
RESEARCH Open Access

Modeling DNA affinity landscape through
two-round support vector regression with
weighted degree kernels
Xiaolei Wang1,2, Hiroyuki Kuwahara1,2, Xin Gao1,2*

From The 25th International Conference on Genome Informatics (GIW/ISCB-Asia)
Tokyo, Japan. 15-17 December 2014

Abstract

Background: A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding
sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have
enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the
complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were
observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity
landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology.

Results: Here, we propose a two-round prediction method that is based on support vector regression (SVR) with
weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to
detect the importance of subsequences with different lengths at different positions. The subsequences identified as
important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To
our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds
of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by
predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our
method explicitly identified important subsequences and showed significant performance improvements when
compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered
two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four
other TFs in S. cerevisiae demonstrated the generality of our method.

Conclusion: We proposed in this paper a two-round method to quantitatively model the DNA binding affinity
landscape. Since the ability to modify genetic parts to fine-tune gene expression rates is crucial to the design of
biological systems, such a tool may play an important role in the success of synthetic biology going forward.

Introduction
A major goal of synthetic biology is to manipulate exist-
ing organisms so as to construct new biological systems
that possess desired functions [1-3]. The ability to adjust
the expression of genes precisely is then necessary if the
behavior of a synthetic biological system is to be fine-

tuned for a given functional specification. Since the
initiation of transcription is one of the most important
steps in gene regulation [4], a quantitative understand-
ing of interactions between transcription factors (TFs)
and their DNA binding sites is key to predicting the
dynamics of gene circuits. However, the mechanistic
characterization of intricate TF-DNA interactions from
first principles of biochemistry still remains elusive.
Consequently, the use of phenomenological models to
characterize the affinity of TF-DNA interactions is
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essential for the rational design of synthetic gene
circuits.
There are several high-throughput methods available to

perform high-resolution measurements of protein-DNA
interactions. These include protein-binding microarrays
(PBMs), which characterize in vitro binding specificities of
TFs for relatively short DNA sequences [5], and chromatin
immunoprecipitation (ChIP)-based methods, which, in a
cell-type specific fashion, can map genome-wide binding
locations of TFs, provided that the relevant antibodies are
available [6]. Mechanically induced trapping of molecular
interactions (MITOMI) was developed which is capable of
detecting low affinity TF-DNA binding using a microflui-
dic device [7]. They further developed a second-generation
of MITOMI that was capable of measuring thousands of
interactions in parallel [8]. Recently, high-throughput
sequencing - fluorescent ligand interaction profiling (HiTS-
FLIP) has been developed [9]. This is a method based on a
second-generation DNA sequencing technology, which
allows for hundreds of millions of in vitro measurements
of TF-DNA binding affinities and provides a more com-
prehensive picture of the binding affinity landscapes of
TFs. Further, HiTS-FLIP permits measurements of longer
sequences of DNA, making possible analysis of complex
binding affinity landscapes of dimeric and oligomeric TFs.
Various statistical and computational models have

been developed to characterize binding affinity [10,11].
The most commonly used one of these is the position
weight matrix (PWM) [12,13]. The basic PWM model
aligns the DNA binding sequences and calculates the
weights of different nucleotides at different positions
within the alignment. There are different variants of
PWM. All PWM models, however, assume that mono-
nucleotides at different positions contribute indepen-
dently. Although such models provided relatively accurate
predictions for short binding motifs [14], alternative mod-
els have been developed to encode short-range informa-
tion through building much larger matrices for
subsequences (k-mers) [5,15]. MDscan [16], for example,
combined the word enumeration and position-specific
weight matrix updating to iteratively approximate maxi-
mum a posteriori scoring function. Foat et al. proposed
MatrixREDUCE [17], a statistical mechanics method that
took high-throughput measurements of binding affinity as
inputs and performed a least-squares fit to estimate the
position specific affinity matrix that contained the relative
energy contribution of each nucleotide at different posi-
tions. RankMotif++ [18] learned PWM motif models by
maximum likelihood estimation of a probabilistic model
for binding preferences.
Recent advances in high-throughput measurements of

binding affinity and machine learning techniques have
enabled the direct learning of the DNA-binding affinity
landscape of TFs. A special case of the mismatch string

kernel, di-mismatch kernel, has been proposed [19] that
maps each binding sequence to a kernel space depending
on similarity to all unique k-mers in the training data, for
a fixed k and certain allowance of mismatches. Spectrum
kernel has been applied to classify mammalian enhancers
[20]. More recently, Annala et al. [21] proposed a linear
model (HK®ME) that assumes the binding affinity to be
the sum of the contributions of certain subsequences of
the binding sequences. Their method was the best perfor-
mer in the Dialogue for Reverse Engineering Assessment
and Methods 5 (DREAM5) transcription factor/DNA
motif recognition competition.
Despite the significant advances made in computa-

tional methods for modeling DNA-binding affinity land-
scapes, there are still bottlenecks that continue to
hamper the progress. The major one is that although
most existing methods assume that k-mers make an
important contribution to the binding affinity, there is
no systematic overview provided of the importance of
all k-mers with different lengths at different positions.
For example, the PWM model assumes mononucleo-
tides to be independent [13], whereas the di-mismatch
kernel reveals which of the k-mers are important for a
specific length, but cannot determine at which positions
the k-mers are important or whether those with shorter
length also contribute to the affinity. Similarly, the
HK®ME method used k-mers of specific lengths, i.e.,
all of the 4-6-mers as well as those 7- and 8-mers with
the highest median intensity. This fact makes it difficult
for the existing methods to well capture the important
k-mers and their important positions.
In this paper, we propose a two-round support vector

regression (SVR) method based on weighted degree
(WD) kernels to overcome this bottleneck. In the first
round, a WD kernel with shifts and mismatches is used
with SVR to detect the importance of subsequences
with different lengths at different positions. The identi-
fied subsequences are then fed into a second WD kernel
to fit the experimentally measured affinities. Our
method can systematically explore all the subsequences
up to a certain length at all positions, and the results
can easily be interpreted by users. We have applied this
method to predict the binding affinity landscape of
Gcn4p in Saccharomyces cerevisiae by using datasets
from HiTS-FLIP. Through comparison with state-of-
the-art predictors, we demonstrate that our method can
provide significant improvements. We also demonstrate
that our method can be straightforwardly used to visua-
lize the importance of any k-mer at any position in
binding sequences, thus to gain insights in the design of
binding site sequences. Furthermore, we predict two
high-affinity 10-mer motifs that are significantly more
stable than the previously reported binding motifs. To
evaluate the generalization power of our method, we
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further test it on the datasets from MITOMI2.0 [8] of
four other TFs in S. cerevisiae, i.e., Cbf1p, Cin5p, Pho4p
and Yap1p. Our method shows consistent improvements
over state-of-the-art methods.

Materials and methods
Support vector regression
Support vector regression (SVR) is a supervised regression
model [22]. Given training data {(x1, y1), . . . , (xn, yn)},
where xi is a high-dimensional feature vector and yi is the
corresponding real-valued variable, the goal is to learn a
function f (x) that has at most ε deviation from yi for all
the xi. In the case of linear SVR, we have

f (x) = 〈w, x〉 + b,

where 〈·,·〉 denotes the inner product and w denotes the
coefficient vector trained in linear SVR. The optimization
formulation of SVR is thus

min
1
2

||w||2 + C
n∑
i=1

(ξi + ξ∗
i ),

subject to

⎧⎨
⎩
yi − 〈w, x〉 − b ≤∈ +ξi,
〈w, x〉 + b − yi ≤∈ +ξ∗

i ,
ξi, ξ∗

i ≥ 0,

where ξi are ξ∗
i are slack variables and C >0 is the trade-

off constant. If the relationship between xi and yi is non-
linear, SVR can perform non-linear regression by kernel
tricks which implicitly map xi to higher-dimensional fea-
ture spaces, i.e., f (x) = 〈w, F(x)〉 + b, where F(x) is a ker-
nel mapping representation.

String kernels
String kernels are positive definite kernel functions defined
on pairs of strings. The basic idea of string kernels is to
map each string to a high-dimensional feature space and
calculate the inner product of the two feature vectors. In
other words, string kernels measure the similarity between
pairs of strings. The more similar the two strings, a and b,
the higher will be the value of the string kernel, K(a, b).
The two main types of string kernels are distribution-

based kernels and k -mer-based kernels. Distribution-
based kernels attempt to model uncertainties using ran-
dom variables. Such kernels include the probability pro-
duct kernel [23] and the spectral latent kernel [24].
Such kernels, however, require relatively long input
sequences to capture the statistically meaningful distri-
butions of subsequences.
In contrast to the distribution-based kernels, the

k-mer-based string kernels essentially count all subse-
quences in the two sequences with lengths up to a pre-
defined value and use these as features. A k-mer is a
length-k subsequence in a sequence, a. There are several

types of k-mer-based kernels each of which handles dif-
ferent assumptions. The spectrum kernel [25] maps
each sequence into a feature space where each dimen-
sion counts the number of occurrences of a particular
subsequence. The underlying assumption of the spec-
trum kernel is that the positions at which the subse-
quences occur are not important, rather the frequencies
of their occurrences are the informative factor. Unlike
the spectrum kernel, which is position independent, the
weighted degree (WD) kernel [26] compares matches of
subsequences at exact positions.
Specifically, let ak (i) denote a k-mer starting at posi-

tion i of a. A d-th degree WD kernel of two sequences,
a and b, of length L is defined as

k(a, b) =
d∑

k=1
βk

L−k+1∑
i=1

I[ak(i) = bk(i)], (1)

where bk are weights for different k-mers and I[·] is an
indicator function such that it is 1 when the condition
inside the bracket is true and 0 otherwise. From Eq. 1,
the computational complexity of calculating WD kernel
between two sequences a and b is O(dL).
To incorporate alternations in DNA sequences caused

by the substitution, deletion, and insertion into the WD
kernel, WD kernel with shifts and mismatches was pro-
posed [27-29] as follows:

K(a, b) =
d∑

k=1

M∑
m=0

βk,m

L−k+1∑
i=1

γ i
S(i)∑

s=0,s+i<L

ωsμk,m,i,s,a,b,

μk,m,i,s,a,b, = I[ak(i + s)=mbk(i)] + I[ak(i)=mbk(i + s)],

(2)

where bk,m are the weights for k-mers and m mis-
matches, gi are the weights for different sequence posi-

tions, ωs =
1

2(s + 1)
are the weights assigned to shifts (in

either direction) of extent s, and S(i) determines the
shift range at position i. I[ak (i + s) =m bk (i)] equals to
1 if and only if ak (i + s) and bk (i) differ by exactly m
mismatches, and 0 otherwise. In this case, the computa-
tional complexity of calculating WD kernel between two
sequences a and b is O(dLs). Thus, the total runtime to
compute the kernel matrix for the entire training dataset
is O(n2dLs).

A two-round SVR with WD kernel method
The workflow of the proposed two-round method is
shown in Figure 1. The main idea is to use support vector
regression with weighted degree kernels for both feature
selection and regression.
In the first round, we map the input training sequences

into a kernel space by the WD kernel with shift limit, s, and
mismatch limit, m, according to Eq. 2. Here, all the k-mers
up to length d are used. We then apply WD-kernel-based
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SVR to learn a model that maps DNA sequences and their
Kd values. The setting of d, s and m can be determined by
the cross validation (CV) on the training set. From the
learned SVR model, the top ten k-mers that contribute
most to the high binding affinity (small Kd values) and
another ten that contribute the most to the low binding
affinity (large Kd values) for each k up to d are selected
according to their expected decrease and increase of f (x),
respectively, where f (·) is the learned regression model and
x is an input sequence of length L. Here ten is the default
parameter of our method and can be customized by users.
Following [30], we quantify the importance of xk (i), which
represents a k-mer starting from position i of x, as Q(xk (i))
= E[f (x)|xk (i)] − E [f (x)]. In the second round, we learn
another SVR model by encoding only the selected k-mers
from Round 1 in the WD kernel. That is, when checking
k-mers in the kernel function, we only count those matches
that belong to the selected k-mers from the first round. In
this round, since the important k-mers are supposed to be
more conserved than other subsequences, we allow only
shifts up to s but not mismatches, and, thus, follow Eq. 2.
Again, the parameters d and s are set by cross-validation on
the training set.
Once a test DNA binding sequence is given, it is

mapped to a kernel space that is composed of the selected
k-mers from Round 1. The learned SVR model in Round 2
is then applied to predict the Kd value for this test binding
sequence.

Results
Datasets
We first applied our method to predict the binding affinity
landscape of Gcn4p in Saccharomyces cerevisiae by using

datasets from HiTS-FLIP. Gcn4p is a master regulator that
transcriptionally controls the expression of many genes
including those for the amino acid biosynthesis pathway
[31]. Gcn4p is a basic leucine zipper protein which inter-
acts with DNA binding sites as a dimer [32], and is known
to preferentially bind to several sequence motifs, including
a 7-mer motif, TGACTCA [33,34]. On the basis of its
important role in yeast in general control of amino acids
[35], a quantitative characterization of the binding of
Gcn4p to its promoter sites is crucial not only for elucida-
tion of the regulatory mechanisms involved in such stress-
response pathways, but also to allow design of a synthetic
GCN4-induced response pathway in yeast.
The HiTS-FLIP datasets contain Kd values of 83,252

DNA sequences of length 12bp. In TF-DNA interactions,
Kd represents the concentration of the TF at which the
DNA region is occupied 50% of the time at equilibrium.
The Kd values in the HiTS-FLIP datasets range from 8 nM
to 1000 nM, where a small Kd represents high binding affi-
nity and a large Kd represents low binding affinity. Since
the adjustment of binding-affinity for optimal TF-recogni-
tion sites is often important in the fine-tuning of the beha-
vior of gene circuits, we focused on modeling the DNA-
binding affinity landscape of Gcn4p with strong interac-
tions. Here, DNA sequences with Kd less than 100 nM
were defined as optimal Gcn4p recognition sites. This
threshold was chosen by looking up in the HiTS-FLIP
datasets the Kd value of a specific 9-mer, to which Gn4p
was reported to bind relatively poorly in vivo and in vitro
[34]. This resulted in 1,393 DNA sequences. This 12-mer
dataset was randomly partitioned into 10 subsets to per-
form 10-fold CV. All the results of our method and other
methods in this paper are based on the same 10-fold CV.

Figure 1 The workflow of the proposed two-round support vector regression method with weighted degree kernels. (a) The input
training DNA binding site sequences with their corresponding Kd values, demonstrating the general form of the inputs. (b) The weighted
degree kernel matrix of the first round, calculated from Eq. 2. Each dimension lists the training binding sequences as shown in (a), and the
corresponding entry value represents the similarity between the two sequences by the WD kernel. (c) Based on the kernel matrix in (b), we did
the first round of support vector regression to select the top ten k-mers that contribute most to the high binding affinity (in blue) and the ten
k-mers that contribute the most to the low binding affinity (in red). The local optimistic parameters were also selected from this step. (d) The
regression of Round 2 to predict binding affinities by using the selected k-mers in a new WD kernel.
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To evaluate the generalization power of our method,
we further tested it on four other TF data sets of S. cere-
visiae, i.e., Cbf1p, Cin5p, Pho4p and Yap1p. These four
TFs are the ones measured by MITOMI2.0 [8]. Each
data set contains the relative binding affinities for
nucleotide sequences with 52bp in length, in which
shorter binding sites are included. After removing the
sequences with “nan” (not a number) and taking average
relative affinities for the same sequences, each data set
contains 1,456 52bp sequences, with their corresponding
relative binding affinities.

Performance measures
To evaluate the performance of regression methods, we
measured the root mean square error (RMSE), root mean
square relative error (RMSRE), Pearson product- moment
correlation coefficient (Pearson Cor) and Spearman’s rank
correlation coefficient (Spearman Cor). These measures
are defined as follows:

RMSE =

√√√√1
n

n∑
i=1

(y′i − yi)
2,RMSRE =

√√√√1
n

n∑
i=1

(
y′i − yi

yi
)2,

PearsonCor =

∑n
i=1 (y

′
i − y′i)(yi − yi)√∑n

i=1 (y
′
i − y′i)

2
√∑n

i=1 (yi − yi)
2

SpearmanCor =

∑n
i=1 (z

′
i − z′i)(zi − zi)√∑n

i=1 (z
′
i − z′i)

2
√∑n

i=1 (zi − zi)
2
,

where yi and y′i are the real and predicted Kd values, zi
and z′i are the real and predicted rank of Kd values, for the
i-th binding sequence respectively, and n is the number of
binding sequences in the training or test sets.

Results of 10-fold cross validation
For selection of parameters (i.e., degree ‘d’, shift ‘s’ and
mismatch ‘m’), a grid search for 2 ≤ d ≤ 9, 0 ≤ s ≤ 7, and 0
≤ m ≤ min(d, 3) on the training sets was conducted on
both rounds of our method. When d increases above 7,
there is no significant improvement in the performance,
but the running time increases due to the much larger
number of k-mers (Figure 2 and Table 1). Therefore, we
chose the best parameter setting in terms of Pearson cor-
relation coefficient for Round 1 as d = 7, s = 1, and m = 1
(Figure 2(a)). Important k-mers were thus identified and
used as the WD kernel coding subsequences for Round 2.
The same grid search was conducted on the training sets
of the same 10-fold CV. The best shift and mismatch para-
meters are expected to be small for Round 2 because
Round 1 already identified important positions of the
selected k-mers. This is validated by the best parameter

setting of d = 7, s = 0, and m = 0 (Figure 2(b)). By fixing s
and m of the test sets to be the best ones identified on the
training sets and grid searching for d, the performance on
the test sets was consistent with that on the training sets.
Both Round 1 and Round 2 had the best performance on
the test sets when d = 7 (Table 1).
Comparison of the relative performance of Rounds 1

and 2 reveals that Round 2 has significant improvements
with respect to all the measures (Table 1). In particular,
the RMSE, Pearson correlation and Spearman correlation
of Round 2 are better than those of Round 1 by 15%, 12%
and 36%, respectively. This is due to the fact that Round 1
encodes many irrelevant k-mers, whereas Round 2
encodes only the important k-mers identified in Round 1.
The kernel mapping of Round 2 is thus far more accurate
than that of Round 1. With d = 7, Round 1 encodes
21,844 k-mers to calculate the kernel function, whereas
Round 2 encodes only 140 k-mers. This explains the sig-
nificant improvement on the runtime of Round 2 over
Round 1, although Round 2 requires inputs from Round 1.
The results from the 10-fold CV have demonstrated the

effectiveness of the k-mer selection of Round 1. Figure 3
shows two illustrative examples of importance matrices
for k = 2 and k = 3. The baseline color is yellow. The red
color indicates that the k-mer at the corresponding start-
ing position in the 12-mer binding sequence contributes
to low binding affinity (a large Kd value), whereas the blue
color indicates a contribution to high binding affinity. For
instance, TT at positions 4-6 tends to lead to a large Kd

value (Figure 3(a)). AA and AC, on the other hand, are
preferred 2-mers at position 5. The effect of TT can be
further decomposed into seven 3-mers as shown in Figure
3(b), that is, ATT, CTT, GTT, TTT, TTA, TTC, and
TTG. Among them, CTT and TTT are those that contri-
bute most to a large Kd value if one of them appear at
position 4 of the 12-mer Gcn4p-DNA binding sequence. It
should be noticed that such importance matrices contain
both uncertainty and diversity: uncertainty means that due
to the effects of other contributing k-mers, a k-mer with a
red color does not necessarily lead to a high Kd value, and
diversity means that multiple k-mers can contribute to Kd

values at the same position. Nevertheless, these impor-
tance matrices still provide an intuitive means for
researchers to visualize and interpret results, and thus gain
insights into the design of a binding sequence with a
desired binding affinity.

Comparison with state-of-the-art methods
Our method was further compared with state-of-the-art
methods on the same datasets. HK®ME [21] was the best
performer at the DREAM5 transcription factor/DNA
motif recognition competition. According to Annala’s
method, HK®ME was set to use all the 4-6-mers as well
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as 2000 7-mers and 1000 8-mers with the lowest median
Kd values. We also compared with PWM which assumed
the mononucleotide contributed independently to the
binding affinity. The model x of PWM is solved from the
function A · x = K where A is an n × u matrix, where n is
the number of training sequences, and u = L × z where L

is the length of each training sequence and z is the size of
the dictionary. For the Gcn4p dataset, L is 12 and z is 4.
Here A[i, j] is set to 1 if the i-th sequence contains the
specific nucleotide at the specific position indicated by the
index j, otherwise 0. The x is a u-dimensional column vec-
tor to be trained, each entry of which represents the weight
for the corresponding nucleotide at the corresponding
position. For the Gcn4p dataset, K is set to be ln(Kd)
because ln(Kd) is proportional to the binding free energy,
which is assumed to be additive.
Table 2 shows the comparison between our method

and state-of-the-art methods on the same 10-fold CV.
Our method significantly outperforms the other three
methods. In particular, compared with HK®ME, our
method scored 71% higher in the Pearson correlation
and 51% higher in the Spearman correlation; compared
with PWM, we have 50% higher in the Pearson correla-
tion and 36% higher in the Spearman correlation. There
are at least three reasons for these significant improve-
ments. First, our method does not depend on prior
knowledge of which k-mers are important, rather it sys-
tematically explores all k-mers up to length d. Secondly,
our method selects the most important k-mers with dif-
ferent k values based on the expected importance of such
subsequences at different positions, whereas PWM
assumes 1-mers are important and HK®ME assumes
certain k-mers are important without considering their
positions and number of occurrence. Thirdly, the discri-
minative power of SVR ensures an accurate regression in
the kernel space. We also implemented the SVR model
with the WD kernel without shift or mismatch by d = 7
(as shown in Table 2) and found that it also significantly
outperforms HK®ME and compares favorably to PWM.

Figure 2 Grid search of parameters on the training data of Rounds 1 and 2 of our method. (a) Grid search of degree and shift for Round
1 in terms of the average Pearson Cor with mismatch 1. The parameter of mismatch can be searched in a similar manner, which is not shown
here. (b) Grid search of degree and shift of for Round 2 in terms of Pearson Cor, with mismatch 0.

Table 1 Average prediction performance of the Rounds 1
and 2 of our method on test sets of the 10-fold CV.

Test Performance of Round 1: WD with s = 1 & m = 1

d Runtime RMSE Pearson Cor Spearman Cor

2 572 20.06 0.74 0.46

3 1034 19.99 0.74 0.47

4 1448 19.87 0.75 0.48

5 1834 19.79 0.75 0.49

6 2221 19.77 0.75 0.49

7 2430 19.76 0.75 0.50

8 2908 19.75 0.75 0.50

9 3193 19.74 0.75 0.50

Test Performance of Round 2: WD with s = 0 & m = 0

d Runtime RMSE Pearson Cor Spearman Cor

2 47 18.82 0.78 0.55

3 90 18.09 0.80 0.59

4 128 17.65 0.81 0.62

5 166 17.34 0.82 0.65

6 200 17.09 0.83 0.66

7 235 16.89 0.84 0.68

8 268 16.89 0.84 0.65

9 302 16.87 0.84 0.65

Round 1 uses all k-mers up to length d, with shift = 1 and mismatch = 1.
Round 2 uses only selected k-mers from Round 1, with shift = 0 and
mismatch = 0. ‘Runtime’ includes both training and testing, in seconds. The
values for the parameters selected on training data are in bold.
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Our method, however, is clearly better than the SVR
model on the basis that it allows shifts and mismatches,
and conducts an additional round of k-mer selection.

Discovery of a stable high-affinity 10-mer motif
Since the two-round SVR model significantly increased the
accuracy and efficiency of prediction to map DNA
sequences to their Kd values for the Gcn4p binding, we set
out to characterize k-mers identified as being important
through Round 1. In particular, we focused on the ten 7-
mers that were selected to be important for high-affinity
12-mers. These ten 7-mers are listed in Table 3 and Figure
4. We noticed that these 7-mers appear relatively fre-
quently throughout the 12-mer dataset, which contains
DNA sequences with Kd up to 1,000 nM. We measured

statistics of the Kd values of 12-mers composed of these
important 7-mers, and found that six 7-mers, ATGACTC,
TGACTCA, GTGACTC, TGAGTCA, TATGACT, and
GACTCAT lead to a much lower dispersion of Kd values
than the other four important 7-mers (Figure 4). In other
words, these six 7-mers are dominant factors that can, in
most situations, stabilize the value of Kd regardless of the
context in which these 7-mers appear in nucleotide
sequences.
Multiple sequence alignment of the six robust 7-mers

reveals a high-affinity 10- mer motif, TRTGACTCAT.
Interestingly, we found that, in the 12-mer dataset, the
sequences composed of this 10-mer motif were guaranteed
to have high binding affinity with the Kd value being less
than 100 nM. In addition, we found that this 10-mer motif
leads to even lower variability in the Kd values than the six
7-mers (Figure 4). Indeed, the mean and the standard
deviation of all 12-mers composed of the two concrete
sequences from this motif show high binding affinity with
a low dispersion rate; TATGACTCAT has mean 23.89
nM and standard deviation nM, while TGTGACTCAT
has mean 26.88 nM and standard deviation 18.25 nM.
These results indicate that the high-affinity 10-mer motif
we found is even more dominant factor that alone can sta-
bilize Kd at a low level. [9] confirmed that a palindromic

Figure 3 The importance of all the (a) 2-mers and (b) 3-mers at different positions from Round 1. The x-axis lays out all the 2-mers and
3-mers, respectively. The y-axis shows the positions within the 12-mer DNA binding sequence. The baseline color is yellow. Red color denotes
the effect of leading to large Kd values, whereas blue color denotes the effect of leading to small Kd values.

Table 2 Comparison with state-of-the-art methods.

PWM HK®ME SVR w. WD Our Method

RMSE 20.2 25.4 22.5 16.9

RMSRE 46% 51% 58% 44%

Pearson Cor 0.56 0.49 0.70 0.84

Spearman Cor 0.50 0.45 0.50 0.68

“PWM” represents the position weight matrix model. “HK®ME” represents the
linear model in [21]. “SVR w. WD” represents SVR with WD kernel without
mismatch or shift. All values are the averages over the same 10-fold CV. The
best values in each row are in bold.
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9-mer motif, ATGACTCAT, has a higher binding affinity
than the consensus 7-mer motif, TGACTCA, as observed
in previous studies [33,36]. While this 9-mer motif can
indeed result in high binding affinity, it can also lead to
much lower binding affinity than our 10-mer motif. For
example, a 12-mer sequence, CATGACTCATAG, is
observed to have Kd value of 265.8 nM in the HiTS-FLIP
dataset. Since the last 8 bases of the two motifs are the
same (i.e., 5’-TGACTCAT- 3’), these observations indicate

that our motif can further stabilize the Kd values at a high
affinity level by including an additional nucleotide in the
left half-site. This is consistent with a previous experimen-
tal study in that, while Gcn4p binds to DNA sites as a
dimer, the left half-site plays more important role than the
right half-site in strong Gcn4p-DNA interactions [34].
In addition to the high-affinity 10-mer motif, we found a

10-mer sequence, CAT-GACTAAT, by performing multi-
ple sequence alignment of 4 other 7-mers identified
through Round 1 (i.e., ATGAGTC, TGACTAA, GACT-
CAC, and GACTAAT). Unlike the 10-mer motif that we
found, however, this 10-mer is more context- dependent.
While 12-mers composed of this 10-mer also gave rela-
tively high mean binding affinity (Kd = 97.88 nM), the
range of the binding affinities increased significantly to
include the Kd values between 20.61 nM and 432.00 nM
and to have the standard deviation of 90.65 nM (Figure 4).
This shows that two nucleotide substitutions from the
low-variance, high-affinity 10-mer motif can substantially
alter the characteristics of the 10-mer. These observations
indicate that the DNA binding affinity landscape of Gcn4p
is very complex and that a strong interdependency is pre-
valent. This suggests that models based on additive, inde-
pendent characteristics of binding free energy may not be
able to quantitatively capture interactions of DNA and
dimeric–and more generally oligomeric–TFs and that effi-
cient models that consider interdependency of subse-
quences are key to understanding the DNA binding

Table 3 Statistics of the ten 7-mers that were identified to
be important for high-affinity 12-mers through Round 1.

Rank 7-mer Freq. MIN MAX Average Standard
Deviation

1 ATGACTC 419 8.49 409.08 39.31 43.04

2 TGACTCA 990 8.49 567.81 56.66 54.61

3 GTGACTC 446 9.83 648.79 74.46 96.84

4 TGAGTCA 453 14.52 303.87 63.66 54.64

5 TATGACT 224 8.74 896.78 112.54 190.25

6 GACTCAT 392 8.49 963.28 167.26 254.46

7 ATGAGTC 504 15.60 975.18 276.01 292.93

8 TGACTAA 327 14.67 821.67 192.02 199.69

9 TACTCAC 847 9.65 975.05 437.92 336.43

10 GACTAAT 808 14.67 984.67 528.74 300.75

The seven columns list the rank of importance, nucleotide sequence, number of
12-mer sequences that contain this 7-mer, the minimum Kd for all such 12-mers,
the maximum Kd for all such 12-mers, the mean Kd value for these 12-mers, and
the standard deviation of these 12-mers, respectively. The six 7-mers in bold are
the ones with lower dispersions of Kd values than the remainders.

Figure 4 Box plots of the 7-mers identified to be important for high-affinity 12-mers. (a) The distribution of Kd of the important 7-mers in
the same order as in Table 3. (b) The distribution of Kd of the three predicted 10-mers, including the stable 10-mers TATGACTCAT and
TGTGACTCAT (the left two), and the sensitive 10-mer CATGACTAAT (the right one).
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affinity landscape of such proteins and to fine-tuning of
gene expression processes.

Results on four other TFs in S. cerevisiae
To evaluate the generality of our method, we tested it on
MITOMI2.0 datasets including four other TFs in S. cerevi-
siae, namely Cbf1p, Cin5p, Pho4p and Yap1p [8]. A same
5-fold CV was applied to evaluate each method. As shown
in Tables 2 and 4, the Pearson correlation coefficient of
different methods on these four TFs decrease significantly
from that on Gcn4p. This makes sense because the input
sequences in these four TFs are much longer than that in
Gcn4p (52bp v.s. 12bp), which significantly increases the
difficulty level of regression. Nevertheless, the outperfor-
mance of our method over the other methods is consistent
with that on the Gcn4p dataset. This demonstrates the
generality of our method and also suggests that our
method can be applied to longer DNA sequences with
high accuracy. The latter is essential to prediction of the
binding affinity landscape of oligomeric TFs.

Conclusion
In this paper, we have proposed a novel two-round sup-
port vector regression method that is based on weighted
degree kernels with shifts and mismatches, with the first
round focusing on feature selection and the second round
focusing on regression. The WD kernels have been used
with support vector classification method and successfully
applied to a number of biological sequence classification
problems, including transcription start site prediction [37],
splice site prediction [38], alternative splicing site predic-
tion [28], trans-splicing site prediction [39], and transla-
tion initiation site prediction [40]. However, the power of
combining the WD kernels with the support vector regres-
sion has not been well studied in bioinformatics. Further,
to the best of our knowledge, two rounds of string kernels
have not been applied to identify crucial k-mers and to
avoid projecting the input sequences to overly high-
dimensional kernel space.
We applied the proposed two-round method to model

the mapping of DNA sequences to their binding affinity
for the Gcn4p binding in yeast using high-resolution
datasets measured by HiTS-FLIP. We showed that the

quantitative prediction from our new method is signifi-
cantly improved over existing methods. We further
demonstrated that the identification of important subse-
quences would allow extraction of human-interpretable
rules for the purpose of quantitative control of binding
affinity. Two 10-mers were predicted by our method
that were surprisingly stable but were not previously
reported. Another 10-mer that just has two nucleotide
changes from one of the stable ones was predicted that
was comparatively sensitive. Additional tests on four
other TFs validate the generalization power of the pro-
posed method. Our program and sample data are freely
available at http://sfb.kaust.edu.sa/Pages/Software.aspx.
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