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Abstract

Background: While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for
existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene
expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has
been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing.
Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health
problem. With the advancement of high throughput omics technologies, a number of large scale gene expression
profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories.
In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify
candidate therapeutics to this disease.

Results: We developed a robust method to compile a combined gene signature for colorectal cancer across
multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate
compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These
results indicate that we have discovered high quality connections between the CRC disease state and the candidate
compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the
disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets;
the publication of the combined CRC gene signature and the list of candidate compounds from this work will
benefit both cancer and systems biology research communities for further development and investigations.

Introduction
Drug discovery is a complex, lengthy and costly proce-
dure. The entire process of bringing a new drug to mar-
ket takes approximately 15 years, the average cost of
which is estimated to be $1.8 billion [1]. There is an
urgent need to develop drugs in a cost efficient way for
the benefit of patients and drug developers [2]. One
approach to this problem is to identify new uses for

existing drugs, known as drug repurposing or reposi-
tioning, which can save production cost and time. As
existing drugs are normally approved for human use,
the identified new use can directly enter phase II clinical
trials, saving at least 2 years of time and 40% of the
overall cost of the complete procedure [3]. DNA micro-
array technology enables high-throughput gene expres-
sion profiling with a large number of genes assayed
simultaneously, which can be used as a powerful tool in
drug discovery and clinical medicine [4]. The integration
of microarray technology and innovative bioinformatics
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frameworks, such as connectivity mapping, is particu-
larly useful in facilitating drug repositioning.
Connectivity mapping uses gene expression profiling

to connect genes, diseases and small module com-
pounds. It is a process whereby gene expression profiles
of cell-line response to drugs are compared to query
gene signatures, in order to evaluate similarity and iden-
tify potential drugs able to alter the gene signature’s
expression [5]. A functioning connectivity mapping fra-
mework includes three major constituents: a reference
database, query gene signatures, and a matching algo-
rithm. A reference database contains a collection of
chemical-induced gene expression profiles, describing
chemical-induced reference states. The reference data-
base of the Broad Institute Connectivity Map 02 con-
tains 6100 individual reference profiles for 1309 small
molecule compounds, many of which were FDA
approved drugs [6]. A query gene signature is a list of
genes selected from biological experiments investigating
a particular biological condition. Differentially expressed
genes between disease and normal conditions are often
used to form a signature for the disease. Connectivity
mapping employs non-parametric pattern matching
algorithms to compare the gene signature and the
reference profiles. As a result of the comparisons, all
drug profiles in the reference database will be given a
connectivity score range from 1 to -1 representing their
connections to the query signature. A drug with the clo-
sest profile in the same regulation direction will be the
best candidate to enhance the biological condition of
the query signature. Conversely, a drug with the closest
profile in the opposite regulation direction may be an
inhibitor to that condition.
Connectivity mapping was first developed by research-

ers at the Broad Institute in 2006. Since then, connectiv-
ity mapping has been employed in numerous studies,
gaining wide recognition in drug discovery and develop-
ment [7]. It has been applied in a large number of
microarray and also next generation sequencing (RNA-
Seq) studies for candidate therapeutics identification
[7,8]. As an alternative framework of connectivity map-
ping, statistically significant connections’ map (sscMap)
was developed by Zhang and Gant in 2008, which
adopted the concept and the reference profile data of
the original CMap. In addition, sscMap includes a
refined method in the mapping process by calculating
p-values at the level of individual reference profiles,
which consequently helps to control false positive find-
ings. SscMap has been shown to be an effective and
robust framework to achieve high accuracy in identify-
ing potential drugs [9,10]. A GPU-enabled tool cudaMap
[11], which implements a parallel computing model of
the sscMap algorithms, can greatly reduce the proces-
sing time of connectivity mapping.

Connectivity mapping represents a valuable bioinfor-
matic technique to identify potential drugs and to generate
new biological hypotheses. Query gene signatures are cre-
ated by end users as input to connectivity mapping analy-
sis, so signature quality is critically important to the
success of the process. However, so far relatively little
research has been done on methods for creating high stan-
dard gene signatures for connectivity mapping, in particu-
lar when they are to be generated from multiple datasets.
The limited guidance from the original developers of Con-
nectivity Map suggested that they found gene signatures
with between 10 and 500 genes performed well. Users of
connectivity mapping normally use their own experience
and knowledge to create their own query gene signature.
The general way to compile a gene signature starts

with comparison of gene expression between normal
and disease tissues, resulting in a list of differently
expressed genes (DEGs) as a representation of the dis-
ease phenotype. However, the lists of DEGs from var-
ious gene expression profiling studies tend to be
inconsistent. For the same biological condition, the gene
signatures from different datasets can be very different.
Some genes may be significant in one dataset but not in
the others; the same genes may have different signifi-
cance levels or even different regulation directions in
different datasets. Taking intersection of the lists from
independent studies is a common approach to this pro-
blem [12], but this overlapping process can often filter
out important genes. For example, if a gene is significant
across all datasets except one, the overlapping method
will exclude this gene. Furthermore, as the number of
datasets increases, it may lead to an empty overlapping
list because no single gene is significant across all data-
sets. As more and more data become publicly available,
how to take advantage of these data and wisely use
them will become more challenging. It will be an impor-
tant research direction in gene expression profiling to
combine gene signatures from diverse research with
similar settings to derive a robust and stable representa-
tion of the biological conditions of interest.
In this paper, we propose a useful method using

signed and normalized ranks to combine results from
multiple colorectal cancer datasets. Colorectal cancer is
a major disease prevailing worldwide with high mortal-
ity. According to 2013 U.S. cancer statistics, the esti-
mated number of new cases and deaths annually for
colorectal cancer in the United States are 142,820 and
50,830 respectively. Both the diagnosis and death toll
from this disease are among the top three of all cancers
[13]. We focus on colorectal cancer with the intention
to compile high-quality gene expression signatures to
represent the disease, and subsequently apply connectiv-
ity mapping to find potential drugs for the treatment of
the disease.
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Methods
Datasets: Samples and genes selection
Datasets GSE21510, GSE41258 and GSE49355 were
obtained from the Gene Expression Omnibus(GEO), a
public gene expression data repository. These datasets
contain both tumour and normal, paired or unpaired,
stage I-IV CRC samples, with raw microarray expression
data available. We selected only stage II, III, and IV and
excluded stage I samples in our study.
Dataset GSE21510 includes in total 148 samples from

104 colorectal cancer patients who had surgical therapy
between 2002 to 2007 at Tokyo Medical and Dental
University Hospital, Japan [14]. 46 tumour and paired
normal samples from 23 patients are available. Exclud-
ing 8 (4 pairs) stage I samples, we selected 38 (19 pairs)
samples from this dataset: 16 (8 pairs) stage II, 14 (7
pairs) stage III, and 8 (4 pairs) stage IV samples.
Dataset GSE41258 was from the study of Sheffer et

al [15] on patients with colonic neoplasia presented at
Memorial Sloan-Kettering Cancer Center, New York
between 1992 and 2004. Biological specimens used in
the original study included primary colon adenocarcino-
mas, adenomas and corresponding normal mucosae
from patients at a variety of clinical stages. There are 88
paired samples in this dataset, from which we selected
74 paired, stage II-IV samples for our analysis. The
selected include 16 stage II, 22 stage III and 36 stage IV
samples.
Dataset GSE49355 was from a prospective study at the

Institut du Cancer de Montpellier, France during January
2000 and June 2004, which involved 50 colorectal cancer
patients. Samples of normal colon, primary colon cancer
and hepatic metastasis were collected during surgery and
before chemotherapy [16]. We selected 30 paired primary
tumour and normal samples from this dataset, all sam-
ples were at stage IV.
The platforms used for these datasets were Affymetrix

HG-U133A (for GSE41258 and GSE49355) and HG-
U133 Plus 2 (for GSE21510), measuring the expression
of 22283 and 54675 probe-sets respectively. Between
these two platforms, there were 22277 common probe-
sets, and these became the selected genes analyzed in
our study.

Data processing and analysis
Raw data and series matrix files of GSE21510,
GSE41258 and GSE49355 were downloaded from GEO
and extracted with 7zip. Data were normalised and sum-
marised using Bioconductor affy package MAS5 algo-
rithm. Series matrix files were used to extract the
clinical information such as phenotypes (normal or
tumour) and stages. Samples were further clustered in
each dataset according to their stages (2-3 or 4), stage 2
and 3 samples were grouped together as a combined
group of 2*3 and stage 4 samples formed a separate
group. As a result, five sub-datasets were created:
GSE21510S2*3 (n = 30), GSE41258S2*3 (n = 38),
GSE21510S4 (n = 8), GSE41258S4 (n = 36) and
GSE49355S4 (n = 30). Within each sub-dataset, half of
the samples were primary tumours and the other half
were the corresponding paired normals. Table 1 sum-
marizes the sample and platform information for each
dataset.

Ranking method
To identify differentially expressed genes between the
two biological conditions, normal versus tumour, we
carried out paired-sample T-test on each gene in these
datasets individually. As a result, each gene had a p-
value from the T-test in each dataset. A stringent
threshold p-value was set as 1/π0N , where N was the
total number of genes analysed (N = 22277), π0 the pro-
portion of non-differentially expressed genes, which
could be accurately estimated using the Zhang-Gant
method [17,18]. Setting such a stringent threshold was
to control the expected number of false positives as 1 in
multiple testing. All genes in each dataset were then
divided into 2 groups: statistically significant group and
non-significant group. Genes with a p-value smaller
than the threshold were put in the significant group; the
rest in the non-significant group.
We developed the following method to combine

scores from different datasets and select significant
genes. The ranking and scoring of all genes in an indivi-
dual dataset is described in steps 1-5 below:
1. All genes in the statistically non-significant group

will have 0 score.

Table 1 Information of datasets used.

Dataset Stage Samples Platform TotalGenes SignificantGenes

GSE21510 2-3 30(15pairs) HG-U133Plus2 54675 4025

GSE41258 2-3 38(19pairs) HG-U133A 22283 929

GSE21510 4 8(4pairs) HG-U133Plus2 54675 7

GSE41258 4 36(18pairs) HG-U133A 22283 663

GSE49355 4 30(15pairs) HG-U133A 22283 1323

Combined Dataset 2-4 142(71pairs) 22277 4757
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2. Genes in the statistically significant group will have a
score from M to 1 according to their significance order,
the score will be normalised by M , where M is the num-
ber of significant genes identified in each dataset [see note
(a) below].
3. The score for the ith gene in the ordered list is

calculated using the formula:

Score = (M− i + 1)/M

4. Apply a biological significance threshold and set
their score to 0 for those genes with a fold change less
than 2 in the statistically significant group.
5. Assign a sign to each score, giving “+” if the gene is

up-regulated or “-” if down-regulated [see note (b)].
6. Sum up the scores of each gene across all datasets,

so that each gene has a total score.
7. Sort all genes according to the absolute value of

their total score in descending order, the gene with the
highest absolute total score (the most significant gene)
will be on the top.
8. Finally use the gene signature progression procedure

(see the following section) with sscMap to decide the sig-
nature length.

Note:
(a) For different datasets, the number of statistically
significant genes M is generally not the same. Nor-
malising the scores by M makes them comparable
across different datasets.
(b) Each score contains a sign, so if a gene regulates
differently in different datasets, its per-dataset scores
will counteract each other and its overall score is
reduced.

The purpose of this ranking procedure is to identify
genuinely significant genes across all of the datasets.
Using this method, an overall top-ranked gene across
multiple datasets must consistently have high ranking
scores from these datasets, and must also have the same
regulation direction in the majority of datasets. Only
such genes are guaranteed to retain high overall scores.
Table 2 lists the top ranked gene in each individual

dataset (FXR1, CDH3, COL11A1, HSPH1 and SMPD1),
along with their scores in the other datasets. As can be
seen from Table 2, depending on their individual scores

across all datasets their overall scores are varied. CDH3
is the top gene in dataset GSE41258S2*3, but due to its
less prominent positions in other datasets, the overall
rank for this gene across five datasets is 25. FXR1 is the
top gene in GSE21510S2*3 dataset, and because it is not
significant in all other datasets, its overall rank is
dropped to 1000. In fact, none of these five genes are in
the list of top 20 genes by overall ranking. Table 3
shows the top 10 genes by overall ranking. A common
feature of these top 10 genes is that each gene is consis-
tently significant (and with the same regulation direc-
tion) across all datasets except GSE21510S4, which only
returned 7 significant genes due to small sample size
and low statistical power.

Gene signature progression procedure
In the construction of a gene signature for connectivity
mapping, there are often a large number of genes that
passed the threshold p-value and were selected as signif-
icant genes. But including all the significant genes in a
query signature might not be the best choice to describe
the biological condition under study, since this may
dilute the critical features of a biological condition. As
the purpose of a gene signature is to capture the most
important/prominent features of a biological state, we
define the optimal signature length as the smallest num-
ber of genes from the top of the ranked list to achieve a
target number of significant connections. To effectively
utilize connectivity mapping, the drug hits in sscMap
are used to guide the choice of gene signature length.
We implement the following procedure to decide the
length of a query signature.
1 First, as in the sscMap framework, we set Efp = 1 as

the expected number of false positives to tolerate
among the drug hits. The threshold p-value for declar-
ing significant connection is then set as
Efp

/Nc = 1/1309 , where Nc = 1309 is the number of
small molecule compounds in the connectivity mapping
database.
2 Set the target false discovery rate (FDR) as 0.10 (one

in ten risk of false drug hit). The empirical FDR is cal-
culated by Efp/Ns, where Ns is the number of significant
drug hits.
3 Start from m = 1, where m denotes the number of

genes included in a query gene signature.

Table 2 Top 1 gene of each dataset and its scores in all other datasets.

ProbeID GeneSymbol GSE21510S2*3 GSE41258S2*3 GSE21510S4 GSE41258S4 GSE49355S4 TotalScore OverallRank

201637 s at FXR1 1 0 0 0 0 1 1000

203256 at CDH3 0.6174 1 0 0.9400 0.9983 3.5557 25

37892 at COL11A1 0.9990 0.8303 0 1 0.4707 3.3000 64

206976 s at HSPH1 0.3651 0.9524 0 0 1 2.3175 262

216230 × at SMPD1 -0.6184 -0.8424 -1 0 0 -2.4608 222
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4 Select the top m genes from the ranked list obtained
from the differential expression analysis with multiple
datasets discussed above.
5 Use the gene signature of the top m genes to query

sscMap, and check how many drugs have significant
connections to this query signature. As we are looking
for potential drugs to inhibit the disease, we only con-
sider compounds in the desirable direction of action, ie,
those with negative connection scores.
6 If FDR = Efp/Ns > 0.10 , increase the number of

genes m by 1 and go to step 5.
7 Until FDR becomes ≤ 0.10, or the ranked significant

genes from differential expression analysis have been
exhausted, the process is stopped. At this point, the
optimal length of the gene signature and at least 10 top
significant drugs will be obtained as the result of gene
signature progression.

Results
Significant genes result
Paired-sample T-tests were carried out on 5 subdatasets
individually. The genes in each dataset were ranked and
scored using the methods described. In dataset
GSE21510S2*3, 4025 genes were identified as significant
with a non-zero score. GSE41258S2*3 had 929 significant
genes, GSE21510S4 had 7, GSE41258S4 had 663, and
GSE49355S4 had 1323. The combined signature had
4757 significant genes with a non-zero score (Table 1).
As a result of the ranking and progression procedures
described above, the signature with the top 148 genes
from the overall ranked list identified 10 significant drugs
with a FDR ≤ 0.10, which was the pre-set FDR threshold.
The supplementary information includes the full list of
genes, their scores in individual datasets and their overall
scores.
SLC4A4, GUCA2B, KIAA1199 and MMP28 are

among the top 10 significant genes in the combined sig-
nature. Their differential expression in colorectal cancer
have also been reported in the literature. SLC4A4 is the
top gene in our combined signature, with the highest

absolute overall score, but the sign of the score is nega-
tive, which is in agreement with data from the Cancer
Genome Atlas (TCGA) showing that SLC4A4 mRNA
level is decreased in colon adenocarcinomas [19].
GUCA2B, a gene coding for uroguanylin, has been
found to be down regulated by 8-fold in adenoma [20].
It has also been proposed as a noninvasive biomarker
for early CRC detection [21]. Moreover, radio-labeled
uroguanylin analogs have been used in vivo to detect
CRC [22]. KIAA1199 is the sixth significant gene in the
combined signature, which is significantly up-regulated
in the colorectal cancer tumour sample. It has been
found that suppression of KIAA1199 weakens Wnt-
signalling and inhibits the proliferation of colon cancer
cells [23]. MMP28 (Matrix metalloproteinase 28) is the
8th significant gene in the combined signature with a
negative score as it is significantly down-regulated in the
colorectal cancer tumour samples. Consistent with our
finding here, the downregulation of MMP28 in colorec-
tal cancers has been validated in detailed analysis of
MMP gene expression patterns [24]. All these relevant
findings suggest that the 148 genes selected from pro-
gression procedure play important roles in colorectal
cancer, therefore may be considered as potential thera-
peutic targets for drug development.

Significant drugs result
The top 148 genes by the combined ranking formed
the the optimal gene signature as determined by the
gene signature progression method. This gene signa-
ture represented an accurate characterization of colon
cancer disease phenotype, which returned from con-
nectivity mapping 10 potential drugs for CRC treat-
ment. These include trichostatin A, vorinostat, HC
toxin, sodium phenylbutyrate, mycophenolic acid, iri-
notecan, etoposide, valproic acid, arachidonic acid, and
rifabutin. Figure 1 shows the results of sscMapping
using this CRC gene signature, where the significant
drug hits are shown as solid red circles above the
threshold blue line.

Table 3 Top 10 genes of the combined signature and their scores in all datasets.

ProbeID GeneSymbol GSE21510S2*3 GSE41258S2*3 GSE21510S4 GSE41258S4 GSE49355S4 TotalScore OverallRank

203908 at SLC4A4 -0.9933 -0.9847 0 -0.9895 -0.9883 -3.9557 1

207502 at GUCA2B -0.9904 -0.9973 0 -0.9797 -0.9826 -3.9500 2

207003 at GUCA2A -0.9627 -0.9989 0 -0.9822 -0.9513 -3.8951 3

205480 s at UGP2 -0.9912 -0.9732 0 -0.9197 -0.9996 -3.8836 4

205950 s at CA1 -0.9974 -0.8872 0 -0.9959 -0.9352 -3.8159 5

212942 s at KIAA1199 0.9472 0.9962 0 0.8775 0.9926 3.8135 6

203961 at NEBL 0.9788 0.9639 0 0.8508 0.9887 3.7821 7

219909 at MMP28 -0.9332 -0.9995 0 -0.8856 -0.9613 -3.7796 8

213766 × at GNA11 -0.9973 -0.9037 0 -0.9059 -0.9609 -3.7677 9

202370 s at CBFB 0.9886 0.8933 0 0.9335 0.9522 3.7676 10
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To test the robustness of the connections established
between the query signature and the drug reference pro-
files, perturbation method was used to gauge the con-
nection stability in connectivity mapping [25]. Gene
signature perturbation analysis was performed with the
148-gene signature; perturbation stability scores were
calculated for each drug. Table 4 shows the ten signifi-
cant drugs identified and their perturbation stability
scores. As shown in this table, six out of ten identified
potential drugs received highest stability score 1. These
include trichostatin A, vorinostat, HC toxin, sodium
phenylbutyrate, mycophenolic acid, and irinotecan. The
other four compounds (etoposide, valproic acid, arachi-
donic acid, and rifabutin) received perturbation stability
score less than 1, with a minimum of 74%.
Among these 10 candidate compounds identified as

potential drugs for colorectal cancer, irinotecan and eto-
poside are currently used to treat colorectal cancer
already, pointing to the direction that other candidate
compounds on this list are likely to have similar activity
or power to treat the disease. To demonstrate the added
values in combining multiple datasets, we also carried
out connectivity mapping analysis on each dataset indi-
vidually. The drug results from the combined signature
are compared with that from each individual signature
in a Venn diagram in Figure 2, which was created using
jVenn [26]. The itemized drug results are listed in Table

5. As can be seen, although irinotecan also appeared in
the results of dataset GSE41258S2*3, only the combined
signature has both irinotecan and etoposide on its result
list. Therefore, the drug results from the combined sig-
nature look much stronger than that from any indivi-
dual signatures, suggesting that the combined signature
provides a higher fidelity representation of the colorectal
cancer phenotype.

Figure 1 Results of sscMapping using the 148-gene signature determined from the gene signature progression procedure. Each data
point represents a compound, with the raw connection score (cscore) or the normalized score (zscore) shown in (A) and (B) respectively. The
blue line in the plot corresponds to the position of threshold p-value. Any data points above the blue line are drugs that have significant
connections (solid red circles) to CRC gene signature.

Table 4 The connections and perturbation stabilities of
the 10 significant drugs obtained for the 148-gene
signature.

Compound Replicate cscore pvalue zscore PerturbStability

trichostatin A 182 -0.144 5.0E-06 -5.87 1.00

vorinostat 12 -0.146 1.0E-05 -4.63 1.00

HC toxin 1 -0.217 5.0E-06 -4.57 1.00

sodium
phenylbutyrate

7 -0.072 5.0E-06 -4.56 1.00

mycophenolic
acid

3 -0.145 2.0E-05 -4.41 1.00

irinotecan 3 -0.146 1.0E-05 -4.18 1.00

etoposide 4 -0.087 3.9E-04 -3.34 0.90

valproic acid 57 -0.036 5.9E-04 -3.19 0.78

arachidonic
acid

3 -0.094 5.8E-04 -3.18 0.77

rifabutin 3 -0.100 6.3E-04 -3.23 0.74
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Notice that in Table 5, there is no drug list for
GSE21510S4, because the gene signature from this indivi-
dual dataset did not return any significant drug hits in
our connectivity mapping analysis. Due to the small sam-
ple size of this sub-dataset, with only 8 (4 pairs) samples,
only 7 genes were identified as DEGs with a non-zero
score. Consequently the contribution of this sub-dataset
to the final combined signature was rather limited, as
demonstrated in Table 3, where GSE21510S4 had no
effects. This is actually a desirable characteristic of the
multi-dataset method proposed in this paper, because
low-powered or under-powered datasets will automati-
cally have less influence on the final combined results.

Discussions
Using multiple CRC datasets, combined with meta-analy-
sis and connectivity mapping, this work was aimed at
finding the connections between a molecular signature of
colorectal cancer and possible drug treatments. Among
the 10 significant drug hits in our list, irinotecan and eto-
poside are chemotherapy drugs currently being used to
treat colon cancer. This illustrates the value of connectiv-
ity mapping to extract these complex relationships from
public datasets. This would suggest that the molecular
signature of colorectal cancer presented here could be a
more precise representation of the biological phenotype.
The robust connections between colorectal cancer and

Figure 2 The numbers of drug hits returned using gene signatures from individual datasets and from the combined 148-gene
signature. Note that only the combined gene signature drug list contains both irinotecan and etoposide, which are two existing CRC
therapeutic drugs.
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potential drugs obtained through connectivity mapping
could be strong candidates for further investigation.
It is interesting to note that among the 10 candidate

drugs, five are histone deacetylase inhibitors: trichostatin
A, vorinostat, HC toxin, sodium phenylbutyrate, and val-
proic acid. Histone deacetylases (HDACs) are enzymes
having critical roles in the regulation of gene expression,
and they have emerged as promising targets in cancer
therapeutics [27-29], as altered and abnormal expression
of HDACs has been discovered in different cancer types
and linked to tumour development. HDAC inhibitors
have low toxicity against normal cells and a capability to
inhibit tumour cell growth at therapeutic concentra-
tions, enabling them to be promising anticancer drugs
in early phase clinical trials [30]. More details about
these candidate compounds are described below to
demonstrate their potential relevance in cancer, particu-
larly in CRC treatment.
1. Trichostatin A is a classical HDAC inhibitor which

has been revealed as a potent anti-cancer drug. A large
amount of research has been carried out on trichostatin
A and discovered that this compound inhibits the
growth of bladder cancer, glioma, lung cancer, and pan-
creatic cancer cells [31-35]. It increases the sensitivity of
chemotherapy drugs in gastric cancer cell lines [36]. In
addition to inducing cell cycle arrest and apoptosis, this
compound has function in inhibiting metastasis in col-
orectal cancer cells [37,38].
2. Vorinostat (suberoylanilide hydroxamic acid, SAHA)

is classified as an HDAC inhibitor and used as an antican-
cer chemotherapy drug. It blocks the catalytic site of
HDACs and has a significant anticancer activity against
both hematologic and solid tumours. This compound
causes growth arrest and induces apoptosis in a number of
cancer cells, but with little or no toxic effects on normal
cells [39]. It has undergone initial evaluation in Phase I
clinical trial for patients with solid and hematologic malig-

nancies [40,41], and was approved for treating cutaneous
T-cell lymphoma [42].
3. Helminthosporium carbonum (HC)-toxin is an

HDAC inhibitor in many organisms, including plants,
insects, and mammals [43]. HC-toxin inhibits the malig-
nant phenotype of primary neuroblastoma (NB) cells as
well as established NB cell lines. It causes a shift to a
benign and differentiated phenotype of NB cells via acti-
vating the retinoblastoma (RB) tumour suppressor net-
work[44].
4. Sodium phenylbutyrate is an aromatic fatty acid

known to be B-oxidized in vivo to phenylacetate, and is
used to treat urea cycle disorders [45,46]. Sodium phenyl-
butyrate is an HDAC inhibitor under investigation as an
anti-cancer agent, and in clinical trials of hemoglobino-
pathies, motor neuron diseases, and cystic fibrosis [46].
5. Mycophenolic acid (MPA) is an immunosuppres-

sant drug used for the prevention of acute graft rejec-
tion in organ transplantation [47]. Through diverse
molecular pathways and biological processes, MPA has
an active role in anticancer activities [48]. This drug
inhibits inosine monophosphate dehydrogenase
(IMPDH) up-regulated in many tumours, and conse-
quently inhibits proliferation, fibroblast and endothelial
cell migration and induces apoptosis in cancer cells [49].
6. Irinotecan (Camptosar, Pfizer) is mainly used in

colon cancer, particularly in combination with other
chemotherapy agents. Irinotecan is the second line che-
motherapy for advanced stage colorectal cancer. After
surgical resection and adjuvant chemotherapy, the com-
bination of oxaliplatin and 5-fluorouracil (5-FU) is used
as first line treatment if colorectal cancer recurrence or
metastasis occurred. Irinotecan is commenced if first
line treatment failed and cancer progresses [50,51].
7. Etoposide (etoposide phosphate) is the first agent

recognised as a topoisomerase II inhibiting anticancer
drug. It derived from podophyllum plant which was

Table 5 Drug results from combined and individual datasets.

CombinedSig GSE41258S2*3 GSE21510S2*3 GSE49355S4 GSE41258S4

trichostatin A irinotecan letrozole methylergometrine trichostatin A

vorinostat sirolimus nystatin vorinostat HC toxin

HC toxin trichostatin A quipazine 0316684-0000 vorinostat

sodium phenylbutyrate scriptaid josamycin nocodazole rifabutin

mycophenolic acid vorinostat benzocaine scriptaid sodium phenylbutyrate

irinotecan camptothecin isocorydine simvastatin scriptaid

etoposide dexamethasone metampicillin morantel monorden

valproic acid LY-294002 ethisterone edrophonium chloride alvespimycin

arachidonic acid fludroxycortide fluticasone trichostatin A dexamethasone

rifabutin methylbenzethonium chloride hycanthone trazodone tanespimycin

sodium phenylbutyrate tenoxicam butein

adenosine phosphate
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found having antitumour activity against leukaemia.
Approved by FDA because of its confirmed potent anti-
neoplastic activity [52], etoposide is a widely used agent
to treat various cancers including lung cancer, leuke-
mias, non-Hodgking’s lymphoma, testicular cancer,
Kaposi’s sarcoma, soft tissue sarcomas, and neuroblas-
toma. It is a standard therapy component to treat small
cell lung cancer, testicular cancers and lymphomas
[52,53]. The combination of etoposide and cisplatin is
active in advanced CRCs and has been considered as a
default option for treating patients with high-grade neu-
roendocrine tumours of the colon and rectum [53,54].
8. Valproic acid (VPA) is an HDAC inhibitor primarily

used in the treatment of epilepsy and bipolar disorder
[55]. It has been recognized as a promising anticancer
drug with abundant literature support. For example, it was
reported recently that the long term use of this compound
is associated with reduced risk of head and neck cancer
[56]. VPA has been suggested to play an important role in
enhancing radiotherapy sensitivity of colon cancer cells,
particularly with wildtype p53 genotype [57]. Through the
down-regulation of the amyloid precursor protein, this
compound inhibits proliferation of pancreatic and colon
cancer cells [58].
9. Arachidonic acid (ARA) is a polyunsaturated fatty

acid, whose metabolism plays important roles in cancer
biology. The addition of exogenous ARA leads to growth
inhibition and apoptosis of cancer cells including colon
cancer cells [59,60]. Although the detailed mechanism has
yet to be fully understood on how high levels of ARA
induces apoptosis, it is clear that if the metabolic pathways
that consume ARA (and hence lower its level) are coordi-
nately activated, tumour growth is then promoted [59]
through apoptotic escape [60]. These suggest that either
ARA itself or specific inhibitors of ARA-metabolizing
pathways may conform to some therapeutic benefit.
10. Rifabutin is a bactericidal antibiotic drug primarily

used to treat tuberculosis as first-line treatment. It is
among the list of anti-tuberculosis medicines recom-
mended by the World Health Organization (the 18th
WHO Model List of Essential Medicines April 2013) for
use in patients with HIV receiving protease inhibitors [61].
Rifabutin has shown high efficacy in treating Helicobacter
pylori infection, which is associated with a range of upper
gastrointestinal diseases including gastric cancer [62]. Rifa-
butin has also been studied for treating Crohn’s Disease, a
type of incurable inflammatory bowel disease that may
affect any part of the gastrointestinal tract including colon
and rectum [63,64].

Conclusions
The methods and procedure we have developed in this
paper can serve as a paradigm for successful applications

of connectivity mapping to identify promising candidate
therapeutics in human diseases, and in particular cancers.
On the one hand, the promising results we obtained sug-
gest that genes on the signature list are highly relevant to
colorectal cancer and they might be used as therapeutic
targets in developing new treatments for the disease. On
the other hand, the concept of connectivity mapping sug-
gests that the drugs on the result list are likely to share
some common molecular mechanisms in their actions
against the disease. The fact that irinotecan and etopo-
side are currently used chemotherapeutic agents in colon
cancer indicates that other drugs may also have similar
activities or potentials.
In this work, we have used the CMap02 reference pro-

files as the core database to demonstrate the application of
our methods in colorectal cancer. Recently, the LINCS
project at the Broad Institute has massively expanded the
compound collection to over 20,000, tested on 15 types of
cells, generating over 1 million perturbation profiles. In
principal, the methods developed here can be similarly
applied using the expanded LINCS data as the reference
database, which is likely to return additional drug connec-
tions to the CRC gene signature. With ongoing research
in systems biology and bioinformatics addressing chal-
lenges presented by big data, it will become feasible to
fully utilize the LINCS data and integrate them into the
sscMap connectivity mapping framework.
In conclusion, the encouraging results obtained in the

present study indicate that the multi-dataset method we
proposed is an effective and robust way to generate high
quality gene signatures for connectivity mapping, and
the publication of the gene signature and drug hits
obtained here will be beneficial to systems biology, can-
cer bioinformatics research communities and beyond.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
QW, PH and SDZ designed the study. QW collected the data, developed
algorithms, and drafted the manuscript. QW, POR and PDD analysed the
data. QW, ML, SVS, and MST interpreted the results. All authors contributed
to writing the manuscript and provided technical input. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by an EPSRC Doctoral Training Grant and the
Biotechnology and Biology Sciences Research Council(BBSRC, UK) grant BB/
I009051/1. We thank Lillian Siu for helpful discussions.

Declarations
The funding for the publication of this article has been provided by BBSRC
and Queen’s University Belfast for open access.
This article has been published as part of BMC Systems Biology Volume 9
Supplement 5, 2015: Selected articles from the IEE International Conference
on Bioinformatics and Biomedicine (BIBM 2014): Bioinformatics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcsystbiol/supplements/9/S5.

Wen et al. BMC Systems Biology 2015, 9(Suppl 5):S4
http://www.biomedcentral.com/1752-0509/9/S5/S4

Page 9 of 11

http://www.biomedcentral.com/bmcsystbiol/supplements/9/S5
http://www.biomedcentral.com/bmcsystbiol/supplements/9/S5


Published: 1 September 2015

References
1. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR,

Schacht AL: How to improve R&D productivity: the pharmaceutical
industry’s grand challenge. Nature reviews Drug discovery 2010,
9(3):203-214.

2. DiMasi JA, Hansen RW, Grabowski HG: The price of innovation: new
estimates of drug development costs. Journal of health economics 2003,
22(2):151-185.

3. Chong CR, Jr DJS: New uses for old drugs. Nature 2007, 448(7154):645-646.
4. Trevino V, Falciani F, Barrera-Saldana HA: DNA microarrays: a powerful

genomic tool for biomedical and clinical research. Molecular medicine
(Cambridge Mass.) 2007, 13(9-10):527-541.

5. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J,
Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G,
Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES,
Golub TR: The connectivity map: using gene-expression signatures to
connect small molecules, genes, and disease. Science (New York, N.Y.)
2006, 313(5795):1929-1935.

6. Lamb J: The connectivity map: a new tool for biomedical research.
Nature reviews Cancer 2007, 7(1):54-60.

7. Qu XA, Rajpal DK: Applications of connectivity map in drug discovery
and development. Drug discovery today 2012, 17(23-24):1289-1298.

8. McArt DG, Dunne PD, Blayney JK, Salto-Tellez M, Schaeybroeck SV,
Hamilton PW, Zhang SD: Connectivity mapping for candidate
therapeutics identification using next generation sequencing rna-seq
data. PloS one 2013, 8(6):66902.

9. Zhang SD, Gant TW: A simple and robust method for connecting small-
molecule drugs using gene-expression signatures. BMC bioinformatics
2008, 9:258-21059258.

10. Zhang SD, Gant TW: sscmap: an extensible java application for
connecting small-molecule drugs using gene-expression signatures. BMC
bioinformatics 2009, 10:236-210510236.

11. McArt DG, Bankhead P, Dunne PD, Salto-Tellez M, Hamilton P, Zhang SD:
cudaMap: a GPU accelerated program for gene expression connectivity
mapping. BMC Bioinformatics 2013, 14:305.

12. Chan SK, Griffith OL, Tai IT, Jones SJ: Meta-analysis of colorectal cancer
gene expression profiling studies identifies consistently reported
candidate biomarkers. Cancer Epidemiol. Biomarkers Prev 2008,
17(3):543-552.

13. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA: a cancer
journal for clinicians 2013, 63(1):11-30.

14. Tsukamoto S, Ishikawa T, Iida S, Ishiguro M, Mogushi K, Mizushima H,
Uetake H, Tanaka H, Sugihara K: Clinical significance of osteoprotegerin
expression in human colorectal cancer. Clinical cancer research 2011,
17(8):2444-2450.

15. Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, Paty PB,
Gerald WL, Notterman DA, Domany E: Association of survival and disease
progression with chromosomal instability: a genomic exploration of
colorectal cancer. Proceedings of the National Academy of Sciences of the
United States of America 2009, 106(17):7131-7136.

16. Del Rio M, Mollevi C, Vezzio-Vie N, Bibeau F, Ychou M, Martineau P: Specific
extracellular matrix remodeling signature of colon hepatic metastases.
PLoS ONE 2013, 8(9):74599.

17. Zhang SD, Gant TW: A statistical framework for the design of microarray
experiments and effective detection of differential gene expression.
Bioinformatics 2004, 20(16):2821-2828.

18. Zhang SD: Towards accurate estimation of the proportion of true null
hypotheses in multiple testing. PLoS ONE 2011, 6(4):18874.

19. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF: Regulation and roles
of bicarbonate transporters in cancer. Frontiers in physiology 2014, 5:130.

20. Tsukahara H, Sekine K, Uchiyama M, Miura M, Nakazato M, Date Y,
Tsunezawa W, Kotsuji F, Nishida K, Hiraoka M, Mayumi M: Uroguanylin level
in umbilical cord blood. Pediatrics international : official journal of the Japan
Pediatric Society 2001, 43(3):267-269.

21. Li BQ, Huang T, Liu L, Cai YD, Chou KC: Identification of colorectal cancer
related genes with mrmr and shortest path in protein-protein
interaction network. PloS one 2012, 7(4):33393.

22. Liu D, Overbey D, Watkinson LD, Daibes-Figueroa S, Hoffman TJ, Forte LR,
Volkert WA, Giblin MF: In vivo imaging of human colorectal cancer using

radiolabeled analogs of the uroguanylin peptide hormone. Anticancer
Research 2009, 29(10):3777-3783.

23. Birkenkamp-Demtroder K, Maghnouj A, Mansilla F, Thorsen K, Andersen CL,
Oster B, Hahn S, Orntoft TF: Repression of kiaa1199 attenuates wnt-
signalling and decreases the proliferation of colon cancer cells. British
journal of cancer 2011, 105(4):552-561.

24. Iljin K, Kilpinen S, Ivaska J, Kallioniemi O: Meta-Analysis of Gene Expression
Microarray Data: Degradome Genes in Healthy and Cancer Tissues. In
The cancer degradome : proteases and cancer biology. Springer, New York ;
London;Edwards, D.R. 2008:.

25. McArt DG, Zhang SD: Identification of candidate small-molecule
therapeutics to cancer by gene-signature perturbation in connectivity
mapping. PloS one 2011, 6(1):16382.

26. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C: jvenn: an interactive
Venn diagram viewer. BMC Bioinformatics 2014, 15:293.

27. Ropero S, Esteller M: The role of histone deacetylases (HDACs) in human
cancer. Molecular oncology 2007, 1(1):19-25.

28. Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone
deacetylase inhibitors. Nature reviews Drug discovery 2006, 5(9):769-784.

29. Barneda-Zahonero B, Parra M: Histone deacetylases and cancer. Molecular
oncology 2012, 6(6):579-589.

30. Lindemann RK, Gabrielli B, Johnstone RW: Histone-deacetylase inhibitors
for the treatment of cancer. Cell cycle (Georgetown, Tex.) 2004, 3(6):779-788.

31. Li GC, Zhang X, Pan TJ, Chen Z, Ye ZQ: Histone deacetylase inhibitor
trichostatin a inhibits the growth of bladder cancer cells through
induction of p21WAF1 and G1 cell cycle arrest. International journal of
urology 2006, 13(5):581-586.

32. Wetzel M, Premkumar DR, Arnold B, Pollack IF: Effect of trichostatin a, a
histone deacetylase inhibitor, on glioma proliferation in vitro by
inducing cell cycle arrest and apoptosis. Journal of neurosurgery 2005,
103(6 Suppl):549-556.

33. Kim HR, Kim EJ, Yang SH, Jeong ET, Park C, Lee JH, Youn MJ, So HS, Park R:
Trichostatin a induces apoptosis in lung cancer cells via simultaneous
activation of the death receptor-mediated and mitochondrial pathway?
Experimental & molecular medicine 2006, 38(6):616-624.

34. Piacentini P, Donadelli M, Costanzo C, Moore PS, Palmieri M, Scarpa A:
Trichostatin a enhances the response of chemotherapeutic agents in
inhibiting pancreatic cancer cell proliferation. Virchows Archiv 2006,
448(6):797-804.

35. Bai J, Demirjian A, Sui J, Marasco W, Callery MP: Histone deacetylase
inhibitor trichostatin a and proteasome inhibitor ps-341 synergistically
induce apoptosis in pancreatic cancer cells. Biochemical and biophysical
research communications 2006, 348(4):1245-1253.

36. Zhang X, Yashiro M, Ren J, Hirakawa K: Histone deacetylase inhibitor,
trichostatin a, increases the chemosensitivity of anticancer drugs in
gastric cancer cell lines. Oncology reports 2006, 16(3):563-568.

37. Liu Y, He G, Wang Y, Guan X, Pang X, Zhang B: Mcm-2 is a therapeutic target
of trichostatin a in colon cancer cells. Toxicology letters 2013, 221(1):23-30.

38. Meng J, Zhang HH, Zhou CX, Li C, Zhang F, Mei QB: The histone
deacetylase inhibitor trichostatin a induces cell cycle arrest and
apoptosis in colorectal cancer cells via p53-dependent and
-independent pathways. Oncology reports 2012, 28(1):384-388.

39. Marks PA: Discovery and development of saha as an anticancer agent.
Oncogene 2007, 26(9):1351-1356.

40. Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T,
MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, Richardson S, Chu E,
Olgac S, Marks PA, Scher H, Richon VM: Phase I study of an oral histone
deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with
advanced cancer. Journal of clinical oncology 2005, 23(17):3923-3931.

41. Richon VM, Garcia-Vargas J, Hardwick JS: Development of vorinostat:
current applications and future perspectives for cancer therapy. Cancer
letters 2009, 280(2):201-210.

42. Marks PA, Breslow R: Dimethyl sulfoxide to vorinostat: development of
this histone deacetylase inhibitor as an anticancer drug. Nature
biotechnology 2007, 25(1):84-90.

43. Walton JD: HC-toxin. Phytochemistry 2006, 67(14):1406-1413.
44. Deubzer HE, Ehemann V, Westermann F, Heinrich R, Mechtersheimer G,

Kulozik AE, Schwab M, Witt O: Histone deacetylase inhibitor
helminthosporium carbonum (HC)-toxin suppresses the malignant
phenotype of neuroblastoma cells. International journal of cancer 2008,
122(8):1891-1900.

Wen et al. BMC Systems Biology 2015, 9(Suppl 5):S4
http://www.biomedcentral.com/1752-0509/9/S5/S4

Page 10 of 11

http://www.ncbi.nlm.nih.gov/pubmed/20168317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20168317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12606142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12606142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17687303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17186018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22889966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22889966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24112435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24112435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23335087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19359472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24795638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24795638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11380922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11380922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19846908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19846908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21772334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21772334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25176396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25176396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19383284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22963873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16771729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16771729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16771729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16383255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16383255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16383255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17202837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17202837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16904634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16904634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16904634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16865256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16865256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16865256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23770000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23770000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22552631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22552631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22552631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22552631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17322921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19181442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19181442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17211407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17211407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16839576?dopt=Abstract


45. Brusilow SW: Phenylacetylglutamine may replace urea as a vehicle for
waste nitrogen excretion. Pediatric research 1991, 29(2):147-150.

46. Iannitti T, Palmieri B: Clinical and experimental applications of sodium
phenylbutyrate. Drugs in R&D 2011, 11(3):227-249.

47. Millan O, Oppenheimer F, Brunet M, Vilardell J, Rojo I, Vives J, Martorell J:
Assessment of mycophenolic acid-induced immunosuppression: a new
approach. Clinical chemistry 2000, 46(9):1376-1383.

48. Dun B, Sharma A, Xu H, Liu H, Bai S, Zeng L, She JX: Transcriptomic
changes induced by mycophenolic acid in gastric cancer cells. American
journal of translational research 2013, 6(1):28-42.

49. Dun B, Sharma A, Teng Y, Liu H, Purohit S, Xu H, Zeng L, She JX:
Mycophenolic acid inhibits migration and invasion of gastric cancer cells
via multiple molecular pathways. PloS one 2013, 8(11):81702.

50. Weekes J, Lam AK, Sebesan S, Ho YH: Irinotecan therapy and molecular
targets in colorectal cancer: a systemic review. World journal of
gastroenterology 2009, 15(29):3597-3602.

51. Glimelius B: Benefit-risk assessment of irinotecan in advanced colorectal
cancer. Drug safety 2005, 28(5):417-433.

52. Hande KR: Etoposide: four decades of development of a topoisomerase
II inhibitor. European journal of cancer 1998, 34(10):1514-1521.

53. Patta A, Fakih M: First-line cisplatin plus etoposide in high-grade
metastatic neuroendocrine tumors of colon and rectum (MCRC NET):
review of 8 cases. Anticancer Research 2011, 31(3):975-978.

54. Passalacqua R, Bisagni G, Cocconi G, Boni C, Blasio BD, Ceci G: Cisplatin
and etoposide in advanced colorectal carcinoma. Annals of Oncology
1991, 2(9):687-688.

55. Mologni L, Cleris L, Magistroni V, Piazza R, Boschelli F, Formelli F,
Gambacorti-Passerini C: Valproic acid enhances bosutinib cytotoxicity in
colon cancer cells. Int J Cancer 2009, 124(8):1990-1996.

56. Kang H, Gillespie TW, Goodman M, Brodie SA, Brandes M, Ribeiro M,
Ramalingam SS, Shin DM, Khuri FR, Brandes JC: Long-term use of valproic
acid in US veterans is associated with a reduced risk of smoking-related
cases of head and neck cancer. Cancer 2014, 120(9):1394-1400.

57. Chen X, Wong P, Radany E, Wong JY: HDAC inhibitor, valproic acid,
induces p53-dependent radiosensitization of colon cancer cells.
Cancer Biother Radiopharm 2009, 24(6):689-699.

58. Venkataramani V, Rossner C, Iffland L, Schweyer S, Tamboli IY, Walter J,
Wirths O, Bayer TA: Histone deacetylase inhibitor valproic acid inhibits
cancer cell proliferation via down-regulation of the alzheimer amyloid
precursor protein. J Biol Chem 2010, 285(14):10678-10689.

59. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM: Intracellular
unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA
2000, 97(21):11280-11285.

60. Monjazeb AM, High KP, Connoy A, Hart LS, Koumenis C, Chilton FH:
Arachidonic acid-induced gene expression in colon cancer cells.
Carcinogenesis 2006, 27(10):1950-1960.

61. WHO: WHO model lists of essential medicines: Technical report. 2013
[http://www.who.int/medicines/publications/essentialmedicines/en/index.
html], Accessed 28 May 2015.

62. Gisbert JP, Calvet X: Review article: rifabutin in the treatment of
refractory helicobacter pylori infection. Alimentary Pharmacology &
Therapeutics 2012, 35(2):209-221.

63. Selby W, Pavli P, Crotty B, Florin T, Radford-Smith G, Gibson P, Mitchell B,
Connell W, Read R, Merrett M, Ee H, Hetzel D: Two-year combination
antibiotic therapy with clarithromycin, rifabutin, and clofazimine for
Crohn’s disease. Gastroenterology 2007, 132(7):2313-2319.

64. Chamberlin W: Importance of the Australian Crohn’s disease antibiotic
study. Gastroenterology 2007, 133(5):1744-1745.

doi:10.1186/1752-0509-9-S5-S4
Cite this article as: Wen et al.: Connectivity mapping using a combined
gene signature from multiple colorectal cancer datasets identified
candidate drugs including existing chemotherapies. BMC Systems Biology
2015 9(Suppl 5):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wen et al. BMC Systems Biology 2015, 9(Suppl 5):S4
http://www.biomedcentral.com/1752-0509/9/S5/S4

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/2014149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2014149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24349619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24349619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15853443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15853443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9893622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9893622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21498724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21498724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21498724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1742225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1742225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19123474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19123474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24664792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24664792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24664792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20025549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20025549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20145244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20145244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20145244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11005842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11005842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16704987?dopt=Abstract
http://www.who.int/medicines/publications/essentialmedicines/en/index.html
http://www.who.int/medicines/publications/essentialmedicines/en/index.html
http://www.ncbi.nlm.nih.gov/pubmed/22129228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22129228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17570206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17983827?dopt=Abstract

	Abstract
	Background
	Results

	Introduction
	Methods
	Datasets: Samples and genes selection
	Data processing and analysis
	Ranking method
	Gene signature progression procedure

	Results
	Significant genes result
	Significant drugs result

	Discussions
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

