method is
C × 22/13 (= 1.69C). Similarly, for the method with two
sub-populations of 4000 individuals, M = 19, N = 1, the
cost of a single run is C (the cost for exchanging individ-
uals is relatively small and ignored); thus, the expected
cost of this method is C × 22/20 (= 1.1C). In the same
way, we can estimate that the expected cost for the
method with four subpopulations of 2000 individuals is
1.05C. The estimated costs for all of the datasets are

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 6 The inferred and the actual network behaviors of the 25-gene sub-network (dataset 1); they are split into seven sub-figures
(a), (b), (c), (d), (e), (f), and (g).

Lee et al. BMC Systems Biology 2014, 8:5 Page 12 of 19
http://www.biomedcentral.com/1752-0509/8/5

(a) (b)

(c) (d)
Figure 7 The scatter plots for the relationships between the inferred and the actual concentration of the four datasets. Sub-figures
(a) (b) (c) (d) are for datasets 1, 2, 3, and 4, and the plots contain 775, 1,550, 3,100, and 3,875 dots, respectively.

Lee et al. BMC Systems Biology 2014, 8:5 Page 13 of 19
http://www.biomedcentral.com/1752-0509/8/5
listed in Table 2 (assuming that the run with one popu-
lation is C). These results indicate that using iGA-PSO
can indeed yield successful solutions with relatively less
computational effort.

Performance of the proposed method on parallel
machines
After investigating the performance of the proposed algo-
rithms (GA-PSO and iGA-PSO) running in a sequential
manner for gene network modeling, in the second phase,
we conducted two suites of experiments to examine how
our iGA-PSO method can be performed in a parallel com-
puting environment to speed up the computation in
Table 2 The number of successful runs and the computationa

Dataset 1 Dataset

num. of population 1 2 4 1 2

population size 8000 4000 2000 10000 5000

num. of successful runs 12 19 20 8 17

Expected Cost (C) 1.69 1.10 1.05 2.44 1.22
practice. The iGA-PSO was implemented on the Hadoop
MapReduce framework and was executed on different
computer clusters for verification. The first suite of exper-
iments was conducted at one of the personal computer la-
boratories in our university computer center, and the
second suite was conducted in a commercial cloud com-
puting environment. In the campus computing laboratory,
two sizes of computing clusters were arranged as slave
machines, including 20 and 25 PCs (due to the hardware
limitations), and one extra machine was set up as the mas-
ter. These machines have the same hardware/software
specification: 3.0 GHz Intel Core 2 Duo E8400 CPU, 4GB
DDR2 667 RAM, and Linux CentOS 6.2 (64-bits) or
l cost of the different methods

2 Dataset 3 Dataset 4

4 1 2 4 1 2 4

2500 10000 5000 2500 10000 5000 2500

20 7 15 16 10 14 17

1.05 2.75 1.38 1.29 2 1.47 1.22

Lee et al. BMC Systems Biology 2014, 8:5 Page 14 of 19
http://www.biomedcentral.com/1752-0509/8/5
Ubuntu 11.10 (64-bits) operation system with Hadoop
0.20.0 version. The transmission speed of the local area
network is 1,000 Mbps. We also ran the sequential version
of GA-PSO and iGA-PSO on a single node for a baseline
comparison.
It is notable that the main purpose of this study is to

provide a practical framework to speed up the computa-
tion so that large biological regulatory networks can be
inferred, rather than to compare different algorithms or
to perform optimal parameter settings. Therefore, in this
experimental phase, we considered the island number to
be 4 and migration interval to be 10 (the parameter
combination with the best performance as shown in the
previous section) in the experimental runs of real paral-
lelism. Here, we focused on the data sets that had more
gene nodes (i.e., 50, 100, 125 nodes). Because of the
large amount of computational time needed, in these
runs, the population size was reduced to 5,000 and the
iteration number was 200 iterations.
Table 3 show the results; the arrangement of computa-

tional nodes (i.e., master/slave), the time (in minutes) spent
for the experimental runs, the speed-up rates, and the aver-
age fitness value per gene obtained from the runs are all
listed. These results indicate that the implemented Hadoop
MapReduce framework can indeed reduce the experimental
time that is required to infer gene networks, which makes
it possible to infer large networks with more nodes. From
the table, we note that the original GA-PSO (which takes
923 minutes to complete a run for dataset 2, 3,687 minutes
for dataset 3, and 5,788 minutes for dataset 4) is slower
than the sequential iGA-PSO (which spends 908, 3,137,
and 4,927 minutes for datasets 2, 3, and 4, respectively),
which, in fact, required extra computational effort to ad-
dress the inter-island communications in the experiments.
After further inspection, we found that the reason is that
Table 3 Results for datasets 2, 3, and 4 by running the exper

Algorithm Sequ

GA

50 genes (dataset 2) Master / Slaves 1

Time cost (mins) 9

Speed-up

Fitness value per gene 0.2

100 genes (dataset 3) Master / Slaves 1

Time cost (mins) 3

Speed-up

Fitness value per gene 0.4

125 genes (dataset 4) Master / Slaves 1

Time cost (mins) 5

Speed-up

Fitness value per gene 0.2
the iGA-PSO method used 4 islands with populations of
1,250 to handle the computation, which reduced the sorting
time (e.g., to sort the possible solutions and find the best
members) that is needed in the GA part of the hybrid algo-
rithm. Therefore, to make a more objective comparison of
the speed-up rate between the sequential and parallel ver-
sions of the proposed algorithm, we chose to use the run
time of the sequential iGA-PSO as the baseline record.
Figure 8 illustrates the time cost curves of the results

listed in Table 3. As shown in this figure, the parallel
iGA-PSO on 20 slaves is approximately 4.17 times faster
(i.e., from 908 down to 218 minutes) to 7.02 (i.e., from
4,927 down to 702 minutes) than the sequential iGA-
PSO (without any slave) for the three datasets, and the
5.16 ~ 8.28 speed-up rates can be obtained for the exper-
iments with 25 slaves. Overall, the best speed-up per-
formance that the framework can achieve here is for the
cases of running the parallel algorithm on 25 slaves to
infer networks for dataset 4. In other words, the parallel
iGA-PSO is 8.28 times faster than the sequential iGA-
PSO on a single machine.
After running the proposed iGA-PSO method on the

Hadoop MapReduce framework to prove its correctness
and confirm its performance, we conducted the second
suite of experiments to further evaluate this parallel
method in the cloud. Among the suppliers of cloud
computing services, the Amazon Elastic Compute Cloud
(i.e., Amazon EC2) is one of the most famous and largest
cloud computing and storage providers. It provides a
basic but versatile computing environment at a low ren-
tal cost, including scalable CPUs, memory (RAM), disk
storage, and several operating systems. In addition, the
cloud services also allow users to expand or eliminate
computing nodes and to pay only for the activated
nodes. Fusaro et al. drew our attention to how projects
iments in the computer center

ential Sequential Parallel

-PSO iGA-PSO iGA-PSO

/ 0 1 / 0 1 / 20 1 / 25

23 908 218 176

- 1 4.1651 5.1591

876 0.2494 0.2593 0.2562

/ 0 1 / 0 1 / 20 1 / 25

,687 3,137 496 411

- 1 6.3246 7.6326

567 0.4225 0.4165 0.4114

/ 0 1 / 0 1 / 20 1 / 25

,788 4,927 702 595

- 1 7.0185 8.2807

822 0.2651 0.2670 0.2667

Figure 8 The time cost curves of different sets of experiments
conducted in the university computer center.

Lee et al. BMC Systems Biology 2014, 8:5 Page 15 of 19
http://www.biomedcentral.com/1752-0509/8/5
in biomedical informatics were deployed on the Amazon
cloud service and listed the pricing structure from Ama-
zon EC2 for the CPUs and storage [42].
Similarly, one of the telecommunication service pro-

viders, Chunghwa Telecom, which is the largest cloud
computing supplier in Taiwan, offers application devel-
opers ideal computing resources (called hicloud, http://
hicloud.hinet.net/). Comparing their pricing strategies,
hicloud is cheaper than Amazon EC with regard to the
matching on-demand packages, which fulfilled our re-
quirements. Because using a reverse engineering approach
to construct GRNs is a CPU- and memory (RAM)-con-
suming task, especially in the modeling of large networks
(e.g., with more than 100 genes), we need efficient CPUs,
a large memory capacity, and high-speed intranet data
transfer to achieve this task. Therefore, considering both
the price (each node costs $0.128 per hour)a and the per-
formance of the on-demand package (each hicloud node
is equipped with a 2.0 GHz 2007 Xeon processor (4 virtual
cores), 8 GB of RAM, 100 GB of disk storage, and Linux
Ubuntu 11.10 (64-bit)), we chose hicloud as the cloud en-
vironment for this suite of experiments.
With the hicloud computing clusters, we conducted

the experimental runs for datasets 2, 3, and 4, to evalu-
ate the proposed approach. For these datasets, 20 and 30
slave nodes were used to perform the parallel computa-
tion. Similar to the first suite of experiments, the se-
quential versions of GA-PSO and iGA-PSO were run for
a performance comparison. In the experiments, the
population size was 10,000, and each run lasted for 200
iterations. The results are presented in Table 4. As is
shown, the speed of running the parallel iGA-PSO on 20
slaves was approximately 4.9 ~ 7.6 times faster than that
of the sequential iGA-PSO in assessing the three data-
sets; and when the number of slave nodes increased up
to 30, even better performance could be obtained. To
sum up, compared with the sequential iGA-PSO, the
best case is to run the parallel iGA-PSO with 30 slave
nodes for dataset 4, that yields a 9.1 times speed-up per-
formance. Figure 9 illustrates the time cost curves of the
results listed in Table 4. It shows that the sequential
GA-PSO and iGA-PSO took much longer than their par-
allel versions running in the cloud computing environ-
ment. All confirms the efficiency of our framework.

Discussions
The results obtained from the above two suites of exper-
iments show that the larger the dataset that the pro-
posed algorithm is applied to, the better the speed-up
rate it can provide. Moreover, it can be observed from
the results that the second suite, with a population size
of 10,000, was slightly faster than the first suite, with a
population of 5,000, in the computing environment of
20 slaves for all of the datasets (see Figure 10). By care-
fully recording and analyzing the computation process,
we found that this result arises mainly because Hadoop
MapReduce always requires some computational effort
to initialize the framework, activate a job, transmit a job
task via the intranet, and write/read the results into/
from the HDFS. If a Mapper does not spend relatively
more computation time (compared with the time spent
on the system maintenance, as indicated above) on the
major part of the application task at each iteration (i.e.,
less than 30 seconds in our case), the speed-up effect
will be limited.
In the current era, scalable parallel computing allows

application developers to exploit all of the degrees of
freedom of in linear scaling to solve a time-consuming
problem [43]. In this new epoch, it always comes to a
critical issue that if a sequential computational problem
can be divided into several parallel sub-problems (as
shown in above section), then how to judge the speed-
up performance obtained? Ideally, the computation in
Hadoop MapReduce operates in parallel and different
parts of the framework have no mutual influences with
others. This way, the speed-up rate can increase linearly
in proportion to the number of computational nodes.
Taking our application as an example, a 20-node cluster
should give a nearly 20 times speed-up rate in a com-
pletely independent MapReduce environment. Nonethe-
less, a particular portion of serial overhead and the
parallel environment-enabling cost must be taken into ac-
count and which slows down the experiments in practice.
As the Amdahl’s Law described [44], because the non-

parallelized portion of a task restricts the speed-up
performance, a linear speed-up rate is in fact difficult
to achieve. According to Amdahl, the inherent non-
parallelized part of a computational task creates an
inevitable constraint on the speed-up rate against the
parallel processes available. The magnificent argument
for the efficiency and limit of parallel computing has
been widely adopted and discussed. To date, the most

http://hicloud.hinet.net/
http://hicloud.hinet.net/

Table 4 Results for datasets 2, 3, and 4 by running experiments on hicloud

Algorithm Sequential Sequential Parallel

GA-PSO iGA-PSO iGA-PSO

50 genes (dataset 2) Master / Slaves 1 / 0 1 / 0 1 / 20 1 / 30

Time cost (mins) 3019 2898 591 465

Speed-up - 1 4.9036 6.2323

Fitness value per gene 0.2345 0.2115 0.2140 0.2076

100 genes (dataset 3) Master / Slaves 1 / 0 1 / 0 1 / 20 1 / 30

Time cost (mins) 11342 10284 1526 1316

Speed-up - 1 6.7392 7.8146

Fitness value per gene 0.3843 0.3520 0.3642 0.3582

125 genes (dataset 4) Master / Slaves 1 / 0 1 / 0 1 / 20 1 / 30

Time cost (mins) 18019 16323 2152 1792

Speed-up - 1 7.5850 9.1088

Fitness value per gene 0.2358 0.2056 0.2195 0.2195

Lee et al. BMC Systems Biology 2014, 8:5 Page 16 of 19
http://www.biomedcentral.com/1752-0509/8/5
well-known version of Amdahl’s law can be expressed
as follows:

Speed‐uprate f ; Sð Þ ¼ 1

1−fð Þ þ f
S

ð14Þ

Where f is the proportion of a problem that can be
divided into parallel computing, and (1− f) means the
proportion that cannot be parallelized (e.g., the non-
parallelized task, or the other execution processes).
Ideally, the maximum acceleration lies in S, meaning
that f can be accelerated S times by using S parallel
processors (i.e., the slaves on Hadoop). For example,
suppose modeling a gene network took 200 minutes
by running a sequential iGA-PSO, and there was 5%
(i.e., 10 minutes) of computation belonging to the non-
parallelized task. Under such circumstance, no matter
how many slaves we applied and devoted to the parallel
computing, the remaining 95% (190 minutes) led the
Figure 9 The time cost curves of different sets of experiments
on hicloud.
maximum acceleration up to 20 times at most (the mini-
mum time–cost cannot be less than 10 minutes). Simi-
larly, if a task needed to take 10% of computation for
running the mechanism of cloud computing and for exe-
cuting the non-parallel processes, then the maximum
speed-up rate was limited to 10 times.
In this study, the best acceleration rate we can obtain

in the experiments is 9.1 (from the case of inferring
gene network for dataset 4 with 30 computational nodes
in the second suite of experiments, see Table 4). It means
that we have parallelized 89% (1-(1792/16323)) of the
whole modeling task, and only remained 11% of the
original execution time for the non-parallelized over-
head and for the cost of maintaining the Hadoop
MapReduce framework.
In addition to the speed-up rates, other issues related

to the performance of the network model are worth
Figure 10 The comparison of speed-up curves of the first suite
(Ep1) and the second suite (Ep2) of experiments.

Lee et al. BMC Systems Biology 2014, 8:5 Page 17 of 19
http://www.biomedcentral.com/1752-0509/8/5
mentioning. Considering the use of a decoupled S-
system model, some studies have pointed out the
model’s characteristic, and the pros and cons of decom-
posing the original ODEs model (e.g. [4,45]). In short,
the decoupling strategy proposed by [4] enables us to
infer one differential equation at a time to match the tar-
get expression data. Then, after the parametric solution
for each single differential equation is provided, two
strategies for deriving a final solution set are suggested.
The first strategy is to combine all single decoupled

solutions into one and then to depict the entire network
system directly. This strategy is suggested when every
expression profile was precisely estimated. It means that
the errors of the optimal solutions generated by the
decoupled approach will not have a significant effect on
the network behaviors when all the solution sets are as-
sembled to form a coupled model [17]. However, when
the solution sets obtained from the decoupled models
cannot reproduce the expression profiles correctly, the
second strategy, a recoupling procedure, has to be car-
ried out. It arranges all the decoupled parametric sets to
form a coupled S-system model, and then uses this
model as the initial parameter population to continue
the optimization process. This strategy, nevertheless, is
computationally expensive as reported in [45]; an alter-
native approach has been suggested that is to turn to a
cooperative evolutionary method to facilitate the recou-
pling process [17]. After evaluating the estimated expres-
sion profiles shown in Figure 7, in which all the
estimated datasets have very high R-squared values (all
above 0.98), we adopt the first strategy in this work.
To evaluate the performance of adopting the S-system

model to infer both the gene expression profiles and the
corresponding network structure, we propose another
fitness function in the Additional file 1. This fitness
function concerns not only the network behaviors but
also the sensitivity and specificity rates. The real positive
and negative outcomes obtained from the real world re-
sources are used to help the new fitness function to
evolve more reasonable structural parameters while opti-
mizing the expression profiles at the same time.
We have also selected one dataset of the DREAM chal-

lenges and conducted a set of experiments to compare
our approach with other well-known reverse engineering
methods. To be specific, in this set of experiments, the
DREAM4 multifactorial network 1 with 100 nodes was
used, and two well-known inference algorithms (GENIE3
[46] and TIGRESS [47]) were chosen for comparison. Our
approach was performed with two fitness functions: (a)
the MSE function, and (b), the fitness function described
in Part C of the Additional file 1. The ensuing precision
and the recall rates for fitness functions (a) and (b) are
(91.57%, 5.08%) and (97.93%, 10.6%), respectively. These
results reveal that if some useful structural information is
integrated into the fitness function, the S-system model
can be derived to optimize both the network’s behaviors
(the profiles) and the structure. Note that the trade-off be-
tween optimizing the system dynamics and network struc-
tures always exists [48].
Before comparing our structure correctness rates to

the results obtained by the state-of-the-art structural
prediction algorithms, two concerns need to be men-
tioned. First of all, when using the MSE as the fitness
function in inferring the S-system, we can only claim
that the network profiles have been reconstructed prop-
erly if the fitness value is lower than an acceptable
threshold. There is no guarantee that the structural cor-
rectness can be as acceptable as the numerical results.
Therefore, it is helpful to apply some extra strategies to
ensure the correctness of an inferred model. One prom-
ising way is to modify the MSE function: it means to in-
clude the structural information matrix to guide the
search of genetic parameters. Through the constraints of
the structural information, an outcome with correct net-
work profiles and structure can be obtained.
The second concern is that the goal of our inference

approach is different from that of the studies conducted
for the DREAM challenges. They have focused on the
prediction of the network structure. However, here, we
rely on the structural information collected from the real
world resources, so that we can use a classification
matrix to guide the development of solution space. As a
result, the correctness rate on the network structure
thus depends on the available structural information.
Most importantly, the inference method is presented to
show how a network can be reconstructed to provide
the required system dynamics and relative connection
relationships among genes (but not for predicting a net-
work structure of a general graph-based model). The
computational model can be replaced by others.
After clarifying the primary differences between our ap-

proach and the predictive reverse-engineering methods,
we are aware of the limitations of directly comparing our
results to TIGRESS and GENIE3 methods. Therefore, by
carefully examining and summarizing the results of the
above two algorithms, we provide their precision and re-
call rates only for reference. Overall, if the precision is
around 0.9, then its relative recall rate lies in the range of
0.1 to 0.15 for Dream4 networks [46,47].

Conclusions
In this study, we have emphasized the importance of re-
verse engineering GRNs from gene expression profiles.
Depending on the biological level to be studied, many
models have been proposed to simulate GRNs, among
which concrete models are more suitable for simulating
biochemical processes realistically. To infer gene net-
works, we adopted a well-researched concrete model,

Lee et al. BMC Systems Biology 2014, 8:5 Page 18 of 19
http://www.biomedcentral.com/1752-0509/8/5
the decomposed S-system model, to represent a network
and to infer the relevant network parameters. Although
this model has been simplified from its original form,
the computational cost to infer such a model still grows
linearly with the number of gene nodes that are involved.
To overcome the scalability problem, we presented a prac-
tical framework that can efficiently determine network pa-
rameters and is scalable for inferring large-scale networks.
In this framework, a hybrid GA-PSO optimization method
was developed and parallelized for performance enhance-
ment. To conduct the real parallelism to reduce the com-
putation time, our parallel method was extended to work
with the Hadoop MapReduce programming model and
was executed in different cloud computing environments.
Extensive sets of experiments and analyses have been con-
ducted to evaluate the proposed framework. The results
show that our approach can successfully infer networks
with desired behaviors for real-world biological datasets.
Most importantly, our approach can be used to infer large
gene networks on the clouds, in which the Hadoop
MapReduce framework has been shown to substantially
reduce the computation time for the application here.
Currently, we are investigating different ways to take both
the fault tolerance ability and the computing performance
into consideration and developing an even more efficient
framework to infer networks with more nodes.
Endnote
aThe specifications of each node provided by Amazon

EC2 are: (1) High-CPU Medium Instance with 2.5-3.0 GHz
2007 Xeon processor (2 virtual cores), 1.7 GB of memory,
350 GB of local instance storage. (2) High-CPU Extra
Large Instance with 2.5-3.0 GHz 2007 Xeon processor
(8 virtual cores), 7 GB of memory, 1690 GB of local in-
stance storage. The High-CPU Medium package cost
$0.185 per hour/node. The High-CPU Extra Large costs
$0.740 per hour/node.
Additional file

Additional file 1: Part A: Decomposing a decouple S-system model
onto the MapReduce Framework. Part B: Control flow and data
format. Part C: Using structural knowledge in network inference.
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
WL conceived the project, designed the algorithm, wrote a part of the
manuscript, and made modification as well as final revision. YH undertook
parts of the experimental implementation and wrote a part of the
manuscript. WH set up the experimental environments and undertook parts
of the experimental runs. All authors read and approved the final
manuscript.
Acknowledgement
This work was supported by National Science Council of Taiwan, under Grant
No NSC-100-2221-E-110-086.

Received: 4 June 2013 Accepted: 6 January 2014
Published: 16 January 2014

References
1. Ingolia NT, Weissman JS: Systems biology: reverse engineering the cell.

Nature 2008, 454:1059–1062.
2. Lee W-P, Tzou W-S: Computational methods for discovering gene

networks from expression data. Brief Bioinform 2009, 10(4):408–423.
3. Ay A, Arnosti DN: Mathematical modeling of gene expression: a guide for

the perplexed biologist. Crit Rev Biochem Mol Biol 2011, 46(2):137–151.
4. Maki Y, Ueda T, Okamoto M, Uematsu N, Inamura K, Uchida K, Takahashi Y,

Eguchi Y: Inference of genetic network using the expression profile time
course data of mouse P19 cells. Genome Inform 2002, 13:382–383.

5. Kikuchi S, Tominaga D, Arita M, Tomita M: Dynamic modeling of genetic
networks using genetic algorithm and S-system. Bioinformatics 2003,
19:643–650.

6. Noman N, Iba H: Inferring gene regulatory networks using differential
evolution with local search. IEEE/ACM Trans Comput Biol Bioinform 2007,
4:634–647.

7. Ho S-Y, Ho S-Y, Hsieh C-H, Huang HL: “An intelligent two-stage evolutionary
algorithm for dynamic pathway identification from gene expression profiles”.
IEEE/ACM Trans Comput Biol Bioinform 2007, 4:648–704.

8. Kabir M, Noman N, Iba H: Reversely engineering gene regulatory network from
microarray data using linear time-variant model. BMC Bioinform 2010, 11:S56.

9. Lee W-P, Hsiao Y-T: Inferring gene regulatory networks using a hybrid
GA-PSO approach with numerical constraints and network decomposition.
Inform Sci 2012, 188:80–99.

10. Germany: it-weise.de (self-published). 2009. Available online: http://www.it-weise.de/.
11. Bazil JN, Qi F, Beard DA: A parallel algorithm for reverse engineering of

biological networks. Integr Biol 2011, 3(12):1145–1145.
12. Sirbu A, Ruskin HJ, Crane M: Comparison of evolutionary algorithms in

gene regulatory network model inference. BMC Bioinform 2010, 11:59.
13. Jostins L, Jaeger J: Reverse engineering a gene network using an

asynchronous parallel evolution strategy. BMC Syst Biol 2010, 4:17.
14. Tominaga D, Koga N, Okamoto M: Efficient numerical optimization

algorithm based on genetic algorithm for inverse problem. Proc Genet
Evol Comput Conf 2000:251–258.

15. Moles CG, Mendes P, Banga J: Parameter estimation in biochemical
pathways: a comparison of global optimization methods. Genome Res
2003, 13(11):2467–2474.

16. Lee W-P, Hsiao Y-T: An adaptive GA-PSO approach with gene clustering
to infer S-system models of gene regulatory networks. Comput J 2011,
54(9):1449–1464.

17. Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N,
Yokoyama S, Kuramitsu S, Konagaya A: Inference of S-system models of
genetic networks using a cooperative coevolutionary algorithm.
Bioinformatics 2005, 21(7):1154–1163.

18. Spieth C, Streichert F, Speer N, Zell A: A memetic inference method for
gene regulatory networks based on S-Systems. Proc Congress Evol Comput
2004:152–157.

19. Alba E, Tomassini M: Parallelism and evolutionary algorithms. IEEE Trans
Evol Comput 2002, 6(5):443–462.

20. Cantú-Paz E: Efficient and accurate parallel genetic algorithms. New York:
Springer; 2000.

21. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Lee AG, Patterson D,
Zaharia M: A view of cloud computing. Commun ACM 2010, 53(4):50–58.

22. Dean J, Ghemawat S: MapReduce: simplified data processing on large
clusters. Commun ACM 2008, 51(1):107–113.

23. K–H L, Lee Y-J, Choi H, Chung YD, Moon B: Parallel data processing with
MapReduce: A survey. ACM SIGMOD Record 2011, 40(4):11–19.

24. Qiu J, Ekanayake J, Gunarathne T, Choi JY, S–H B, Li H, Zhang B, Wu T-L,
Ruan Y, Ekanayake S, Hughes A, Fox G: Hybrid cloud and cluster
computing paradigms for life science applications. BMC Bioinform 2010,
11(Suppl 12):S3.

25. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson K: Cloud
BioLinux: pre-configured and on-demand bioinformatics computing for
the genomics community. BMC Bioinform 2012, 13:42.

http://www.biomedcentral.com/content/supplementary/1752-0509-8-5-S1.doc
http://www.it-weise.de/

Lee et al. BMC Systems Biology 2014, 8:5 Page 19 of 19
http://www.biomedcentral.com/1752-0509/8/5
26. Schatz MC, Labgmead B, Salzberg SL: Cloud computing and the DNA data
race. Nat Biotechnol 2010, 28(7):691–693.

27. Pratt B, Howbert JJ, Tasman NI, Nilsson EJ: MR-Tandem: parallel X! Tandem
using Hadoop MapReduce on Amazon Web Services. Bioinformatics 2012,
28:136–137.

28. Taylor RC: An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. BMC Bioinform 2010,
11(Suppl 12):S1.

29. Schatz M: Cloudburst: highly sensitive read mapping with MapReduce.
Bioinformatics 2009, 25(11):1363–1369.

30. Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing differential
expression analysis with Myrna. Genome Biol 2010, 11(8):R83.

31. Sadasivam GS, Baktavatchalam G: A novel approach to multiple sequence
alignment using hadoop data grids. Proc Int Workshop Massive Data Anal Cloud
2010:1–7.

32. Lewis S, Csordas A, Killcoyne S, Hermjakob H, Hoopmann MR, Moritz RL,
Deutsch EW, Boyle J: Hydra: a scale proteomic search engine which
utilizes the Hadoop distributed computing framework. BMC Bioinform
2012, 13:324.

33. Srirama SN, Jakovits P, Vainikko E: Adapting scientific computing problems
to clouds using MapReduce. Futur Gener Comput Syst 2012, 28(1):184–192.

34. Ekanayake J, Li H, Zhang B, Gunarathne T, S–H B, Qiu J, Fox G: Twister: A
runtime for iterative MapReduce. Proc Nineteenth ACM Int Symp High
Perform Distributed Comput 2010:810–818.

35. Kennedy J, Eberhart R: Swarm intelligence. San Francisco, CA: Morgan
Kaufman Publishers; 2001.

36. Michalewicz Z: Genetic algorithms + data structures = evolution programs.
Berlin, Germeny: Springer; 1999.

37. Schaffter T, Marbach D, Floreano D: GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics 2011, 27(16):2263–2270.

38. Kim SY, Imoto S, Miyano S: Inferring gene networks from time series
microarray data using dynamic Bayesian networks. Brief Bioinform 2003,
4(3):228–235.

39. Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L: Comprehensive
analysis of combinatorial regulation using the transcriptional regulatory
network of yeast. J Mol Biol 2006, 360(1):213–227.

40. Greenfield A, Madar A, Ostrer H, Bonneau R: DREAM4: Combining genetic
and dynamic information to identify biological networks and dynamical
models. PLoS One 2010, 5(10):e13397.

41. Gradshtenyn IS, Ryzhik IM: Table of integrals, series, and products. New York:
Academic Press; 1980.

42. Fusaro VA, Patil P, Gafni E, Wall D, Tonellato P: Biomedical cloud computing
with Amazon web servers. PLoS Comput Biol 2011, 7(8):e1002147.

43. Hill MD, Marty MR: Amdahl's law in the multicore era. IEEE Comput 2008,
41(7):33–38.

44. Amdahl GM: Validity of the single processor approach to achieving large scale
computing capabilities, Proceedings of Amer Federation of Information
Processing Societies Conference. AFIPS Press; 1967.

45. Chou IC, Voit EO: Recent developments in parameter estimation and
structure identification of biochemical and genomic systems. Math Biosci
2009, 219(2):57–83.

46. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P: Inferring regulatory
networks from expression data using tree-based methods. PLoS One
2010, 5(9):e12776.

47. Haury AC, Mordelet F, Vera-Licona P, Vert J-P: TIGRESS: trustful inference of
gene regulation using stability selection. BMC Syst Biol 2012, 6(1):145.

48. Bornholdt S: Systems biology: less is more in modeling large genetic networks.
Sci Signal 2005, 310(5747):449.

doi:10.1186/1752-0509-8-5
Cite this article as: Lee et al.: Designing a parallel evolutionary
algorithm for inferring gene networks on the cloud computing
environment. BMC Systems Biology 2014 8:5.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Model
	Algorithm
	Computational platform

	Methods
	Optimization algorithm
	The sequential model
	The parallel model

	Parallelizing iGA-PSO on a cloud computing framework

	Results
	Performance of the proposed algorithm on a sequential machine
	Performance of the proposed method on parallel machines

	Discussions
	Conclusions
	Endnote

	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgement
	References

