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Abstract

Background: With recent increase in affordability and accessibility of high-performance computing (HPC), the use of
large stochastic models has become increasingly popular for its ability to accurately mimic the behavior of the
represented biochemical system. One important application of such models is to predict parameter configurations
that yield an event of scientific significance. Due to the high computational requirements of Monte Carlo simulations
and dimensionality of parameter space, brute force search is computationally infeasible for most large models.

Results: We have developed a novel parameter estimation algorithm—Stochastic Parameter Search for Events
(SParSE)—that automatically computes parameter configurations for propagating the system to produce an event of
interest at a user-specified success rate and error tolerance. Our method is highly automated and parallelizable. In
addition, computational complexity does not scale linearly with the number of unknown parameters; all reaction rate
parameters are updated concurrently at the end of each iteration in SParSE. We apply SParSE to three systems of
increasing complexity: birth-death, reversible isomerization, and Susceptible-Infectious-Recovered-Susceptible (SIRS)
disease transmission. Our results demonstrate that SParSE substantially accelerates computation of the parametric
solution hyperplane compared to uniform random search. We also show that the novel heuristic for handling
over-perturbing parameter sets enables SParSE to compute biasing parameters for a class of rare events that is not
amenable to current algorithms that are based on importance sampling.

Conclusions: SParSE provides a novel, efficient, event-oriented parameter estimation method for computing
parametric configurations that can be readily applied to any stochastic systems obeying chemical master equation
(CME). Its usability and utility do not diminish with large systems as the algorithmic complexity for a given system is
independent of the number of unknown reaction rate parameters.
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Background

Stochastic modeling of biochemical and ecological sys-
tems has become increasingly popular due to its ability
to represent system dynamics correctly at a detailed level,
especially when species are present at low population.
Deterministic models, on the other hand, are easier to
analyze, yet they may fail to capture even the average
behavior when the represented system exhibits nonlin-
earity [1] or is near extinction. Recent advancements in
cloud computing platforms [2,3] and GPU computing
[4-7] have significantly increased the affordability of com-
putational resources. This enables development and use
of stochastic algorithms that would have been deemed
computationally infeasible in the past. However, there is
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still a void in stochastic methods that can answer sci-
entifically interesting questions. One such application is
in determining reaction rate configurations that yield an
event of interest with a set success probability. Most
parameter estimation algorithms in stochastic chemical
kinetics setting take time-series data as an input and com-
pute a set of reaction rate parameters that most closely
reproduce the data. Methods used to determine these
reaction rate parameters include maximum likelihood
ratio [8-10], gradient decent [11], and moment closure
[12]. While these algorithms are useful in its own right,
scientists are often interested in knowing all parameter
combinations that yield a specific event of interest. For
gene regulatory models, knowledge of all pathways to
achieve a specific event, such as bistable transition of lac
operon in E. coli [13-15], may be used to guide laboratory
experiments. In epidemiological models, all intervention
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parameter combinations that achieve eradication can be
combined with econometrics in computing the most cost-
effective strategy for eradicating a disease [16]. To authors’
knowledge, no algorithm has been developed in stochastic
chemical kinetics setting that computes such parameter
combinations.

In this paper, we present Stochastic Parameter Search
for Events (SParSE) that finds a parametric hyperplane of
reaction rates conferring a user-specified event with pre-
scribed success rate and error tolerance. Our algorithm is
robust in that it accurately computes the solution hyper-
plane for low probability events as well as high probability
events. It is also trivial to parallelize the algorithm; ini-
tial parameter sets do not need to communicate with
each other to find the direction to the unknown solu-
tion hyperplane. Once the algorithm finds a point in the
solution hyperplane, the ratio between the initial and
final rates can be used as the biasing parameters by the
doubly weighted stochastic simulation algorithm (dwSSA)
[17] to compute the probability of observing the tar-
get event with its success rate under the original system
description. This allows calculation of the target event
probabilities under the original parameters as a powerful
side benefit of the algorithm. Lastly, the SParSE runtime
per parameter sample is of the same order as that of the
stochastic simulation algorithm (SSA), i.e., the algorithm
complexity is independent of the number of unknown
parameters for a given system. This is achieved by com-
bining a novel modification of dwSSA [17], Rubinstein’s
cross-entropy method [18], and exponential interpola-
tion of biasing parameters. This feature provides substan-
tial benefits when searching multi-dimensional parameter
space.

Methods

Doubly weighted stochastic simulation

We begin with a brief review of the dwSSA; detailed
derivation and applications can be found in Daigle et al.
[17]. Throughout this paper we assume a well-stirred sys-
tem at constant temperature with N species S, ..
and M reactions Ry, ...,Ry. The state of the system at
time ¢ is represented as X(¢) = [X3,...,Xn], where X;
is the population of species S;. Using the “direct method”
implementation of Gillespie’s Stochastic Simulation Algo-
rithm (SSA) [19], the system moves forward in time by
sequentially firing one of R;, j € {1,...,M]} reactions,
whose propensity at time ¢ is a;(X(¢)) and its sum ag =

SN

Zj/\il aj(X(?)). Here, the next reaction is chosen with a
categorical random variable ;' and the time to the next
reaction with an exponential random variable t. We also
assume that all trajectories are run until the smaller of the
final simulation time ¢ and the first time & is observed,
where £ is the event of interest. Denoting the stopping
time of a trajectory as 7, the probability of a complete

Page 2 of 17

trajectory | = (tl,j/l,...,tNT,jﬁvT) given X(0) = x¢
under SSA is as follows:

N7 @, (X (1)
_ N~ XENT 7., Ji T 7
Pssa (J) = 11 [aoo«a))e dux a))}
Ny
= [ [&X@pe X maz], M
i=1

with ¢; = Z;:l 77 and N7 the total number of reactions
fired in [0, T].

The dwSSA uses predilection functions to increase the
number of trajectories that reach &:

M
biX(t) = yjai(X(®), bo(X(®) =Y _ bi(X(®), (2)
j=1

where y; € R7 is a biasing parameter for R;. The probabil-
ity of the same trajectory J under the dwSSA is then given
by

Nt

Pawssa(J) = 1_[ |:bo(X(t,'))e_b(’(x(ti))”d‘fi %
i=1

by (X ()
bo(X(£:)

Nt
=11 [bj;(X(ti))e_b"(x(t"))”dri], 3)
i=1

and the bias incurred by using the predilection function is
corrected with

N7 aj,'(X(ti))e_ﬂO(X(ti))Ti
bj{ (X(ti))e_bo Xt

Wawssa () =

=
Nt

=11 [eXP {(bo(X(#)) — ao(X(21))) Ti} % (Vj;)_l]'
i=1

(4)

It is straightforward to confirm that the product of (3) and
(4) equals (1).

The Monte Carlo estimator for pg,ssa(xo,E;t), the
probability that the system reaches £ by time ¢ given the
initial state xg, is

N

o 1
Dawssa (X0, E;1) = N Z [Tginey Wawssa 0] (5)
i=1

where N is the total number of trajectories, J; repre-
sents the i simulated dwSSA trajectory, and Ijj,n¢) takes
a value of 1 if & is visited by J; and 0 otherwise. The
quantity in (5) can be interpreted as the weighted aver-
age of successful trajectories, i.e., trajectories reaching
&, where the weight is computed according to (4). A
good set of biasing parameters would yield successful



Roh and Eckhoff BMC Systems Biology 2014, 8:126
http://www.biomedcentral.com/1752-0509/8/126

trajectories with weights close to the true probability
and thus reduce variance in the probability estimator.
The dwSSA computes low variance biasing parameters
by minimizing cross entropy using a modified version
of Rubinstein’s multilevel cross-entropy method [17,18].
The advantage of minimizing cross entropy over mini-
mizing variance is that the former yields biasing param-
eters with a closed-form solution for (2) where the latter
does not. Having a closed-form solution is of practical
necessity, as the alternative would be to solve a large
set of nonlinear equations, significantly decreasing the
efficiency of the algorithm if not making the simulation
infeasible.

Following derivations presented in Daigle et al. [17], the
dwSSA biasing parameter for R; is computed as

1), 5 (-
0 > (desSA <]f ! 1)) X ”ij)
Vi = 1), (- N, -1 '
> (desSA(I§ ) p! 1))XZ;{:§ [ﬂj (X,( )(tik))fik])
(6)

where #;; is the total number of times reaction j fires
in the /™ trajectory, Z; iterates only over trajectories
reaching &, and [ is the stage index in multilevel cross-
entropy method. Computation for }3(1) terminates when
intermediate rare event reaches &, at which point we set
y =y

The objective of the dwSSA necessitates computation of
the likelihood ratio (4) as its probability estimator is with
respect to the initial reaction rates k), On the other hand,
the objective of SParSE is to compute a set of reaction rates
k* € RM* such that

1 N

Pe — N Z U xeenner ]| < €pes @)
-1

where Pg¢ is the desired probability of observing £ by time
t, Ii(x(t1k*))ney an indicator function for observing & dur-
ing ih trajectory, and ep, a user-specified absolute error
tolerance on Pg. Unlike the dwSSA where the biasing
parameters are updated each level of the multilevel cross-
entropy method according to (6), in SParSE reaction rates
are updated instead. We note that it is possible to use the
dwSSA Monte Carlo estimator (5) in (7) and update y®
instead of k. However unless k© is sufficiently close to
k*, the likelihood ratio (4) may become extremely small,
i.e., degenerate, and updating reaction rates avoids this
problem. We discuss the criteria for updating k in the
following section.

Multilevel cross-entropy method
The modification of multilevel cross-entropy method in
SParSE is similar to that of Ref [17]. However, there
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are three major differences between the multilevel cross-
entropy method employed by dwSSA and by SParSE: (i)
dwSSA only computes a single intermediate event & © and
the corresponding set of biasing parameters y© while
SParSE may compute multiple such quantities, (ii) SParSE
can calculate biasing parameters for initial reaction rates
that either over- or under-perturb the system with respect
to Pg. For an over-perturbed system, it applies inverse
biasing to reaction rates to convert £ from a “sure event”
to a “rarer event”, and (iii) dwSSA updates biasing param-
eters O while SParSE updates reaction rates k. The
following subsection explains the first two differences and
highlights how SParSE achieves the same time complex-
ity as dwSSA for computing quantities in (i). The next
subsection focuses on (iii) and its effect on simulation
details.

Concurrent computation of multiple intermediate events and
biasing parameters

In dwSSA, N trajectories in level [ of multilevel cross-
entropy method are run until either the final simulation
time £, or the first occurrence of & @ where £ is an
intermediate rare event chosen by the top [pNT1 trajecto-
ries that evolve farthest in the direction of £. Typical value
of p used in dwSSA is 0.01 for N = 10°, although any value
p € (0,1) can be used in theory [17]. The role of p can be
thought as a knob that controls the tradeoff between the
speed of convergence to £ and accuracy in p*. For p’ < p,
we get |€ — £O| < 1€ — £D), thus smaller values for p
can potentially drive the system toward £ faster. However
the number of trajectories reaching £ is less than the
number of trajectories reaching & O since [p'N] < [pNT.
Having fewer data to compute ;7(1) reduces the confidence
on the estimate, therefore it is advised to keep [pN] above
a set threshold (e.g;, 200) in practice. On the other hand,
larger value of p (e.g., p > 0.3) implies a less selective
intermediate rare event. The resulting biasing parameters
may not push the system closer to £, causing a failure in
convergence to the target event. In our experience, p <
0.2 and [pN] > 100 yield both reliable computation of
biasing parameters and acceptable convergence to £.

In order to determine &®, it is necessary to deter-
mine the direction of bias in addition to p. This is
done by grouping the initial state x¢ into two categories
according to its distance with respect to the event of
interest:

1 if f (x(t)) <&
Prype = — 1 otherwise, ®

where f (x (¢)) is an event function. Two requirements for
f (x(¢)) are that it takes x(£) as an input and can be used
to evaluate the distance between the current state and £
(i.e., it can be used to compute extreme values of each
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trajectory to determine the next intermediate event). The
value of ¢type indicates initial position of x(¢) with respect
to £ at t = 0. When ¢yype is equal to 1, maximum value of
f (x(¢)) in each trajectory is recorded, and N such values
are sorted in descending order at the end of the simula-
tion. The reasoning for this is that since f (x (fp)) < &,
we need to encourage higher f (x (¢)) values to get closer
to £. Similarly, minimum f (x (¢)) values are recorded and
sorted in ascending order when @iype is -1. For conve-
nience we refer to the sorted array of extreme f (x (¢))
values as vg, where k is the reaction rates used to generate
x (2).
We now define a SParSE probability estimator for &:

N

. 1
Dsparse(Xo0, k, 5 £) = N Z (L rxeimonney ] » ©
i=1

where f;(x(¢]k)) are event function evaluated with ith SSA
trajectory generated with reaction rates k and Ij,x((k))ne)
takes a value of 1 if f;(x(¢|k)) contains £ and O other-
wise. Once N trajectories are simulated, we can expect
one of the following outcomes: (a) the inequality in
(7) is satisfied, (b) psparse(x0, k, E;8) < (735 - 6735), or (c)
(Pe + €p;) < Psparse(x0,k, E; ).

In the first case, SParSE exits and returns k as a
successful output, i.e., a point in the solution hyperplane
(k = k*). In the second case, we need to choose extreme
values of f (x (¢)) evolving furthest to £, and we can view
& as a “rare event” as in the dwSSA. Thus intermediate
events and its respective biasing parameters are computed
iteratively, each time taking the system closer to £ with
success rate Pg. The last case corresponds to parame-
ter sets that “over-perturb” the system, as £ was reached
with probability greater than Pg. The method used to
determine an intermediate event in the classical multilevel
cross-entropy method cannot be applied here because
we do not want trajectories that produce extreme val-
ues of f (x (¢£)). However, the information gathered from
such trajectories can be used to quantify the behavior
we do not want to observe. We achieve this by collecting
the extreme values of f (x (¢)) as in case (b), except that
each SSA simulation is run until the final simulation time
without stopping when & is observed. Once intermediate
events are chosen and their corresponding biasing param-
eters are computed, we update j# reaction rate ki with
1/y;. This inverse biasing discourages over-perturbation
with respect to Pg. Algorithms 2 and 3 in Appendix B
of Additional file 1 contain pseudocode for (b) and (c),
respectively.

Unlike the multilevel cross-entropy method used by
dwSSA, where only one intermediate event is computed
in each level of multilevel CE method, SParSE may
choose multiple intermediate events. While it is not nec-
essary to compute multiple intermediate events to reach
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the solution hyperplane, doing so greatly improves algo-
rithm efficiency. The caveat here is that the efficiency
gain occurs only when the biasing parameters for the
multiple intermediate events are computed simultane-
ously. We start by describing the method SParSE uses to
choose multiple intermediate events, all of which can be
reached by N trajectories with sufficient frequency. This
is attained by choosing multiple values for p that is a func-
tion of the distance to the desired target event probability
Pe. Denoting the distance as §(k) = Pg — psparse(k),
we have two different methods for choosing p(5): one for
case (b) and the other for case (c). Handling of the two
cases differ, as the result of inverse biasing is not as obvi-
ous as the normal biasing for case (b) is. In normal biasing
strategy, updating intermediate reaction rates with a par-
ticular set of biasing parameters redistributes v such that
the corresponding intermediate event becomes the mode.
However, the inverse biasing operates on the heuristics
of discouraging over-perturbation without knowing the
exact effect on vg. Thus more conservative values for p are
used in (11) to compensate for this difference. Lastly, we
note that each of these cases can be detected by compar-
ing the sign of § to the value of ¢¢ype, where the equality
represents case (b).
For Sgn(‘S (k)) == ({btype

[0.005 0.01]  if 0.4 < |8
p(8) =1 [0.01 0050.1] if0.2<]§| <04 (10)
[0.05 0.1 0.2] otherwise
For Sgn(3 (k)) 5& ¢type
[0.01 0.015] if 0.4 < |§|
o) = {[0.050.10.15] if0.2 < 5| <0.4 (11)
(0.1 0.15 0.2] otherwise

As the distance to the target event decreases, SParSE
selects less extreme values for intermediate events and
vice versa. This reduces the risk of over- and under-
perturbations. We note that the number of elements in
p(8) does not necessarily correspond to the number of
intermediate events chosen. For example, elements corre-
sponding to positions [0.005 % N and [0.01 % N of vi
may be the same. We also note that a custom function
can be used to compute p to better suit a specific system.
However, the above default values work well for all exam-
ples presented in this paper. Lastly, N can be chosen as a
function of min (p) and ¢, where c is the minimum num-
ber of data points desired to reliably compute ¥, ie.,
N > ¢/ min (p).
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Once intermediate events are computed, they are sorted
in ascending order of its probability, i.e., Prob(¢ (1’1))
< ... < Prob(e"9), where q is the number of unique
intermediate events chosen at level /. We note that this
sorting is done automatically if elements of p are sorted in
ascending order, which (10, 11) are.

Now we describe how biasing parameters for all inter-
mediate events are computed concurrently in a single
ensemble of N simulations. In each simulation, we check
for £D, 1f D is observed, the statistics gathered up
to the time at which &% was reached are used to com-
pute 9. Then the trajectory continues its course of
simulation, this time checking for &7~ while keeping
the cumulative statistics. This process repeats until the
smaller of ¢, and the time at which gD s observed (i.e.,
all intermediate events are observed). When g == 1, this
method is identical to the one used by dwSSA. Although
a single trajectory runtime for ¢ > 1 is slightly longer
than the runtime for ¢ == 1, the additional resources
spent on concurrent computation is negligible compared
to the savings of (¢ — 1) - N simulations. We note that
this process yields biasing parameter sets that are corre-
lated because y ) is computed with a subset of data used
to compute y“*+1D . However, this correlation does not
affect the validity or the accuracy of the final output as
only one set is selected at each level to update the reac-
tion rates, the process for which we explain in the next
section.

Updating intermediate reaction rates
SParSE propagates the system towards the solution hyper-
plane by iteratively updating reaction rates during the
modified multilevel cross-entropy method. The update
process requires choosing one set of biasing parameters
from possibly many sets, where the set size is determined
by the number of unique intermediate events. The current
intermediate reaction rates are then multiplied element-
wise by the chosen set to produce the next intermediate
reaction rates. The criterion SParSE adopts is straight-
forward; at level [ it chooses the biasing parameter set
that, when multiplied to the current intermediate reaction
rates, takes the system closest to £ while preserving the
sign of6(k(g)),g =0,---,1

Without loss of generality, we define k) a5 the inter-
mediate reaction rates at an arbitrary level /. In order to
update the intermediate reaction rates for the next stage,
we evaluate how each candidate biasing parameter set
y &) performs with respect to the update criterion. We
define kWt a5

cur)

(cur) (L)
it _ ki
J k(cur) 1 (i) .
G- / Y otherwise

if sgn<8 (k(cur)» == Qtype
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where g is the number of unique intermediate events.
We recall that sgn(8 (k(cur))) # ¢rype corresponds to the

case when (Pg +€p;) < Psparse(xo, k'™, & 1), which

requires inverse biasing to reduce over-perturbation.
Starting with i = 1, we compute psparse(Xo, kntd) e, g,

If |psparse (k(i"t’i)) —Pgl < epg, then the algorithm

exits with k* = k%), Otherwise, we traverse through
available sets of biasing parameters to find min
r

(IA?SParSE(k(im'r)) < (Ps - ep£)> for sgn<8(k(cur))) ==
¢type  and m}flx ((775 + 6775) < fasparsg(k(im'r))) for

sgn<8 (k““”)) # Ptype. Since & &) are sorted in ascend-

ing order of its probability, Kintd g expected to produce
more extreme f (x(¢)) values than KWnHD Thys it is

not necessary to evaluate all possible pspsrse (k(im") .

For the case of under-perturbation we can stop the eval-
uation at the first occurrence of k™) that satisfies the
inequality and set k"D« k(%) For the case of over-
perturbation, however, we stop the simulation at the first
occurrence of k") that violates the inequality and set
k(l+1) - k(int,i—l).

It is possible that all candidate biasing parameter sets fail
to satisfy the update criterion. The failure indicates Pg¢ lies
between psparse (k(1)> and psparse (k(im")>. Furthermore,
this failure is a direct result of many-to-one relationship
between k € RQ/IO and £ € R. Trajectories simulated with
two different sets of reaction rates k and k' = k + € are
likely to differ from each other, resulting in v # vp.
However, both vk and vy may yield the same intermedi-
ate events, since they are determined solely by the value of
the sorted array at positions [ pN]. Despite the identical &,
SParSE estimates computed with k and &k’ will differ if the
proportion of occurrences of £ is not the same in the two
arrays.

In summary, the modified multilevel cross-entropy
method for SParSE comprises of 3 steps. First we deter-
mine intermediate events for the current reaction rates
using the SSA. We then employ dwSSA simulations to
compute biasing parameters for each of the intermediate
events. Lastly we follow steps described in this section
to choose one set of biasing parameters to update reac-
tion rates for the next iteration. This process repeats until
either k* is found or until intermediate reaction rates can-
not be updated any more. For computational efficiency,
we can combine the first and the last steps by computing

,je{lr"'rM};ie{l,"',q}, (12)
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VI((int,i) at the same time as computing psparse (kﬁnbi)), We

(int,i)

discard v; " if the estimate does not satisfy the required

inequality or if k") is not the best candidate for the next
intermediate reaction rates.

Lastly we point out that the original dwSSA formula
(6) for computing y¥ requires computation of a tra-
jectory weight, which is the product of the likelihood
ratio between the propensity function and the predilec-
tion function. We recall that the predilection function
in the multilevel cross-entropy method used by dwSSA
is characterized with the biasing parameters from level
(I — 1). However, we do not need to compute the trajec-
tory weight in SParSE because its objective is to find a
new set of reaction rates that confer the event specifica-
tions regardless of k), which is used only as a starting
position in the path to find k*. The intermediate reac-
tion rates in level / of SParSE reflect cumulative amount
of bias applied to the original system up to stage / — 1 as
quantified in (12). Thus the propensity function at level
I does not require additional biasing. This leads to using
SSA to determine intermediate events and dwSSA to com-
pute y @ with yj(l*l) =1,j € {1,---,M}. Therefore the
formula (6) for SParSE simplifies to

> i ’
> ZszTﬁ [ﬂj (Xﬁl‘“ (tik)) Tik]

Y (13)

Exponential interpolation of biasing parameters

Iteratively updating intermediate reaction rates via the
modified multilevel cross-entropy method described in
the previous section may not find k that satisfies (7). Pos-
sible reasons for the failure include poor choice of p,
insufficient N, and nonexistence of candidate intermedi-
ate reaction rates that satisfy the update criterion. The
first two aligned can lead to slow convergence to &, espe-
cially for systems near a deterministic regime or for sim-
ulations that demand high accuracy (i.e., small values of
€p. ). Setting a limit on the maximum number of iterations
for the multilevel cross-entropy method can detect slow
or non-converging reaction rates, and increasing N and/or
modifying p will increase the rate of convergence in most
aligned. The last phenomenon occurs when no suitable
biasing parameters exist to update the reaction rates.

Here we have (fa(k(”)) + 6735) < Pe < (f?(k(‘”)) _ 6735)7
where p®) = min (Bsparse (K"), psparsi (k™)

and p(k™) = max (ifsparss(k(wr)):ﬁsparSE (k(im’i))), i =
1,---,q. The target probability lies between the two esti-
mates p(k™) and p(k")), and the multilevel cross-entropy
method is unable to fine-tune intermediate reaction rates
to achieve Pg within the specified error tolerance ep,.
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It is reasonable to assume that a linear combination
of k* and k) may result in k*. A more sophisticated
method for approximating k* would be to fit an inter-
polant through past intermediate reaction rates. By mak-
ing the following two assumptions, SParSE computes can-
didate biasing parameters such that when multiplied to
k9, they may satisfy (7).

Assumption 1. k* exists such that kj(") < k}* < kj(v) for
1<k ork” <k <k fork” <1,je(l,--+,M}.

Assumption 2. kj* can be computed independently from
kj; forj # h.

We note that a single dwSSA trajectory likelihood ratio
at level / of the multilevel cross-entropy method is

Nt
Lossa® =1 [exp {(ag) (X(t)) — ag’—“(xm))) ‘L'i]

i=1
-1
(-1
X(%; ) }

(X(¢)) and a(()l) (X(2)) are the propensity sum
of the trajectory J at time ¢ generated with k=" and k),
respectively, and y =1 is the biasing parameter used to
update the intermediate reaction rates, i.e., k;l) = kj(l*l) X

y].(l_l), j € {1,---,M}. The quantity inside the exponen-

tial term is a function of the system state, which is in
turn a function of intermediate reaction rates. In order to
compare SParSE estimates generated with different inter-
mediate reaction rates, we rewrite them as a function
of the initial reaction rates and normalized intermediate
biasing parameters, i.e., kY = k@ « )/j(o"), and yj(0,0) =1.
The purpose here is to quantify the relationship between
different values of ¥ and its corresponding estimates
Dsparse (X0, k), E; b). Considering the form of the likeli-
hood ratio in (14), a natural form for the interpolant
is

(14)

where a(()l_l)

g() =g exp fpy x ), (15)

where p; and g; are constants and )/j(o") are normal-
ized version of the intermediate biasing parameters used
to compute past SParSE estimates. Output data used in
constructing interpolants are the corresponding SParSE
estimates faspargg(xo,k('),g; t) multiplied by N, the total
number of simulations. This particular form allows for fast
solving of p; and g; with a first order polynomial curve
fitting method. We first transform the data to logarith-
mic scale, compute for two coefficients in the first order
polynomial, and then retransform the output with expo-
nentiation. The reason for scaling the output data with
N is to preserve as many significant digits as possible,
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as logarithmic y-scale is used to compute the polynomial
coefficients. While other forms of interpolant may yield
more accurate interpolation, (15) allows for fast compu-
tation while satisfying Assumption (1), as an exponential
function is monotonic.

The number of past intermediate reaction rates avail-
able for interpolation varies by factors such as kO, €Pg)
and N. Although all past estimates can be used for inter-
polation, confining the number of data to X closest esti-
mates of P¢ (e.g. X = 5) while having at least one estimate
on either side of the target probability is recommended,
as the accuracy of interpolation may degrade with esti-
mates that are far from the target probability. Due to
the construction of the algorithm, there exists at least
one estimate on either side of Ps when the algorithm
enters the exponential interpolation stage. However, we
note that the total number of past intermediate reaction
rates can be as few as 2. Once the values of p; and g; in
(15) are determined for all M interpolants, SParSE exe-
cutes the following steps to further increase the efficiency
of simulation.

Step 1: Foreachje {1, .-, M}, project g(([ —2.0 —1.0
—0.50.0 0.5 1.0 2.0] ép, +P¢) x N) onto the x
axis of the interpolant to compute candidate
biasing parameters }7;"5), where the first
element (-) in the superscript is the
interpolation iteration index and s € {1,--- ,7}
is the index of the candidates.

Step 2: Compute candidate intermediate reaction rates
I}("S), where /_<j("s) = kj(o) X )_’;"S)

Step 3: Constrain l_(j("s) to satisfy kj(”) < /_</.("S) < kj(v) for
1< kj(v) or kj(v) <k < kj(”) for kj(V) <1,
j €{1,---, M)}, if necessary. Reverse the signs in
inequalities for sgn(8 (k)) # Gype.

Starting with s = 4, we compute j’)sparsg(l_((ﬁ)). We note

that k¥ corresponds to the reaction rates computed
from projecting the exact target probability to the inter-
polating function. If executing Step 3 results in duplicate
candidates, we eliminate the duplicate set(s) and assign

the starting index to s such that g; - exp [pj X )%(-,s)] =
PeN.
If fagpmgg(l_(("s)) confers the target event probability

within ep,, SParSE exits with k* = K Otherwise,

7 (s+1)

we compute the next estimate with k for

ﬁspmgg(l_(("s)) <(Ps — ep,),and 7Y for (Pe +epe) <
ﬁgpﬂ,gg(l_(("s)). The interpolation stage continues until
either k* is found or the end of candidate reaction rates is
reached, at which point an additional interpolation may
be executed with updated data. On a rare occasion, k* lies
between two candidate reaction rates without satisfying

Page 7 of 17

the error tolerance. This can lead to infinite loop of incre-
menting and decrementing s by 1 without converging to
k*, but the cycle can easily be detected with a mask vector.
SParSE implements one by creating a zero vector whose
size is equal to the number of candidate biasing parame-
ter sets. Every time a SParSE estimate is computed with
candidate reaction rates at index s, we increment s posi-
tion of the mask vector. Once the magnitude of any mask
vector position becomes greater than 2, we conclude that
k* lies between two candidate biasing reaction rates. At
this point, we have refined an upper and lower bound on
k*, as all candidate biasing parameters computed satisfy
the inequality in Assumption 1. Once the bounds are
sufficiently small, an alternative to an additional interpo-
lation is to take a weighted average of the two candidate
reaction rates, where the weight is the distance between
the SParSE estimate and Pg. For the examples presented
in the following section, we did not encounter any initial
reaction rates that required such treatment.

Results and discussion

We illustrate SParSE performance on the following three
examples of increasing complexity: a birth-death process,
a reversible isomerization process and a Susceptible-
Infectious-Recovered-Susceptible (SIRS) disease trans-
mission model. The first two examples were chosen to
demonstrate the algorithm’s accuracy against the exact
solution, which for these examples can be computed using
the master equation or the infinitesimal generator matrix
[1]. We then progress to a more complex SIRS model,
which has no closed-form analytical solution. For each
system, we analyze the SParSE performance on all possi-
ble combinations of P¢ € {0.40, 0.60, 0.80} and ep, €
{0.01, 0.05, 0.10}, where Pg and ep, denote a desired
probability for event £ and its error tolerance, respectively.
We then compare the result with that from comparable
SSA simulations whose reaction rates are selected using
uniform random sampling (URS). SParSE also employs
URS but only to generate a number of initial reaction rates
as a starting point, here set to 30. The number of simu-
lations, N, used to estimate Pg per parameter sample is
set to 5 x 10* unless mentioned otherwise. We also test
the robustness of SParSE by assessing its performance on
a low probability event, P¢ = 0.010 and ep, = 0.001
for the birth-death process, and a high probability event,
Pe = 0.95 and ep, = 0.005 for the reversible isomeriza-
tion process. The number of samples generated for SSA
simulations with URS equals the total number of SParSE
ensembles computed for a specific simulation scenario,
which is the sum of the following quantities: the num-
ber of intermediate event computations, the number of
estimates computed for each intermediate event, and the
number of estimates computed in the exponential inter-
polation stage. Since the same number of trajectories is
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used for computing an intermediate event and a SParSE
estimate, it is straightforward to compare the two strate-
gies with computational fairness. For each simulation
scenario, we provide four metrics on performance: the
total number of SParSE estimates needed for all 30 ini-
tial parameter samples, the number of initial parameters
that did not reach the solution hyperplane within 10 iter-
ations of multilevel cross-entropy method or 3 iterations
of exponential interpolation, the number of parameter
sets that required interpolation in addition to the multi-
level cross-entropy method, and the number of successful
parameter sets generated by SSA simulations using URS
for sampling reaction rates. Lastly, we provide movie files
of SParSE ensemble simulations for two test scenarios:
birth-death with P¢ = 0.010 and ep, = 0.001 and SIRS
with Pg = 0.40 and ep, = 0.01.

All computations were run on a desktop with Intel®
Xeon® CPU E5-2680, 2.70 GHz processor with 8 cores
and 32 GB of RAM. We utilized Matlab’s Parallel Com-
puting Toolbox™ (PCT) and the Coder™. The PCT™ was
used to simulate 8 SParSE ensembles in parallel while
the Coder™ was used to convert frequently-used custom
Matlab functions into low-level C functions for faster
computation.

Birth-death process
Our first example is a birth-death process.

P8y,  10<k <17
y 84, 00125 <ky <0025
with xo = [40] and the target event £ being molecular

count of Y reaching 80 before ¢ = 100. Table 1 sum-
marizes the results for the 9 standard test aligned, where
SParSE achieved 100% success rate in finding k¥, a vec-
tor of reaction rates [ki‘ k;] that confers desired Ps and
epg, for 8 test aligned. For P¢ = 0.60 and ep, = 0.01,
two of thirty samples, k' = [1.606 0.0140] and k3 =
[1.684 0.0148] (subscript representing the index of initial
reaction rates), failed to converge after three rounds of
exponential interpolations. We discuss the details of the
failure in Appendix C of Additional file 1.

We picked one of 30 initial reaction rates for Ps =
0.60 and ep, = 0.05 to illustrate a complete progression of
the algorithm. Figure 1 contains a flow chart of a SParSE
run with kﬁ) = [1.2414 0.02445]. This particular set
required two rounds of multilevel cross-entropy method
and one exponential interpolation, which required com-
puting two SParSE estimates (out of seven candidates)

to reach the solution hyperplane (k?14) = [1.586 0.0190]).

Figure 2 shows an illustration of the interpolation results.
We see from Table 1 that this particular scenario required
164 SParSE estimates (30 initial, 71 intermediate, and 30
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Table 1 Results of SParSE applied to the birth-death
process

Pe ep. SParSEsamples Interpolations Failures Successful
URS
0.01 286 (35) 291[1,7,19,3] 0 3
040  0.05 182(33) 2317,22,1,0] 0 12
0.10 133 (29) 19[11,19,0,0] 0 1
0.01 319 (36) 301[0,3,18,9] 2 2
060  0.05 164 (33) 261[4,25,0,1] 0 8
0.10 120 (30) 181[12,18,0,0] 0 12
0.01 240 (51) 2812,17,10,1] 0 2
080 0.05 137 (43) 15[15,15,0,0] 0 6
0.10 108 (37) 1129,1,0,0] 0 12

The first column denotes the target probability, the second column absolute
error tolerance, the third column the total number of SParSE samples computed
for the 30 initial parameter sets with the number inside the parenthesis
indicating the total number of intermediate event computations, the fourth the
number of initial reaction rate parameter sets that required exponential
interpolation, the fifth the number of initial sets that did not converge to the
solution hyperplane, and the sixth the number of successful parameter sets
generated with URS. For the fourth column, four numbers inside the bracket
indicate the number of parameter sets that required 0, 1, 2, and 3 interpolations,
respectively. N =5 x 10%.

final) in addition to 33 intermediate event computations
in order to reach the solution hyperplane. An ensemble
result is displayed in Figure 3, where the values of z axis
are set to the probability of the target event, which is
computed using k; and ky values defined by the data’s x
and y coordinates, respectively. Together the figure shows
the contour of the event probability surface for different
values of k; and ky. Despite a rapid change in the event
probability around Pz = 0.60, SParSE was able to find a
point in the solution hyperplane for all 30 sets of initial
reaction rates.

Next we illustrate the robustness of SParSE by choos-
ing a very small target probability P¢ = 0.010 and ep, =
0.001 (animated illustration of SParSE simulations for this
scenario is provided as Additional file 2). For this problem,
we increased N to 2 x 10° to reduce the relative uncer-
tainty in the estimate [20]. Table 2 summarizes the results.
We see that all 30 initial sets of reaction rates success-
fully converged to the solution hyperplane while SSA-URS
yielded only 3 successful samples. Figure 4 displays all 215
SParSE samples (30 initial, 155 intermediate, and 30 final)
for this scenario. Figure 5 displays result of the same simu-
lation scenario using SSA-URS, except that it contains 36
additional data to accommodate the total number of inter-
mediate event computations SParSE required. We note
that the parameter ranges shown in Figure 4 differ from
that in Figure 5, whose data obey parametric constraints
specified in the model description (i.e., 1.0 < k; < 1.7
and 0.0125 < ky < 0.025). These constraints are shown
as white dashed lines in Figure 4. The reason Figure 4
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Figure 1 Flow chart of SParSE simulation on the birth-death process with Pg = 0.60, o, = 0.05, k© =1[1.2414 0.02445], and

contains data outside the perimeter of white dashed lines
is that our implementation of SParSE does not utilize
the parametric constraints other than to generate initial
sets of reaction rates. Changing the implementation of
SParSE to enforce the parametric constraints throughout
the simulation requires the user to provide a parametric
region that contains the solution hyperplane. In this alter-
nate implementation, if the solution hyperplane does not

x 10
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Figure 2 lllustration of exponential interpolation for the
birth-death process with Pz = 0.60, e, = 0.05,k© =

[1.2414 0.02445],and N = 5 x 10%. Yellow horizontal dotted line is
the desired number of successful trajectories, ie, N x Pg = 3 x 10%.
Blue and green circles denote the past intermediate biasing
parameters for Ry and Ry, respectively, normalized with respect to
k© Blue and green dashed lines are the interpolants constructed
from the past intermediate basing parameters, and the red triangles
are candidate biasing parameters computed according to Step 3 in
Subsection Updating intermediate reaction rates.

exist within the user-specified region, all computations are
wasted. The current implementation allows for computa-
tion of the solution hyperplane regardless of its location
while exploiting the user’s knowledge in generating initial
reaction rates.

Reversible isomerization process

Our next example concerns a reversible isomerization
process, where two conformational isomers A and B are
interconverted by rotation about single bonds:

AXM B 01<k <03
BX A 03 <k <10,

with xo =[1000], i.e., all molecules are initially in A form.
The target event is set to population of B reaching 30
before ¢ = 10. Table 3 summarizes the results from 9
standard test scenarios, all of which attained 100% con-
vergence to the solution hyperplane. We see that the total
number of SParSE samples required for Pg € {0.40, 0.60}
is comparable between the birth-death and the reversible
isomerization processes. However, the latter required
considerably more number of samples for P = 0.80.
This is due to the difference in the contour of target event
probability surface between the two processes. Figure 6
compares ensemble results between the two processes for
Pe = 0.80 and ep, = 0.05. Figure 6A represents the
birth-death process and Figure 6B the reversible isomer-
ization process. We see that the reversible isomerization
process contains a significantly larger parametric region
that corresponds to Pg > 0.80, and that the probabil-
ity in this region changes slowly (i.e., plateau-like con-
tour). Only two over-perturbing initial reaction rates (i.e.,
orange squares above the green dotted line corresponding
to Pg + ep, = 0.85) were generated for the birth-death
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Figure 3 Ensemble result for the birth-death process with Pg = 0.60, ¢p, = 0.05,and N =5 x 10%. SParSE required a total of 131 samples
(30initial, 71 intermediate, and 30 final). The green dashed line denotes the exact solution for Pg = 0.60 and the green dotted lines represent
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process while eleven such rates were generated for the
reversible isomerization process. Intermediate reaction
rates (white squares) of these eleven samples are close
together due to the slowly changing probability in their
vicinity. Lastly we note that none of the data in Figure 6B
left the original parameter ranges stated in the model
description. This confirms that even for simple systems
such as birth-death process and reversible isomerization
process, it is nontrivial to predict parameter ranges that
form a convex bound.

Next we choose a high probability target of P = 0.95
and ep, = 0.005 with N = 10°. Table 4 summarizes the
result. We see that one of 30 samples failed to converge.
SParSE was not able to find k* for kg;) = [0.205 0.414]
after 3 rounds of exponential interpolations. The quali-
tative explanation for the failure is the same as with the
birth-death process for P¢ = 0.60 and ep, = 0.01, which
is discussed in Appendix C of Additional file 1.

It is worth pointing out that the number of success-
ful parameter sets generated with SSA-URS varies widely
from simulation to simulation. The expected number,
however, is the volume of the solution hyperplane (which
changes with different values of ep,) divided by the total

Table 2 Results of SParSE applied to the birth-death
process

Pe ep, SParSEsamples Interpolations Failures Successful
URS
0.010 0.001 251 (36) 27[3,17,9,1] 0 3

The column identities match those of Table 1. N=2 x 10°.

volume, multiplied by the total number of reaction rate
samples generated with URS. Here the prescribed param-
eter ranges are used to compute both volumes (e.g., 0.1 <
ki < 03 and 03 < ky < 1.0 for the reversible
isomerization process). Since the acceptable solution vol-
ume increases with larger ep., the number of uniform
random samples that reside in the solution hyperplane
should increase as well. Similarly the expected number of
intermediate reaction rates used by SParSE to reach the
solution hyperplane decreases because the need for fine-
tuning, i.e., exponential interpolation, declines with larger
epg. This trend is confirmed by the simulation results for
all three examples presented in this paper (columns 4 and
6 of Tables 1, 3, and 5).

Simple SIRS disease dynamics

The final example is Susceptible-Infectious-Recovered-
Susceptible (SIRS) disease transmission model, which
consists of the following three reactions:

B

S+1-5 21, 0005<B < 0.150
IL R  050<y <40
R3S, 010<w<30

with xg = [100 1 0], where x = [S I R]. This model
describes a homogenous, fixed population setting where
members of S become infected by members of I, who
recover from the infection at rate y. Once recovered,
members of R have immunity against the infection. How-
ever, the immunity wanes at rate w, and this transition
from recovered to susceptible compartment replenishes
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Figure 4 SParSE ensemble result for the birth-death process with Pg = 0.010,ep. = 0.001,and N = 2 x 105. SParSE required a total of
215 samples (30 initial, 155 intermediate, and 30 final). The green dashed line denotes the exact solution for Pg¢ = 0.010 and the green dotted lines
=+0.001 absolute error tolerance band. Final reaction rates k* are encircled in red. White dashed lines represent the parameter ranges specified prior

the population of S. The target event for this system is set
to the population of I reaching 50 before ¢ = 30. Unlike
the first two examples, there is no closed-form analytical
solution for this model. In order to construct the proba-
bility voxel for the specified parameter ranges, we divided
each parameter region into 30 uniformly-spaced grids and
computed each combination with the SSA, where each
of 27,000(303) ensembles was simulated with N = 10°.
We then further refined the resolution of the probabil-
ity volume to a 70 x 70 x 70 grid using interp3 function
in Matlab, which applied linear interpolation to the 3-
dimensional mesh data from SSA simulations. Figure 7

displays the final solution volume, where the color of each
point represents the target event probability according to
the color bar on the right of the figure.

As with the previous examples, we tested SParSE on
all possible combinations of Ps € {0.40, 0.60, 0.80} and
ep. € {0.01, 0.05, 0.10} and measured the same quan-
tities as in Table 1. Table 5 summarizes the results. We
see that SParSE achieved 100% success rate for all scenar-
ios tested. However, statistics on column 1 demonstrates
that the total number of estimates computed for any SIRS
scenario is greater than the one for the first two exam-
ples with the same target probability and error tolerance.

k1
Figure 5 SSA-URS ensemble result for the birth-death process with Pg = 0.010, ep, = 0.001,and N = 2 x 10°. Color of each square

represents Pg given its ky and k; values according to the color bar given on

the right. Legend identities match those of Figure 4.
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Table 3 Results of SParSE applied to the reversible
isomerization process

Pe ep. SParSEsamples Interpolations Failures Successful
URS
0.01 269 (50) 26(49143] 0 2
040 005 181 (48) 18[121710] 0 6
0.10 148 (44) 13[171300] 0 8
0.01 313 (58) 28[26166] 0 4
060 005 198 (51) 18[121440] 0 8
0.10 156 (47) 13[171300] 0 1
0.01 290 (75) 27[31755] 0 1
080 005 201 (67) 121811 10] 0 6
0.10 165 (61) 4[26400] 0 18

The column identities match those of Table 1. N=5 x 10%.

SIRS ensembles required up to 198 more samples, except
for Pe¢ = 60 and ep, = 0.01, which required one
fewer sample than the birth-death process. If we ignore
the intermediate event computations, the number of sam-
ples required by all three examples are comparable to
each other (mean difference of 17.7 samples). In addi-
tion, quantities in column 4 of Tables 1, 3 and 5 indicate
that SParSE required fewer interpolations on the SIRS
model than it did on the other two examples. These results
imply that the multilevel cross-entropy method applied
to the SIRS model made conservative moves to reach the
solution hyperplane; the algorithm required many inter-
mediate event computations to approach the vicinity of
Pe but fewer fine-tuning steps (i.e., exponential interpo-
lations). Although the same p(8) values were used for all
three examples, we see that its effect differs depending on
the underlying system.
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Two expected trends emerge from Table 5; the total
number of SParSE samples and the total number of
exponential interpolations required to reach the solution
hyperplane decrease with increasing ep. . Although num-
bers in columns 3 and 4 differ among Tables 1, 3, and
5, qualitative algorithmic behavior as a function of ep,
remain the same for all three examples. As for its per-
formance, SParSE outperformed SSA-URS (by a factor of
1.15 to 10) on all scenarios except one. For P¢ = .80
and ep, = 0.10, SSA with URS yielded 41 successful
sets, while SParSE yielded 30. We note that the maximum
number of successful sets for SParSE cannot exceed the
number of initial parameter sets, which is 30 for all exam-
ples presented in this paper. Also, the parameter ranges we
chose for the SIRS model result in an uneven distribution
of the target probability. From Figure 7, we see that a sig-
nificant portion of the probability volume belongs to high
(> 0.8) or low (< 0.2) probability region. Since the SSA-
URS success probability is determined solely by the ratio
between the volume of the solution hyperplane and the
total volume defined by the specified parameter ranges,
this particular scenario is biased to be more favorable
toward SSA-URS. For general applications involving a tar-
get event, however, we cannot expect the solution hyper-
plane to lie within the user-specified parameter ranges,
to which SSA-URS samples are confined. If this region
does not contain the solution hyperplane, SSA-URS is
unable to produce k* regardless of the number of sam-
ples generated. The current implementation of SParSE,
on the other hand, is highly likely to find the closest
point (cross-entropy metric) in the solution hyperplane
through multilevel cross-entropy method and exponential
interpolation stages, both of which are not limited by the
user-specified parameter ranges. In practical situations, it
is likely that the user does not have enough systematic

l;.‘('i?!!_ _".’!
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i

Figure 6 SParSE ensemble result comparison for Pg = 0.80, ep. = 0.05,and N =5 x 10%. A and B correspond to the birth-death process
and the reversible isomerization process, respectively. Legend identities match those of Figure 4.
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Table 4 Results of SParSE applied to the reversible
isomerization process

Pe ep. SParSEsamples Interpolations Failures Successful
URS
0.95 0.005 302 (109) 1020, 3,4, 3] 1 2

The column identities match those of Table 1. N = 1 x 10°.

insight to identify a region that contains the solution
hyperplane for a particular target event. We expect SParSE
to be more efficient than SSA-URS by orders of magnitude
in such aligned, as the performance of SParSE is much less
sensitive to the dimensionality of the search space and the
volume within ep, of the solution hyperplane than the
performance of SSA-URS is.

We picked one scenario, P = 0.40 and ep, = 0.05,
for visual comparison between SParSE and SSA-URS out-
comes outcomes (animated illustration of SParSE simu-
lations for this scenario is provided in Additional file 3).
Figure 8 display the ensemble result for each method. The
solution hyperplane for P¢ = 0.40 is represented by a
cyan-colored surface, which was obtained by applying iso-
surface function in Matlab to the probability volume. We
have omitted displaying the region corresponding to Pg £
ep, for clear visualization of data. We see that the volume
of the solution hyperplane for this particular scenario is
small relative to the volume of the entire voxel. Thus we
expect poor performance from SSA-URS, which is con-
firmed by statistics in Table 5. SSA-URS generated only
5 successful parameter combinations out of 467 samples,
while SParSE generated 30. Since one point in the solution
hyperplane corresponds to one set of initial reaction rates
in SParSE, this indicates 100% convergence. The number
of data in Figure 8A and 8B are 305 and 467, respec-
tively. Figure B contains 162 more data to compensate
for the total number of intermediate event computations
required by SParSE. Despite having fewer data, SParSE

Table 5 Results of SParSE applied to the SIRS model

Pe ep. SParSEsamples Interpolations Failures Successful
URS
0.01 467 (162) 26[4,15,8,3] 0 5
04 005 282 (149) 8[22,6,1,1] 0 6
0.10 246 (142) 426,4,0,0] 0 14
0.01 318 (63) 28[2,8,18,2] 0 3
06 005 206 (59) 20[10,19,0,1] 0 8
0.10 166 (57) 10[20,9,0,1] 0 8
0.01 328 (113) 81[22,4,3,1] 0 4
08 005 224 (90) 1[29,0,0,1] 0 26
0.10 177 (73) 0[30,0,0,0] 0 41

The column identities match those of Table 1. N =5 x 10*.
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Figure 7 Probability volume (70 x 70 x 70 grid) for the SIRS model
after applying Matlab’s interp3 function to the 30 x 30 x 30
data simulated with SSA. Color of each voxel represents Pg given
its B, y, and w values according to the color bar given on the right.

produced not only 6 times the number of k* but also data
that are closely scattered around the solution hyperplane.
The latter fact offers couple advantages. First, having good
resolution near Pg & ep, enables more accurate mapping
of the solution hyperplane, as it is unknown or compu-
tationally infeasible to be computed even for moderately
sized systems (e.g., 5-20 parameters). In addition if we
were to run another set of simulations on the identical sce-
nario, we can generate initial reaction rates that are near
the solution hyperplane using the past simulation results.

Lastly, we chose one of 30 initial reaction rates to illus-
trate a complete progression of SParSE on the SIRS model.
Unlike the set of initial reaction rates chosen for the birth-
death process (k'3 =[1.2414 0.02445] with Pz = 0.60
and ep, = 0.01) in Figure 1, which under-perturbs the

system, the set of initial reaction rates chosen here, k;%) =
[0.0942 1.7150 0.6196], over-perturbs the system. Figure 9
displays the flow chart of SParSE simulations for this sce-
nario, and Figure 10 illustrates the results from the first
and second exponential interpolations, respectively. The
interpolants for all three reactions exhibit a good fit with
respect to the past biasing parameters, and the quality
of fit improves in the second iteration with updated past
estimates closer to the target probability. According to
the flow chart and Figure 10A, SParSE entered the first
iteration of exponential interpolation with four past esti-
mates, three of which under-perturbed the system (from
multilevel cross-entropy method). After exhausting the
candidate biasing parameters from the first iteration, all
of which produced estimates greater than 0.61, SParSE
entered a second iteration of exponential interpolation.
At this point, the top five closest estimates to Ps =
0.60 all came from over-perturbing biasing parameter
sets. SParSE then removed the most over-perturbing set
and inserted the least under-perturbing set in attempt to
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Figure 8 SIRS ensemble result comparison between SParSE and SSA-URS for Pg = 0.40, ep, = 0.01,and N =5 x 10%. Cyan-colored
surface represents the solution hyperplane for the target event. A represents the result of SParSE applied to the SIRS model. Orange squares
represent the initial reaction rates, white squares intermediate reaction rates, and red squares the final reaction rates on the solution hyperplane.
Orange dashed lines connect any two subsequent reaction rates originated from the same initial reaction rates. B represents the result of SSA-URS
applied to the SIRS model. Color of each rectangle represents the target event probability from the represented parameter combination according
to the color bar given on the right. Out of 467 samples, only 5 lie on the solution hyperplane. These 5 successful parameter sets are encircled in
black. Due to the 3-dimensional nature of this figure, there is no single angle where both the solution hyperplane and the 5 sets are easily visible.

improve the quality of the interpolant. Figure 10B reflects
these modifications. The last candidate from the second
interpolation produced an estimate within ep, = 0.01,
at which point the algorithm exited with the final reac-
tion rates (k?z()) = [0.0917 1.899 0.587]). We note that the
slope of the interpolants in Figure 10 are opposite from the
ones in Figure 2. This is because inverse biasing technique
is used for over-perturbing reaction rates, as described by
Equation 12.

Conclusions

In this paper, we presented SParSE—a novel stochastic
parameter estimation algorithm for events. SParSE con-
tains two main research contributions. First, it presents
a novel modification of the multilevel cross-entropy
method that (1) concurrently computes multiple inter-
mediate events as well as their corresponding biasing
parameters, and (2) handles over-perturbing initial reac-
tion rates as well as under-perturbing ones. Second, it uses
information from past simulations to automatically find a
path to the parametric hyperplane corresponding to the
target event with user-specified probability and absolute
error tolerance.

By introducing a novel heuristic for handling reaction
rates that over-perturb the system, SParSE can handle tar-
get events whose probability does not need to be rare with
respect to the initial reaction rates k9. If the user wishes
to compute the probability of observing Pg¢ with respect to
k@, however, it can be done by simply running the dwSSA
with biasing parameters that are the ratio between the
final reaction rates k* from SParSE and k'©. No additional

multilevel cross-entropy simulations are required by the
dwSSA to determine biasing parameters since the final
set of reaction rates computed by SParSE contains this
information. For this reason, SParSE improves upon the
dwSSA in that it can handle an additional type of rare
event. The only class of rare events whose probability
dwSSA can estimate is the one that is seldom reached by
the system using the original reaction rates. SParSE, on
the other hand, can also compute the probability of events
that are reached too often with respect to the target prob-
ability using the original reaction rates. Average frequency
of observing such target event with k' would be much
higher than the desired frequency (i.e., (Pg £ €p.) x N),
and therefore the probability of observing £ with suc-
cess rate Pg £ ep, and reaction rates k© would be very
small, yet its biasing parameters are uncomputable with
the dwSSA, but are computable with SParSE.

It is important to note that the computational complex-
ity of SParSE is independent of the number of parameters
to be estimated. Like the dwSSA [17], SParSE utilizes
information-theoretic concept of cross-entropy to con-
currently compute biasing parameters for all reactions in
the system. Moreover, SParSE avoids serial computation
of biasing parameters for multiple intermediate events at
any given stage of multilevel cross-entropy method by
introducing a clever ordering of intermediate events and
data management. Figures 4, 5 and 8 illustrate that SParSE
not only is more efficient than SSA-URS in finding k*
but also gives a better resolution of the area near the
solution hyperplane. This is because intermediate reac-
tion rates computed by SParSE are guaranteed to be closer
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Figure 9 Flow chart of SParSE simulation on the SIRS model with Pg = 0.60, e, = 0.01,k© = [0.0942 1.7150 0.6196], and
N = 5 x 10%. This particular simulation required three stages of multilevel cross-entropy method and two rounds of exponential interpolation.

to k* than k© is. Thus intermediate reaction rates near
k* can be used to improve the quality of interpolation
in constructing the solution hyperplane. Another compu-
tational asset of SParSE is that it is highly parallelizable.
In large scale application, multiple sets of initial reaction
rates can be dispatched separately since each set finds
its way to the solution hyperplane independently from
each other. In smaller scale, SParSE estimate computa-
tion or an ensemble of multilevel cross-entropy method
simulations also can be parallelized. In simulating exam-
ples presented in this paper, we have chosen the latter
method; each set of N simulations was distributed among
8 cores using the Parallel Computing Toolbox™ in Mat-
lab. Lastly, a single SParSE trajectory from the multilevel
cross-entropy method without any biasing (i.e.,y = _1))
generates the same number of uniform random numbers
as the SSA does. The only difference is that SParSE

requires additional data management for recording bias-
ing parameter information (two floating point numbers
for each reaction [17]), which is used in the next round of
multilevel cross-entropy method. It is difficult to compare
the exact computational cost between the two methods
when SParSE utilizes y # T ; depending on the amount
of bias applied per reaction, the number of random num-
bers generated per trajectory will differ between the two
methods even if the same reaction rates were used. For the
exponential interpolation stage in SParSE, SSA is used to
compute pspurse, thus the computational cost of SParSE
and SSA trajectory are identical for a given set of reaction
rates.

One of the inputs required by SParSE is a range of val-
ues each parameter can take. There is no theoretical limit
on the parameter range SParSE can manage; however, it
is required for the following practical reasons. First, the
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volume of the solution hyperplane could be infinite if we
do not confine parameter ranges. For the reversible iso-
merization process presented in the previous section, all
solution hyperplanes from the 9 standard test scenarios
are defined by the ratio between the two reaction rate
parameters; infinitely many pairs exist that keep this ratio
conserved. In addition, a range is required to sample initial
reaction rates. If a user wishes to use a distribution other
than the uniform distribution to generate initial reaction
rates, different statistics (mean, standard deviation, etc.)
may be needed.

We remind our readers that although parameter ranges
are used to constrain the position of initial reaction rates,
the same ranges are not enforced on the final reaction
rates on the solution hyperplane. The main reason for
this is that there is no guarantee the solution hyperplane
intersects with the volume defined by the user-specified
parameter ranges. By not limiting the final reaction rates
to reside within the user-specified region, SParSE is able
to find a set of reaction rates that lie on the solution
hyperplane that are close to the user-specified parame-
ter ranges. For example, in Figure 3, white dashed lines
represent parameter ranges specified prior to the simula-
tion. We see that 3 of 30 initial sets reached the solution
hyperplane but are outside this region. We also see that
some intermediate reaction rates (white squares) escape
the region but return to it by the time k* (red square) is
found. For most practical applications, we know neither
the curvature of the solution hyperplane nor the exis-
tence of it within the prescribed parameter ranges. The
parameter ranges for all examples in this paper were cho-
sen such that all possible values in (0 1) are captured
while the volume of a solution hyperplane for any par-
ticular Pg is well-defined within this region. Therefore

we expect the computational gain from employing SParSE
over SSA-URS to be much higher for an arbitrary problem
where the user is unable to provide informative parame-
ter ranges for the target event of interest and its desired
probability.

Future work will focus on two main areas whose
improvement will substantially benefit the algorithm.
First, the multilevel cross-entropy method for SParSE can
improve from employing an adaptive p(8) function, whose
values for determining intermediate events would change
as the simulation progresses. While SParSE proved to be
computationally efficient for all three examples presented
in this paper, their results demonstrated that the same
p(8) function can produce qualitatively different behavior
on how the system approaches the solution hyperplane.
We can use past values of p(8) and its effect on pspurse
to estimate the speed of convergence toward the solution
hyperplane. This can potentially reduce the number of
multilevel cross-entropy method iterations, where reduc-
tion of each iteration saves 2 x N simulations. The second
area of future research will be on efficient sampling of ini-
tial reaction rates. Once SParSE finishes simulating first
sets of k9, positions of resulting k* may be far away from
each other and thus insufficient to construct an accurate
picture of the solution hyperplane. Instead of randomly
sampling the next set of initial reaction rates, we can
utilize information from the prior ensemble of SParSE
simulations to improve the positioning of the next set of
k©. For example, we can construct a rough interpola-
tion (e.g, linear interpolation) of the solution hyperplane
using k*s from the first ensemble, and sample the next set
from the estimated solution hyperplane, which could be
constrained by the user-specified parameter ranges if nec-
essary. A more sophisticated method would be required
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for high-dimensional systems or for target events with
discontinuity in the solution hyperplane.

Additional files

Additional file 1: Appendix. Appendix is composed of three parts:
tables, pseudocode, and discussion of failure in convergence. Table |
contains the definition of variables used in Methods Section, and Table Il
provides a list of input parameters for SParSE and its default value when
applicable. Table Ill contains the definition of variables exclusively used in
pseudocode. In the second part, SParSE pseudocode is provided in a
format of five separate algorithms for easy of reading and reproducibility.
Lastly, we discuss in detail the three failures in Results Section.

Additional file 2: This file contains an animated illustration of SParSE
simulations for Birth-death process with Pg = 0.010 and

epg = 0.001.

Additional file 3: This file contains an animated illustration of SParSE
simulations for SIRS disease dynamics model with Pg = 0.40 and

epg = 0.01.
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