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Abstract

Background: Dynamical models used in systems biology involve unknown kinetic parameters. Setting these
parameters is a bottleneck in many modeling projects. This motivates the estimation of these parameters from
empirical data. However, this estimation problem has its own difficulties, the most important one being strong
ill-conditionedness. In this context, optimizing experiments to be conducted in order to better estimate a system’s
parameters provides a promising direction to alleviate the difficulty of the task.

Results: Borrowing ideas from Bayesian experimental design and active learning, we propose a new strategy for
optimal experimental design in the context of kinetic parameter estimation in systems biology. We describe
algorithmic choices that allow to implement this method in a computationally tractable way and make it fully
automatic. Based on simulation, we show that it outperforms alternative baseline strategies, and demonstrate the
benefit to consider multiple posterior modes of the likelihood landscape, as opposed to traditional schemes based
on local and Gaussian approximations.

Conclusion: This analysis demonstrates that our new, fully automatic Bayesian optimal experimental design
strategy has the potential to support the design of experiments for kinetic parameter estimation in systems biology.

Keywords: Systems biology, Kinetic parameter estimation, Active learning, Bayesian experimental design
Background
Systems biology emerged a decade ago as the study of
biological systems where interactions between relatively
simple biological species generate overall complex phe-
nomena [1]. Quantitative mathematical models, coupled
with experimental work, now play a central role to
analyze, simulate and predict the behavior of biological
systems. For example, ordinary differential equation-
(ODE) based models, which are the focus of this work,
have proved very useful to model numerous regulatory,
signaling and metabolic pathways [2–4], including for
example the cell cycle in budding yeast [5], the regula-
tory module of nuclear factor κB (NF-κB) signaling
pathway [6, 7], the MAP kinase signaling pathways [8]
or the caspase function in apoptosis [9].
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Such dynamical models involve unknown parameters,
such as kinetic parameters, that one must guess from
prior knowledge or estimate from experimental data in
order to analyze and simulate the model. Setting these
parameters is often challenging, and constitutes a bottle-
neck in many modeling project [3, 10]. On the one hand,
fixing parameters from estimates obtained in vitro with
purified proteins may not adequately reflect the true ac-
tivity in the cell, and is usually only feasible for a handful
of parameters. On the other hand, optimizing parame-
ters to reflect experimental data on how some observ-
ables behave under various experimental conditions is
also challenging, since some parameters may not be
identifiable, or may only be estimated with a large errors,
due to the frequent lack of systematic quantitative mea-
surements covering all variables involved in the system;
many authors found, for example, that finding parame-
ters to fit experimental observations in nonlinear models
is a very ill-conditioned and multimodal problem, a
phenomenon sometimes referred to as sloppiness [11–17],
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a concept closely related to that of identifiability in system
identification theory [18, 19], see also [20] for a recent re-
view. When the system has more than a few unknown pa-
rameters, computational issues also arise to efficiently
sample the space of parameters [21, 22], which has been
found to be very rugged and sometimes misleading in the
sense that many sets of parameters that have a good fit to
experimental data are meaningless from a biological point
of view [23].
Optimizing the experiments to be conducted in order

to alleviate non-identifiabilities and better estimate a sys-
tem’s parameters therefore provides a promising direc-
tion to alleviate the difficulty of the task, and has already
been the subject of much research in systems biology
[20, 24]. Some authors have proposed strategies involv-
ing random sampling of parameters near the optimal
one, or at least coherent with available experimental ob-
servations, and systematic simulations of the model with
these parameters in order to identify experiments that
would best reduce the uncertainty about the parameters
[25–27]. A popular way to formalize and implement this
idea is to follow the theory of Bayesian optimal experi-
mental design (OED) [28, 29]. In this framework, ap-
proximating the model by a linear model (and the
posterior distribution by a normal distribution) leads to
the well-known A-optimal [30, 31] or D-optimal [32–36]
experimental designs, which optimize a property of the
Fisher information matrix (FIM) at the maximum likeli-
hood estimator. FIM-based methods have the advantage
to be simple and computationally efficient, but the draw-
back is that the assumption that the posterior probability
is well approximated by a unimodal, normal distribution
is usually too strong. To overcome this difficulty at the ex-
pense of computational burden, other methods involving
a sampling of the posterior distribution by Monte-Carlo
Markov chain (MCMC) techniques have also been pro-
posed [37, 38]. When the goal of the modeling approach
is not to estimate the parameters per se, but to understand
and simulate the system, other authors have also consid-
ered the problem of experimental design to improve the
predictions made by the model [39–41], or to discriminate
between different candidate models [42–45].
In this work we propose a new general strategy for

Bayesian OED, and study its relevance for kinetic param-
eter estimation in the context of systems biology. As op-
posed to classical Bayesian OED strategies which select
the experiment that most reduces the uncertainty in par-
ameter estimation, itself quantified by the variance or
the entropy of the posterior parameter distribution, we
formulate the problem in a decision-theoretic framework
where we wish to minimize an error function quantify-
ing how far the estimated parameters are from the true
ones. For example, if we focus on the squared error be-
tween the estimated and true parameters, our methods
attempts to minimize not only the variance of the esti-
mates, as in standard A-optimal designs [30, 31], but
also a term related to the bias of the estimate. This idea
is similar to an approach that was proposed for active
learning [46], where instead of just reducing the size of
the version space (i.e., the amount of models coherent
with observed data) the authors propose to directly
optimize a loss function relevant for the task at hand.
Since the true parameter needed to define the error
function is unknown, we follow an approach similar to
[46] and average the error function according to the
current prior on the parameters. This results in a
unique, well-defined criterion that can be evaluated and
used to select an optimal experiment.
In the rest of this paper, we provide a rigorous deriv-

ation of this criterion, and discuss different computa-
tional strategies to evaluate it efficiently. The criterion
involves an average over the parameter space according
to a prior distribution, for wich we designed an explor-
ation strategy that proved to be efficient in our experi-
ments. We implemented the criterion in the context of
an iterative experimental design problem, where a suc-
cession of experiments with different costs is allowed
and the goal is to reach the best final parameter estima-
tion given a budget to be spent, a problem that was
made popular by the DREAM 6 and DREAM 7 Network
Topology and Parameter Inference Challenge [47–49].
We demonstrate the relevance of our new OED strategy
on a small simulated network in this context, and illus-
trate its behavior on the DREAM7 challenge. The
method is fully automated, and we provide an R package
to reproduce all simulations.

Methods
A new criterion for Bayesian OED
In this section we propose a new, general criterion for
Bayesian OED. We consider a system whose behavior
and observables are controlled by an unknown param-
eter θ∗ ∈ Θ ⊂ ℝp that we wish to estimate. For that
purpose, we can design an experiment e ∈ ε, which in
our application will include which observables we ob-
serve, when, and under which experimental conditions.
The completion of the experiment will lead to an obser-
vation o, which we model as a random variable gener-
ated according to the distribution o ~ P(o| θ∗; e). Note
that although θ∗ is unknown, the distribution P(o| θ; e) is
supposed to be known for any θ and e, and amenable to
simulations; in our case, P(o| θ; e) typically involves the
dynamical equations of the system if the parameters are
known, and the noise model of the observations.
Our goal is to propose a numerical criterion to quan-

tify how “good” the choice of the experiment e is for the
purpose of evaluating θ∗. For that purpose, we assume
given a loss function ℓ such that ℓ(θ, θ∗) measures the
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loss associated to an estimate θ when the true value is
θ∗. A typical loss function is the squared Euclidean dis-
tance ℓ(θ, θ∗) = ‖θ − θ∗‖2, or the squared Euclidean
distance in after a log transform for positive parameters

ℓðθ; θ�Þ ¼ Pp
i¼1 logðθi=θ�i Þ2 . We place ourselves in a

Bayesian setting, where instead of a single point estimate
the knowledge about θ∗ at a given stage of the analysis is
represented by a probability distribution π over Θ. The
quality of the information it provides can be quantified
by the average loss, or risk:

Eθ�π θð Þ ℓ θ; θ�ð Þ ¼
Z

ℓ θ; θ�ð Þ π θð Þ dθ:

Once we choose an experiment e and observe o, the
knowledge about θ∗ is updated and encoded in the pos-
terior distribution

P θjo; eð Þ ¼ P ojθ; eð Þπ θð ÞR
θ0 P ojθ0

; e
� �

π θ
0� �
dθ

0 ; ð1Þ

whose risk is now:

Eθ�P θjo;eð Þ ℓ θ; θ�ð Þ
¼

Z

θ
ℓ θ; θ�ð Þ P ojθ; eð Þπ θð ÞR

θ0 P ojθ0
; e

� �
π θ

0� �
dθ

0 dθ:

The above expression is for a particular observation o.
This observation is actually generated according to
P(o| θ; e). Accordingly, the average risk of the experi-
ment e (if the true parameter is θ*) is:

Eo�P o θ�j ;eð ÞEθ�P θ o;ejð Þ ℓ θ; θ�ð Þ:

Finally, θ∗ being unknown, we average the risk by tak-
ing account of the current state of knowledge, and thus
according to π. The expected risk associated to the
choice of e when the current knowledge about θ∗ is
encoded in the distribution π is thus:

R e;πð Þ
¼ Eθ0�π θ

0ð ÞEo�P o θ
0
;ejð ÞEθ�P θ o;ejð Þ ℓ θ; θ

0� �

¼
Z

θ;θ0
ℓ θ; θ

0� � Z

o

P o θ; ejð Þπ θð ÞP o θ
0
; e

���
� �

π θ
0� �

R
θ} P o θ}; e

��� �
π θ}
� �

dθ}
dθ dθ

0
:

ð2Þ
The expected risk R(e; π) of a candidate experiment

e given our current estimate of the parameter distri-
bution π is the criterion we propose in order to as-
sess the relevance of performing e. In other words,
given a current estimate π, we propose to select the
best experiment to perform as the one that minimizes
R(e; π). We describe in the next section more pre-
cisely how to use this criterion in the context of
sequential experimental design where each experiment
has a cost.
Note that the criterion R(e; π) is similar but different

from classical Bayesian OED criteria, like the variance
criterion used in A-optimal design. Indeed, taking for
example the square Euclidean loss as loss function
ℓ(θ, θ∗) = ‖θ − θ∗‖2, and denoting by πe the mean
posterior distribution that we expect if we perform experi-
ment e, standard A-optimal design tries to minimize the
variance of πe, while our criterion focuses on:

Eθ�πeℓ θ; θ�ð Þ ¼ Eθ�πe θ½ �k −θ� 2
�� þ Var πeð Þ:

In other words, our criterion attempts to control both
the bias and the variance of the posterior distribution,
while standard Bayesian OED strategies only focus on
the variance terms. While both criteria coincide with un-
biased estimators, there is often no reason to believe that
the estimates used are unbiased.

Sequential experimental design
In sequential experimental design, we sequentially
choose an experiment to perform, and observe the
resulting outcome. Given the past experiments e1,..., eκ
and corresponding observations o1,..., oκ, we therefore
need to choose what is the best next experiment eκ + 1 to
perform, assuming in addition that each possible experi-
ment e ∈ ε has an associated cost Ce and we have a
limited total budget to spend.
We denote by πκ the distribution on Θ representing

our knowledge about θ∗ after the κ-th experiment and
observation, with π0 representing the prior knowledge
we may have about the parameters before the first ex-
periment. According to Bayes’ rule (1), the successive
posteriors are related to each other according to:

πiþ1 θð Þ ¼ P oiþ1 θ; eiþ1jð Þπi θð ÞR
θ0P oiþ1 θ

0
; eiþ1

��� �
πi θ

0� �
dθ

0 :

Although a global optimization problem could be
written to optimize the choice of the κ-th experiment
based on possible future observations and total budget
constraint, we propose a simple, greedy formulation
where at each step we choose the experiment that most
decreases the estimation risk per cost unit. If the cost
of all experiments were the same, this would simply
translate to:

eκþ1 ¼ arg min
e∈ε

R e;πκð Þ:

To take into account the different costs associated
with different experiments, we consider as a baseline the
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mean risk when the knowledge about θ∗ is encoded in a
distribution π over Θ:

R πð Þ ¼ Eθ�π θð ÞEθ0�π θ
0ð Þℓ θ; θ

0� �
;

and choose the experiment that maximally reduces the
expected risk per cost unit according to:

eκþ1 ¼ arg max
e∈ε

R πκð Þ−R e;πκð Þ
Ce

: ð3Þ

Evaluating the risk
The expected risk of an experiment R(e; π) (2) in-
volves a double integral over the parameter space and
an integral over the possible observations, a challen-
ging setting for practical evaluation. Since no analyt-
ical formula can usually be derived to compute it
exactly, we now present a numerical scheme that we
found efficient in practice. Since the distribution πκ
over the parameter space after the κ-th experiment
cannot be manipulated analytically, we resort on sam-
pling to approximate it and estimate the integrals by
Monte-Carlo simulations.
Let us suppose that we can generate a sample θ1,..., θN

distributed according to π. Obtaining such a sample
itself requires careful numerical considerations dis-
cussed in the next section, but we assume for the
moment that it can be obtained and show how we
can estimate R(e; π) from it for a given experiment e.
For that purpose, we write

wij eð Þ ¼
Z

o

P o θi; ejð ÞP o θ j; e
��� �

PN
κ¼1P o θκ ; ejð Þ do

for 0 ≤ i, j ≤N, as a discrete estimate of the second inte-
gral in Eq. (2). Since fθigNi¼1 are independantly drawn
from π the prior terms disappear. Moreover, the de-
nominator is a discretization of the denominator in
Eq. (2), and the likelihood P is supposed to be given.
We have the standard estimate of (2) by an empirical
average:

RN e;πð Þ ¼ 1

N2

XN

i; j¼1

ℓ θi; θ j
� �

wij eð Þ: ð4Þ

We see that the quantity wij(e) measures how simi-
lar the observation profiles are under the two alter-
natives θi and θj. A good experiment produces
dissimilar profiles and thus low values of wij(e) when
θi and θj are far appart. The resulting risk is thus re-
duced accordingly.
For each i and j, the quantity wij(e) can in turn be esti-

mated by Monte-Carlo simulations. For each θi, a
sample of the conditional distribution P(o| θi; e), denoted
by oiuðu ¼ 1;⋯;MÞ is generated. The corresponding
approximation is:

wM
ij eð Þ ¼ 1

M

XM

u¼1

P oiu θ j; e
��� �

PN
κ¼1P oiu θκ; ej� � ; ð5Þ

which can be interpreted as a weighted likelihood of the
alternative when the observation is generated according
to θi.
In most settings, generating a sample oiu involves run-

ning a deterministic model, to be performed once for
each θi, and degrading the output according to a noise
model independently for each μ. In our case, we used
the solver proposed in [50] provided in the package [51]
to simulate the ODE systems. Thus, a large number M
can be used if necessary at minimal cost. Based on these
samples, the approximated weights wM

ij can be computed

from (5), from which the expected risk of experiment e
can be derived from (4).
Note that an appealing property of this scheme is

that the same sample θi can be used to evaluate all
experiments. We now need to discuss how to obtain
this sample.

Sampling the parameter space
Sampling the parameter space according to πκ, the pos-
terior distribution of parameters after the κ-th experi-
ment, is challenging because the likelihood function can
exhibit multi-modality, plateaus and abrupt changes as
illustrated in Fig. 1. Traditional sampling techniques
tend to get stuck in local optima, not accounting for the
diversity of high likelihood areas of the parameter space
[52]. In order to speed up the convergence of sampling
algorithm to high posterior density regions, we imple-
mented a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton optimization algorithm using finite differ-
ence approximation for gradient estimation [53] in order
to identify several modes of the posterior distribution,
and used these local maxima as initial values for a Me-
tropolis Hastings sampler, combining isotropic Gaussian
proposal and single parameter modifications [52]. We
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Fig. 1 Log likelihood surface. Log likelihood surface for
parameters living on a restricted area of a two dimensional plane.
For clarity, scale is not shown. Areas with low log-likelihood
correspond to dynamics that do not fit the data at all, while areas
with high log-likelihood fit the data very well. The surface shows
multi-modality, plateaus and abrupt jumps which makes it difficult
to sample from this density. When parameters do not live on a
plane, these curses have even higher effect.

Pauwels et al. BMC Systems Biology (2014) 8:102 Page 5 of 11
then use a Gaussian mixture model approximation to es-
timate a weighting scheme of in order to account for the
initialization process when recombining samples from
different modes. Annex B, given in the Additional file 1
provides computational details for this procedure.
The method described in algorithm 1 is independant

of the sampling scheme used. However, convergence of
posterior samples is essential to ensure a good behaviour
of the method. First, it is known that improper (or “flat”)
priors may lead to improper posterior distributions
when the model contains non identifiabilities. Such is-
sues should be avoided since MCMC based sampling
schemes are known not to converge in these cases.
Therefore, proper prior distributions are essential in this
context and improper priors should not be used in order
to avoid improper posteriors. The second important
element for posterior samples is numerical convergence
of the sampling scheme, usually guaranteed asymptotic-
ally. Fine tuning parameters that drive the scheme is ne-
cessary to ensure that one is close to convergence in a
reasonable amount of time. To check appropriate sam-
pling behaviour, we use a graphical heuristic. We draw
ten different samples from the same posterior distribu-
tion, using different initialization seeds. For each model
parameter, we compare the dispersion within each
sample to the total dispersion obtained by concatenating
the ten samples. This value should be close to one. Such
an heuristic can be used to tune parameters of the
sampler, such as sample size or proposal distribution.
More details and numerical results are given in Additional
file 1: Annex B.

Enforcing regularity through the prior distribution
The prior distribution π0 plays a crucial role at early
stages of the design, as it can penalize parameters lead-
ing to dynamical behaviors that we consider unlikely. In
addition to a large variance log normal prior, we consid-
ered penalizing parameters leading to non smooth time
trajectories. This is done by adding to the prior log dens-
ity a factor that depends on the maximum variation of
time course trajectories as follows. To each parameter
value θ are associated trajectories, Yi,t, which represent
concentration values of the i-th species at time t. In the
evaluation of the log prior density at θ, we add a term
proportional to

max
i;t

Y i;tþ1−Y i;t
� �2

:

The advantage of this is twofold. First, it is reasonable
to assume that variables we do not observe in a specific
design vary smoothly with time. Second, this penaliza-
tion allows to avoid regions of the parameter space cor-
responding to very stiff systems, which are poor
numerical models of reality, and which simulation are
computationally demanding or simply make the solver
fail. This penalty term is only used in the local
optimization phase not during the Monte Carlo explor-
ation of the posterior. The main reason for adopting
such a scheme is numerical stability.
The choice of prior parameters directly affects the

posterior distribution, especially when a low amount of
data is available. In our experiments, the prior is chosen
to be log-normal with large variance. This allows to
cover a wide range of potential physical values for each
parameter (from 10−9 to 109). The weight of the regular-
ity enforcing term has also to be determined. Since the
purpose is to avoid regions corresponding to numerically
unstable systems, we chose this weight to be relatively
small compared to the likelihood term. In practical ap-
plications, parameters have to be chosen by considering
the physical scale of quantities to be estimated. Indeed, a
wrong choice of hyper parameter leads to very biased es-
timates at the early stages of the design.

Results and discussion
In silico network description
In order to evaluate the relevance of our new sequen-
tial Bayesian OED strategy in the context of systems
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biology, we test it on an in silico network proposed
in the DREAM7 Network Topology and Parameter
Inference Challenge which we now describe [49]. The
network, represented graphically in Fig. 2, is com-
posed of 9 genes and its dynamics is governed by or-
dinary differential equations representing kinetic laws
involving 45 parameters. Promoting reactions are rep-
resented by green arrows and inhibitory reactions are
depicted by red arrows. For each of the 9 genes, both
protein and messenger RNA are explicitly modelled
and therefore the model contained 18 continuous var-
iables. Promoter strength controls the transcription
reaction and ribosomal strength controls the protein
synthesis reaction. Decay of messenger RNA and pro-
tein concentrations is controlled through degradation
rates. A complete description of the underlying differ-
ential equations is found in Additional file 2: Annex A.
The complete network description and implementa-
tions of integrators to simulate its dynamics are avail-
able from [49].
Various experiments can be performed on the network

producing new time course trajectories in unseen ex-
perimental conditions. An experiment consists in choos-
ing an action to perform on the system and deciding
which quantity to observe. The possible actions are

� do nothing (wild type);
� delete a gene (remove the corresponding species);
� knock down a gene (increase the messenger RNA

degradation rate by ten folds);
Fig. 2 Gene network for DREAM7 Challenge. Gene network for DREAM7
reactions are represented by green arrows and inhibitory reactions are dep
� decrease gene ribosomal activity (decrease the
parameter value by 10 folds).

These actions are coupled with 38 possible observable
quantities

� messenger RNA concentration for all genes, at two
possible time resolutions (2 possible choices);

� protein concentration for a single pair of proteins, at
a single resolution (resulting in 9 * 8/2 = 36 possible
choices).

Purchasing data consists in selecting an action and an
observable quantities. In addition, it is possible to esti-
mate the constants (binding affinity and hill coefficient)
of one of the 13 reactions in the system. Different exper-
iments and observable quantities have different costs,
the objective being to estimate unknown parameters as
accurately as possible, given a fixed initial credit budget.
The cost of the possible experiments are described in
Table S1 in Additional file 2: Annex A.
For simulation purposes, we fix an unknown param-

eter value θ* to control the dynamics of the systems, and
the risk of an estimator is defined in terms of the loss

function ℓðθ; θ�Þ ¼ Pp
i¼1 logðθi; θ�i Þ2.

The noise model used for data corruption is heterosce-
dastic Gaussian: given the true signal y ∈ ℝ+, the cor-
rupted signal has the form y + z1 + z2, where z1 and z2
are centered normal variables with standard deviation
0.1 and (0.2 × y), respectively.
Network Topology and Parameter Inference Challenge. Promoting
icted by red arrows.
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Performance on a 3-gene subnetwork
In order to assess the performance of our sequential OED
strategy in an easily reproducible setting, we first compare
it to other strategies on a small network made of 3 genes.
We take the same architecture as in Fig. 2, only consider-
ing proteins 6, 7 and 8. The resulting model has 6 vari-
ables (the mRNA and protein concentrations of the three
genes) whose behavior is governed by 9 parameters. There
are 50 possible experiments to choose from for this sub
network: 10 perturbations (wildtype and 3 perturbations
for each gene) and 5 observables (mRNA concentrations
at two different time resolutions and each protein concen-
tration at a single resolution). We compare three ways to
sequentially choose experiments in order to estimate the 9
unknown parameters: (i) our new Bayesian OED strategy,
including the multimodal sampling of parameter space,
(ii) the criterion proposed in eq. (13) in [27] together with
our posterior exploration strategy, and (iii) a random
experimental design, where each experiment not done
yet is chosen with equal probability. The comparison of
(i) and (ii) is meant to compare our strategy with a cri-
terion that proved to be efficient in a similar setting.
The comparison to (iii) is meant to assess the benefit, if
any, of OED for parameter estimation in systems biology.
Since all methods involve randomness, we repeat each ex-
periment 10 times with different pseudo-random number
generator seeds.
The results are presented in Fig. 3, where we show, for

each of the three methods, the risk of the parameter esti-
mation as a function of budget used. Here the risk is de-
fined as the loss between the true parameter θ∗ (unknown
Fig. 3 Comparison of risk evolution between different strategies. Com
subnetwork. The figure shows the true risk at each step of the procedure, i
underlying parameter which is unknown during the process. The risk is com
represent 10 repeats of the design procedure given the same initial credit
represents our strategy, the second panel implements the criterion of the b
consists in choosing experiments randomly.
to the method) and the estimated mean of the posterior
distribution. After κ rounds of experimental design, one
has access to κ experimental datasets which define a pos-

terior distribution πκ from which a sample fθκi gNi¼1 is
drawn. The quantities displayed in Fig. 3 are computed as

Eθ�πκ θð Þ ℓ θ; θ�ð Þ½ �≃ 1
N

Xn

i¼1

ℓ θκi ; θ
�� �
;

which would be the true risk that one would have to sup-
port. We first observe that the random sampling strategy
has the worst risk among the three strategies, suggesting
that optimizing the experiments to be made for parameter
estimation outperforms a naive random choice of experi-
ments. Second, and more importantly, the comparison be-
tween the first and second panel suggests that, given the
same parameter space exploration heuristic, our proposed
strategy outperforms the criterion given in [27]. It is worth
noting that this criterion is part of a strategy that per-
formed best in DREAM6 parameter estimation challenge.
Although a large part of their design procedure involved
human choice which we did not implement, we repro-
duced the part of their procedure that could be automa-
tised. A compagnon of Fig. 3 is given in Figure S3 in
Additional file 1: Annex B where we illustrate based on
parameter samples how lacks of identifiability manifest
themselves in a Bayesian context and how the design
strategy alleviates them in terms of posterior distribution.
In summary, this small experiment validates the relevance
of our Bayesian OED strategy.
parison of risk evolution between different strategies on a
.e. the approximate posterior distribution is compared to the true
puted at the center of the posterior sample. The different lines

budget and the points represent experiment purchase. The first panel
est performing team on DREAM6 challenge while random design
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Results on the full DREAM7 network
To illustrate the behavior of our OED strategy in a more
realistic context, we then apply it to the full network of
Fig. 2 following the setup of the DREAM7 challenge. At
the beginning of the experiment, we already have at
hand low resolution mRNA time courses for the wild
type system. The first experiments chosen by the method
are wild-type protein concentration time courses for all
genes. The detailed list of purchased experiments is found
Table S2 in Additional file 2: Annex A. This makes sense
since we have enormous uncertainty about proteins time
courses, given that we do not know anything about them.
Once these protein time series are purchased, the sugges-
tion for the next experiment to carry out is illustrated in
Table 1. Interestingly, the perturbations with the lowest
risk are related to gene 7 which is on the top of the cas-
cade (see Fig. 2). Moreover it seemed obvious from Table
1 that we have to observe protein 8 concentration. Indeed,
Fig. 4 shows that there is a lot of uncertainty about protein
8 evolution when we remove gene 7.
Moreover, our criterion determines that it is better to

observe protein 3 than protein 5, which makes sense
since the only protein which affects protein 5 evolution
is protein 8 (see Fig. 2). Therefore uncertainty about
protein 5 time course is tightly linked to protein 8 time
course, and observing protein 3 brings more information
than observing protein 5. This might not be obvious
when looking at the graph in Fig. 4 and could not have
been foreseen by a method that considers uncertainty
about each protein independently. At this point, we pur-
chase protein 3 and 8 time courses for gene 7 deletion
experiment and highlight in red in Fig. 4 the profiles of
proteins 3 and 8 obtained from the system.
In addition to parameter estimation, one may be in-

terested in the ability of the model with the inferred
Table 1 Estimation of the expected risk

Risk Cost Experiment Observe proteins

771 1200 Delete gene 7 3–8

1196 850 Decrease gene 7 RBS activity 3–8

1290 750 Knock down gene 7 3–8

1957 850 Decrease gene 7 RBS activity 3–7

2254 850 Decrease gene 7 RBS activity 7–8

2554 1200 Delete gene 9 3–8

2867 750 Knock down gene 7 8–9

4647 1200 Delete gene 7 8–9

4798 850 Decrease gene 7 RBS activity 8–9

4928 850 Decrease gene 7 RBS activity 5–8

Estimation of the expected risk at a certain stage of the experimentation, ten
lowest values. There is consistency in the type of experiment to be conducted
(targeting gene 7 which expression impacts on a big part of the network) and
the quantities to measure (protein 8 almost all the time and protein 3 quite
often). Figure 4 illustrate this point further.
parameters to correctly simulate time series under differ-
ent experimental conditions. Figure 5 represents a sam-
ple from the posterior distribution after all credits have
been spent (unseen experiment description is given in
Table S3 Additional file 2: Annex A). Both parameter
values and protein time course for the unseen experi-
ment are presented.
Some parameters, like p_degradation_rate or pro3_

srenght, clearly concentrate around a single value while
others, like pro1_strength or pro2_strength, have very
wide ranges with multiple accumulation points. Despite
this variability in parameter values, the protein time
course trajectories are very similar. It appears that pro-
tein 5 time course is less concentrated than the two
others. This is due to the hetroscedasticity of the noise
model which was reflected in the likelihood. Indeed, the
noise model is Gaussian with standard deviation increas-
ing with the value of the corresponding concentration.
Higher concentrations are harder to estimate due to lar-
ger noise standard deviation.

Conclusion
Computational systems biology increasingly relies on the
heavy use of computational resources to improve the un-
derstanding of the complexity underlying cell biology. A
widespread approach in computational systems biology
is to specify a dynamical model of the biological process
under investigation based on biochemical knowledge,
and consider that the real system follows the same
dynamics for some kinetic parameter values. Recent re-
ports suggest that this has benefits in practical applica-
tions (e.g. [54]). Systematic implementations of the
approach requires to deal with the fact that most kinetic
parameters are often unknown, raising the issue of esti-
mating these parameters from experimental data as effi-
ciently as possible. An obvious sanity check is to recover
kinetic parameters from synthetic data where dynamic
and noise model are well specified, which is already
quite a challenge.
In this paper we proposed a new general Bayesian

OED strategy, and illustrated its relevance on an in silico
biological network. The method takes advantage of the
Bayesian framework to sequentially choose experiments
to be performed, in order to estimate these parameters
subject to cost constraints. The method relies on a single
numerical criterion and does not depend on a specific
instance of this problem. This is in our opinion a key
point in order to reproducibly be able to deal with large
scale networks of size comparable to of a cell for ex-
ample. Experimental results suggest that the strategy
has the potential to support experimental design in
systems biology.
As noted by others [11, 12, 15–17], the approach fo-

cusing on kinetic parameter estimation is questionable.



Fig. 4 Trajectories from posterior sample. Corresponds to Table 1 figures. We plot trajectories from our posterior sample (protein 8
concentration was divided by 2 and we do not plot concentrations higher than 100). The quantities with the highest variability are protein 8 and
3 concentrations. This is consistent with the estimated risks in Table 1. There is quite a bit of uncertainty in protein 5 concentration, however this
is related to protein 8 uncertainty as protein 8 is an inhibitor of protein 5. Moreover, mRNA concentration have much lower values and are not as
informative as proteins concentrations. Red dots shows the data we purchased for this experiment after seeing these curve and in accordance
with results in Table 1.
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Fig. 5 Comparison of parameter and trajectory variability. Comparison of parameter variability and time course trajectory variability. This is a
sample from the posterior distribution after spending all the credits in the challenge. The top of the figure shows parameter values on log scale,
while the bottom shows prediction of protein time courses for an unseen experiment. The range of some parameter values is very wide while all
these very different values lead to very similar protein time course predictions.
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We also give empirical evidence that very different par-
ameter values can produce very similar dynamical be-
haviors, potentially leading to non-identifiability issues.
Moreover, focusing on parameter estimation supposes
that the dynamical model represents the true underlying
chemical process. In some cases, this might simply be
false. For example, hypotheses underlying the law of
mass action are not satisfied in the gene transcription
process. However, simplified models might still be good
proxies to characterize dynamical behaviors we are inter-
ested in. The real problem of interest is often to repro-
duce the dynamics of a system in terms of observable
quantities, and to predict the system behavior for unseen
manipulations. Parameters can be treated as latent vari-
ables which impact the dynamics of the system but can-
not be observed. In this framework, the Bayesian
formalism described here is well suited to tackle the
problem of experimental design.
The natural continuity of this work is to adapt the

method to treat larger problems. This raises computa-
tional issues and requires to develop numerical methods
that scale well with the size of the problem. Sampling
strategies that adapt to the local geometry and to
multimodal aspects of the posterior, such as described
e.g. in [55, 56] are interesting directions to investigae
in this context. The main bottlenecks are the cost of
simulating large dynamical systems, and the need for
large sample size in higher dimension for accurate
posterior estimation. Posterior estimation in high di-
mensions is known to be hard and is an active sub-
ject of research. Although our Bayesian OED criterion
is independent of the model investigated, it is likely
that a good sampling strategy to implement may
benefit from specific tuning in order to perform well
on specific problem instances. As for reducing the
computational burden of simulating large dynamical
systems, promising research directions are parameter
estimation methods that do not involve dynamical
system simulation such as [57] or differential equation
simulation methods that take into account both par-
ameter uncertainty and numerical uncertainty such as
the probabilistic integrator of [58].
Additional files

Additional file 1: Annex B. Supplementary details regarding the
sampling strategy used in our numerical experiments. The note also
contains diagnosis information and marginal distribution samples to
illustrate the efficacy of the sampling strategy in the setting of this paper.
http://www.biomedcentral.com/1752-0509/supplementary/s12918-014-
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