
REVIEW Open Access

Bioinformatic analysis of proteomics data
Andreas Schmidt, Ignasi Forne, Axel Imhof*

From High-Throughput Omics and Data Integration Workshop
Barcelona, Spain. 13-15 February 2013

Abstract

Most biochemical reactions in a cell are regulated by highly specialized proteins, which are the prime mediators of
the cellular phenotype. Therefore the identification, quantitation and characterization of all proteins in a cell are of
utmost importance to understand the molecular processes that mediate cellular physiology. With the advent of
robust and reliable mass spectrometers that are able to analyze complex protein mixtures within a reasonable
timeframe, the systematic analysis of all proteins in a cell becomes feasible. Besides the ongoing improvements of
analytical hardware, standardized methods to analyze and study all proteins have to be developed that allow the
generation of testable new hypothesis based on the enormous pre-existing amount of biological information. Here
we discuss current strategies on how to gather, filter and analyze proteomic data sates using available software
packages.

Background
Proteins are involved in almost all physiological aspects
of cellular life from the catalysis of biochemical reac-
tions within the intermediary metabolismn to the pro-
cessing and integration of internal and external signals.
The misregulation of protein expression results in
pathological states such as cancer, neurodegenerative
diseases and metabolic imbalances. Proteins are synthe-
sized by translating the information encoded in a RNA
molecule to a polypeptide chain, which adopts a specific
three dimensional structure. Proteins are subjected to a
constant turnover making protein homeostasis a very
important feature of their regulation. Many proteins
function within large multimeric complexes that are
highly dosage dependent. The recent developments in
gathering large scale genomic, transcriptomic and pro-
teomic data pose substantial challenges to the bioinfor-
matic processing of these data, which have yet not been
completely solved. In case of the proteomic investiga-
tion, the challenges occur at all levels ranging from sam-
ple preparation and data gathering over the raw data
integration and database searching to the functional
interpretation of large datasets. Based on a iterative
strategy of proteomic analysis, data interpretation and

sytstematic challenges, hypothesis can be developed and
modified, which will eventually lead to the generation of
new knowledge (Figure 1).

Mass spectrometry data analysis
All proteins from a sample of interest are usually
extracted and digested with one or several proteases
(typically trypsin alone or in combination with Lys-C
[1]) to generate a defined set of peptides. Several enrich-
ment and fractionation steps can be introduced at pro-
tein or peptide level in this general workflow when
sample complexity has to be reduced or when a specific
subset of proteins/peptides should be analysed (i.e. orga-
nelle specific proteome [2,3] or substoichiometric post-
translational modified peptides [4]).
The peptides obtained are subsequently analysed by

liquid chromatography coupled to mass spectrometry
(LC-MS). The two most common approaches here are
either designed to achieve a deep coverage of the pro-
teome (shotgun MS [5]) or to collect as much quantitative
information as possible for a defined set of proteins/pep-
tides (targeted MS [6]). During the analysis peptides elut-
ing from the chromatography are selected according to
defined rules (see below) and further fragmented within
the mass spectrometer. The resulting tandem mass spectra
(MS2) provide information about the sequence of the pep-
tide, which is key to their identification. For a shotgun
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approach, no prior knowledge of the peptides present in
the sample is required to define peptide selection criteria
during the LC-MS analysis. Therefore, the peptides eluting
from the chromatographic column are identified in a data-
dependent mode [7], where continuously the N most
abundant peptides at a given retention time are selected
for fragmentation and their masses excluded for further
selection during a defined time. By using this dynamic
exclusion [8], less abundant peptides are also selected for
fragmentation.
The data can be displayed as a 3-D map with the

mass-to-charge ratios (m/z), retention times (RT) and
intensities for the observed peptides as axis, together
with fragmentation spectra (MS2) for those peptides that
were selected during any of the data dependent cycles.
The intensity of a certain peptide m/z can be plotted
along the RT to obtain the corresponding chromato-
graphic peak. The area under this curve (AUC) can be
employed to quantify the corresponding peptide. On the
other hand, the peptide identification is achieved
through its fragmentation spectrum.
The large number of MS2 spectra generated by the

last generations of mass spectrometers requires auto-
mated search engines capable of identifying and quanti-
fying the analysed peptides. It is not the aim of this

review to detail the existing algorithms (see [9] for this
purpose), but to give a general idea how they work and
which kind of data should be expected from them.
Briefly, search algorithms aim to explain a recorded MS2

spectrum by a peptide sequence from a pre-defined
database, returning a list of peptide sequences that fit to
the experimental data with a certain probability score or
false discovery rate (FDR). The databases are normally
protein databases translated from genomic data [10],
although other strategies like spectral libraries [11] or
mRNA databases [12] have been successfully applied. A
final step is then required to assemble the identified
peptides into proteins, which can be challenging, in
particular when dealing with redundant peptides or
alternatively spliced proteins [13]. In any of these cases,
several strategies have been described to reduce the
false discovery rate of such matching approaches both at
peptide identification and protein assembling level [14].
This general shotgun/discovery approach leads to the

identification of thousands of proteins with a dynamic
range of 104-105 [15] within a complete cellular lysate.
However, this method presents still two main drawbacks:
sensitivity and reproducibility. Normally, complete cover-
age of proteins and complexes involved in the same sig-
naling pathway or belonging to the same functional
family is not achieved. Additionally, reproducibility in
protein identification among replicates can vary between
30 and 60% [16,17]. These limitations have been success-
fully addressed by the so-called targeted proteomics [6].
This approach is based on a general method called
selected reaction monitoring (SRM), where predefined
peptides at scheduled RT are selected and fragmented,
and two or three fragments monitored. Due to the
increased scan speed and mass window selectivity of the
current mass analyzers, SRM can be simultaneously per-
formed on multiple analytes. This capability lead to the
multiplexing of SRMs in a method called multiple reac-
tion monitoring (MRM). The multiplexing capability
have been used to quantify several hundreds of proteins
in a broad dynamic range, down to proteins present at
very low copy number in the cell (~50 copies/cell) in the
background of the whole range of protein concentration
in eukaryotic cells [18,19].
The AUC of the monitored fragments can then be used

for quantification. By spiking the peptide mixture with
isotopically labelled standard peptides, such targeted
approaches can also be used to determine absolute rather
than relative quantitation levels of proteins [20] or post-
translational modifications [21]. However, as previous
knowledge about the proteins is required, such targeted
approaches are usually performed in combination or sub-
sequent to a shotgun approach. Similarly to the genomic
data, shot gun proteomic studies can also be uploaded to
dedicated proteome repositories [22], which can also be

Figure 1 Integrated Proteomic Workflow: Samples of interest
are subjected to protein extraction and digestion. The resulting
peptides are separated by C18 chromatography and directly
electrosprayed into the mass spectrometer, where their mass-to-
charge ratio and fragmentation spectra is recorded. MS data is
analysed to identify and quantify the detected peptides, and
assemble it to proteins. Once the proteomics analysis per se is
finished, the functional analysis of the relevant differential proteins
may unmask pathways, interactions, PTM’s relevant for the biological
question of interest. This in silico information can be used to
formulate new hypothesis that could be eventually used to
interrogate the biological system again.
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used for database searching. The cooperation of the lar-
gest repositories PRIDE, Proteome Commons and Pep-
tide Atlas within the Proteome Exchange project http://
www.proteomeexchange.org allow direct access to most
of the stored proteomic datasets and provides a highly
valuable source for bioinformatics data mining [23-25].

GO Term identification and enrichment analysis
The output of a proteome analysis either in a shotgun
approach or a more targeted method is usually a long list
of identified factors, that have a probability score and
ideally also a quantitative value associated with them. In
order to understand and interprete these data and to
generate testable hypothesis on the systemic response of
the proteome to a challenge, the list has to be further clas-
sifiied and filtered. The first step for a functional analysis
of a large protein list is to connect the protein name
to a unique identifier. While gene names have been
standardized, protein names can differ between different
databases and even releases of the same database.
Although many of the large databases have been curated
throughout the recent years, this can pose quite a
bioinformatic challenge and can lead to a substantial loss
of information. Several web-based algorithms exist to
connect protein names to their corresponding gene
names, such as PICR or CRONOS [26];[27]. However
some functional databases like the Uniprot knowledge
base, Ensembl or the outdated IPI number (International
Protein Index)[28-30] can use protein identifiers as input.
A first step for functional interpretation of the resultant

protein list is to connect the protein identifier with its
associated Gene Ontology terms (http://www.geneontol-
ogy.org, [31]). Introduction of the Gene Ontology helped
to overcome the redundancy in terminology for biological
processes [32]. Thereby, genes are associated to hierarchi-
cally clustered, functional terms that describe the “biologi-
cal process”, “molecular function” or “cellular component”
which have a unique identification number. A specific GO
term can be related to more than one parent terms, as
long as the whole structure resembles an acyclic graph.
This list of terms is not yet complete and changes with
new discoveries, making GO terms redundant or obsolete.
Another drawback of the use of GO terms for functional
annotations is the fact that most (95%) of the GO terms
annotations are done computational, while the minority is
manually curated and based on experimental details [32].
For single proteins the simplest way to perform a GO
term annotation is to look up the corresponding terms
with the Amigo tool provided on the GO website [33]. For
larger data sets and sytstematic approaches some database
search algorithms for proteomic data such as MaxQuant,
Proteome Discoverer and X!tandem [34,35] have imple-
mented a GO-term annotation step. As not all protein
entries are fully annotaed with the corresponding GO

terms, it is possible to retrieve GO-terms from the closest
related protein via BLAST similarity search in the BLAS-
T2GO tool [36].
The first step after GO-term annotation is a GO-term

enrichment analysis to compare the abundance of speci-
fic GO-terms in the dataset with the natural abundance
in the organism or a reference dataset, e.g. different cell
lines, inhibitor treatment or growth states [37]. To
extract functions that are significantly enriched in one
sample over a second dataset, a p-value is calculated
based which shows overrepresentation of a specific
GO term, thereby it is necessary to cluster related
GO-terms. This calculation can be done by most of the
previously mentioned programs, but there is a plethora
of other, mostly web-based software tools available ([38]
http://neurolex.org/wiki/Category:Resource:Gene_Onto-
logy_Tools). For instance, the DAVID and Babelomics
software resources are often mentioned when it is
necessary to analyze large gene list but currently there
are more than 60 tools calculating GO term enrichment
[38-40]. Most of these tools can be classified into three
different types of enrichment algorithms, with singular
enrichment analysis (SEA) being the most simple
algorithms that test one anotation term at a time for a
list of interesting genes [41]. GOStat, BinGO, or
EasyGO are based on SEA algorithms. More sophisti-
cated algorithms are gene set enrichment algorithms
(GSEA) that take all genes of analysis into account, not
only gene with significant change of abundance.
Nevertheless, GSEA requires a quantitative measure-
ment to rank the genes and is used in GSEA/P-GSEA
and Gene Trail. Finally, modular enrichment analysis
(MEA) include relationships between anotation terms
which prevents loss of important biological correlations
due to lacking relationships and reduces redundancy
[41]. Those programs are not only limited to GO term
enrichment, but they have also modules to search for
protein networks (see below), convert protein identifiers,
as well as link to further information and publications
that substantiate the observed gene function. Especially
the DAVID software resources offer a plethora of other
tools for instance for gene and anotation term cluster-
ing, mapping of genes to pathways and diseases as well
as advanced statistics. A second important choice for
the result of GO term enrichment is the reference
dataset, which is either predefined by the tool, for
instance all genes of the organism, or can be selected
manually (all identified proteins) [42]. Weinert et al.
have applied the DAVID GO term enrichment algo-
rithm to study conservation of acetylation sites between
human and drosophila from the extracted GO-terms
of acetylated proteins [43]. In their study, they showed
the conservation of protein acetylation in the respiratory
chain, translational processes, but also in ubiquitinating
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enzymes. Bates et al. could show that the Abl-kinase
dependent reprogramming of B-cells is to a major part
post-transcriptionally regulated, by comparing the abun-
dance of mRNA levels with protein abundance upon
imatinib inhibitor treatment [44]. Despite the usefulness of
GO terms for a functional annotation and filtering of large
proteomic data sets the assignement is highly dependent
on the algorithm used for annotation. Recently, fourteen
GO enrichment algorithms have been tested on the same
dataset. The obtained results showed a rather high discre-
pancy for p-values of certain GO terms [42].

Pathway analysis
A pathway describe the series of chemical reactions in the
cell that lead to an observable biological effect. Proteins
involved in the chemical reaction and those that have
regulatory influence are combined in so-called pathway
databases. Similarly to the previously described GO term
enrichment analysis, protein or gene lists can also be
scrutinized for pathway abundances which might be more
meaningful because it moves the data interpretation away
from the gene-centric view towards the identification of
functional biological processes. Furthermore, functionally
independent proteins can share some GO term associa-
tions, for instance for very general terms such as “binding”
or “cytoplasmic”. A high number of resources and data-
bases is available to extract pathway constraints from
biological data (Figure 1). Comprehensive pathway
databases such as KEGG, Reactome, Ingenuity Pathway
Knowledge Base or BioCarta include a high number of
diverse interaction data, which could arise from intracellu-
lar reactions such as metabolism or signaling pathways,
genetic interactions or drug development studies [45-47].
Apart from the comprehensive resources, highly specific
databases have been developed for signal transduction
processes such as PANTHER, GenMAPP or PID [48-50].
Recently, several databases were created which comprise
pathways active in cancer. Such databases like Netpath
[51], should help to identify cancer relevant proteins and
genes from a complex dataset. In fact, public databases
share a high degree of connectivity, allowing rapid distri-
bution of novel findings. A comprehensive list of more
than 300 pathway and interaction data resources can be
found on the pathguide website http://pathguide.org[52].
Nowadays enrichment analyses are available with almost
all pathway database resources, so that a list of signifi-
cantly altered proteins, with regard to abundance and/or
post-translational modifications, is sufficient to extract
data on pathway abundance. However, similar to the GO
term annotation the identification of pathways affected
under certain conditions is highly dependent on the
algorithm. Müller and colleagues published a comparison
of the Ingenuity Pathway Analysis (IPA) software and
String for the analysis of several artificial datasets [53].

The tested datasets consisted of core proteins and
associated proteins of 5 different pathways, Wnt, App, and
Ins signaling, mitochondrial apoptosis as well as tau
phosphorylation, respectively, which were retrieved from
literature mining and a set of background proteins from
proteomic analysis of HEK293 cells that that were falsely
annotated as significantly regulated proteins in several
repeats. They reported similar results for both pathway
analysis algorithms, but also that neither algorithm could
reach a sufficient p-value for reliable pathway enrichment.
Additional features in IPA, such as annotation of protein
family and localization, might help the experienced
researcher to identify falsely annotated protein hits.

Analysis of protein-protein-interactions
The majority of proteins do not act as independent enti-
ties. They form either transient or stable complexes with
other proteins that act as scaffolds or regulate the protein
activity. A protein can be involved in mulitiple complexes
of varying composition and to completely understand a
biological system it is necessary to analyze the abundant
protein complexes as well as the conditions that lead to
their formation or dissociation. Information on protein
interactions in complexes is deposited in interaction
databases such as MINT, BioGRID, IntAct or HRPD
[54-57], associated with the biological process in which
they are functionally important. Not all annotated inter-
actions in public databeases are based on experimental
observations. Dependent on the database used one can
find a rather high percentage of predicted interactions
and interactions based on literature mining such as
STRING or iRefWeb [37,58,59]. For this purpose, a vari-
ety of literature mining tools to screen PubMed abstracts
has been developed of which chilibot and sciminer are
most favored [60,61]. These interactions are the result of
sophisticated algorithms that are trained on the existing
set of protein-protein interactions. Furthermore, most
large interaction databases have implemented simple
algorithms that allow mapping of interaction proteins on
the resource website.
Protein interactions are often displayed as large inter-

action networks illustrating the high degree of connectiv-
ity nand the presence of promiscous hub proteins. A
widely used resource for interaction data is STRING,
which is not only a database itself, but connects to several
other data resources to and is therefore also capable of
literature mining [59,62]. Further, STRING is also cap-
able of drawing simple protein networks based on the
provided gene list and the available interactions in its
databases. Cytoscape has evolved as a powerful graphical
tool to draw interaction networks of high complexity and
for incorporation and comparison of datasets from differ-
ent experimental procedures. Cytoscape has only limited
information stored, but interconnects excessively to other
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databases to obtain information. Recently, EnrichNet was
launched, a web-based platform integrating pathway and
interaction analysis in 6 different databases (KeGG, Bio-
Carta, Gene Ontology, Reactome, Wiki and NCI path-
ways) with functional associations and connecting these
data with molecular function (Interpro) and protein com-
plex information (Corum) [63]. This tool creates pathway
lists and highly interactive function maps, which can also
be downloaded and visualized in cytoscape. A study of the
targets of cullin-ring dependent ubiquitination revealed
that a large fraction of the observed proteins become mod-
ified upon activity of the SCF complex [64]. Analysis of the
obtained list of SCF regulated proteins by cytoscape
revealed a high degree of interconnectivity.

Protein domain and motif analysis
When working in not yet or just recently-sequenced
organisms, data bases might not contain the complete set
of protein descriptions. Similarly, proteins of unknown
function might also be identified from highly curated data-
bases of well studied organisms. Those proteins often lack
the previously described information on interactions and
pathway affiliations so that they would not be found in
such studies. To learn more about the function of those
proteins and how they interact with members of certain
pathways, it is helpful to analyze their amino acid
sequence for specific folds of protein domains or for
motifs for post-translational modifications. The simplest
analysis represents a BLAST search against the database of
known protein sequences to find if proteins with similar
amino acid sequences have been described in other organ-
isms [65]. Further, the amino acid sequence can be ana-
lyzed by programs such as Pfam, Interpro, SMART or also
DAVID, to learn if the identified protein shares a specific
protein fold with other proteins [39,66-68]. These algo-
rithms apply hidden Markov models (HMMs) to classify
proteins on basis of their amino acid sequence and predict
the occurrence of a specific protein domain. Knowing
about the abundance of a specific fold, could help to
implement unknown proteins into biological networks.
Secondly, algorithms such as MotifX or PhosphoMotif
Finder analyze the sequence environment of post-
translational modification sites [69,70], thereby reporting
enrichment of certain amino acid motifs which can help
to identify the modifying enzyme.

Conclusions
The development of methods to systematically study all
proteins in a cell and their subsequent functional annota-
tion opens up new pathways of research. In the future it is
very likely that such studies will uncover new principles of
how biological systems operate hopefully leading to an
improved treatment of human pathologies.

Over the last ten years the analytical harware has
reached a level of sophistication of a more mature scientifc
field. However, the bioinformatic interpretation and the
processing of the data are still in its infancy. Besides reli-
able and robust algorithms, international standards for
data processing and deposition as well as their interpreta-
tion have to be developed and agreed upon in order to
unleash the full potential of proteomic research.
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