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Abstract

Background: Over the past years, tremendous efforts have been made to elucidate the molecular basis of the
initiation and progression of ovarian cancer. However, most existing studies have been focused on individual genes or
a single type of data, which may lack the power to detect the complex mechanisms of cancer formation by
overlooking the interactions of different genetic and epigenetic factors.

Results: We propose an integrative framework to identify genetic and epigenetic features related to ovarian cancer
and to quantify the causal relationships among these features using a probabilistic graphical model based on the
Cancer Genome Atlas (TCGA) data. In the feature selection, we first defined a set of seed genes by including 48
candidate tumor suppressors or oncogenes and an additional 20 ovarian cancer related genes reported in the
literature. The seed genes were then fed into a stepwise correlation-based selector to identify 271 additional features
including 177 genes, 82 copy number variation sites, 11 methylation sites and 1 somatic mutation (at gene TP53). We
built a Bayesian network model with a logit link function to quantify the causal relationships among these features
and discovered a set of 13 hub genes including ARID1A, C19orf53, CSKN2A1 and COL5A2. The directed graph revealed
many potential genetic pathways, some of which confirmed the existing results in the literature. Clustering analysis
further suggested four gene clusters, three of which correspond to well-defined cellular processes including cell
division, tumor invasion and mitochondrial system. In addition, two genes related to glycoprotein synthesis, PSG11
and GALNT10, were found highly predictive for the overall survival time of ovarian cancer patients.

Conclusions: The proposed framework is effective in identifying possible important genetic and epigenetic features
that are related to complex cancer diseases. The constructed Bayesian network has identified some new
genetic/epigenetic pathways, which may shed new light into the molecular mechanisms of ovarian cancer.

Keywords: The Cancer Genome Atlas, Bayesian network, Pathway analysis, Feature selection, Causal inference,
Directed network

Background
Ovarian cancer, one of the most malignant gynecologic
cancers, is the fifth leading cause of cancer-related deaths
among women in the United States. According to the
American Cancer Society, 21,980 women will receive
a new diagnosis and 14,270 will die of this disease in
2014. The majority of ovarian cancers are serous ovar-
ian carcinomas and only less than 20% of them can
be detected early. High-stage cancer patients are usu-
ally treated with platinum/taxane-based chemotherapy
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after debulking surgery. Platinumresistant cancer recurs
in approximately 25% of patients within six months after
therapy, and the overall five-year survival probability is
only 31% [1]. While the molecular mechanism of ovar-
ian cancer remains unclear, studies have suggested that
many different factors may contribute to this disease,
among which there are tens of well-known oncogenes and
tumor suppressors including TP53, PIK3C, BRCA1 and
BRCA2. In particular the mutation of gene TP53 is the
most common, occurring in at least 70% of advanced-
stage cases [1,2]. Many of the existing studies however,
have been focused on a single type of data, most fre-
quently, gene expression analysis [3-5]. As pointed out by
many researchers, the analysis based on individual gene
often fail to provide even moderate prediction accuracy of
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the cancer status. Thus a systems biology approach that
combines multiple genetic and epigenetic profiles for an
integrative analysis provides a new direction to study the
regulatory network associated with ovarian cancer.
The rapid advances in next-generation sequencing tech-

nology now allow genome-wide analysis of genetic and
epigenetic features simultaneously. The timely advent of
TCGA project has provided the most comprehensive
genomic data resource from over 20 types of cancers
(http://cancergenome.nih.gov/). For example, the TCGA
ovarian cancer data contain both clinical and molecular
profiles from 572 tumor samples and 8 normal controls.
The molecular profile includes gene expression (microar-
ray), genotype (SNP), exon expression,MicroRNA expres-
sion (microarray), copy number variation (CNV), DNA
methylation, somatic mutation, gene expression (RNA-
seq), MicroRNA-seq and protein expression. The clinical
information includes records on recurrence, survival,
and treatment resistance. These massive complex data
sets have driven enthusiasm to study the molecular
mechanism of cancers through computational approaches
[1,6-8]. Among the developed methods, Bayesian Net-
work (BN) is one of the most frequently used multivariate
models. The BN approach is more appealing than graphs
constructed based on correlation or mutual informa-
tion metrics for it allows rigorous statistical inference of
causality between genetic and epigenetic features. How-
ever most of the existing studies have been focused on one
type of data either continuous or discrete [9-13]. How to
combine different types of complex data for causal infer-
ence in BN poses a big challenge. In addition, deducing
the complex network structure from data remains an open
problem partially due to the lack of prior information, rel-
atively smaller sample size and the high dimensionality of
data (number of possible nodes) [13,14].
A necessary and important step to construct a BN from

tens of thousands of features is feature selection, i.e., to
identify a subset of the most-relevant features. Removing
irrelevant or redundant features helps improve comput-
ing efficiency and estimation accuracy in the causal net-
work. Existing feature selection methods can be roughly
classified into two categories: wrapper approach [15,16]
and filter approach [17-19]. For large data sets, the fil-
ter approach using significance test for difference between
the cancer and control samples is more commonly used
due to its simplicity. As some features could be causal
to other features while having no direct association with
the cancer phenotypes, the independent test can filter
out many related features (see a simulation study in the
Methods section). One innovation of this paper is a novel
stepwise correlation-based selector (SCBS) that mimics
the hierarchy of the BN for feature selection. The selected
features from the TCGA data are a mixture of continu-
ous and categorical variables. To integrate them into the

same BN, we discretize the continuous variables and use
a logit link function for casual inference. The proposed
approach is applied to the TCGA ovarian cancer data and
leads to a series of interesting findings that shed light into
the genetic/epigenetic mechanisms of ovarian cancer.

Results
Preprocessing of TCGA ovarian cancer data
In this paper, we only consider four types of molecular
data including gene expression, DNA copy number vari-
ation, promoter methylation and somatic mutation (sum-
marized in Table 1). This data set contains the expression
values of 17,812 genes, out of which, 12,831 had methyla-
tion level measured for each CpG island located in their
promoter regions. If multiple CpG islands exist for a
given gene, we took the average as the overall methylation
level. The copy number was measured for each chro-
mosomal segment, recorded as a seg.mean value, with
the segment length varying from hundred up to tens of
millions base pairs by the Circular Binary Segmentation
(CBS) performed by TCGA. Out of 17,812 genes, 15,352
have well defined locations on the genome provided by
UCSC Genome Browser (http://genome.ucsc.edu/) and
each of them was assigned a value as the copy number.
If a gene entirely falls within a chromosome segment, we
assigned it the corresponding seg.mean value (236 out of
15,352 genes that spans two chromosomal segments were
not assigned any seg.mean value). For the somatic muta-
tion data, we defined a binary variable where "1" stands
for all the non-silent mutations (coding different amino
acid) and "0" for silent mutations or not being mutated,
resulting in 9,895 genes with somatic mutations (mutation
occurred in at least one sample). For the gene expression
and methylation data, we applied an existing method by
[8] to remove the effects due to different age groups and
batches. Figure 1 illustrates an example for BRCA1 gene
where the boxplots showed this procedure was effective in
removing the age and batch effects.
The second step in data preprocessing is to dis-

cretize the continuous random variables. We classified
the gene expression level into three groups using k-means
clustering algorithm, namely low, midium, and high.
Likewise the promoter methylation level was classified

Table 1 Summary of TCGA ovarian cancer data

Data type Platform Cases

Gene expression Agilent 244K 574 (8 organ-specific controls)

Somatic mutation Agilent 415K 579 (8 organ-specific controls)

DNA methylation Illumina 27K 584 (8 organ-specific controls)

Copy number variation Agilent 1M 579 (8 organ-specific controls)

Clinical information N/A 583

Summary of TCGA ovarian cancer data including the data types we incorporated
in the analysis, platforms and the number of available cases.

http://cancergenome.nih.gov/
http://genome.ucsc.edu/
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Figure 1 Removal of batch effect and age effect. (a) Boxplots of BRCA1 expression before (on the left) and after (on the right) removal of batch
effect, where x-axis is the batch number and y-axis is the expression level; (b) Boxplots of BRCA1 expression before (on the left) and after (on the
right) removal of age effect, x-axis is age group (<50 yrs old, 50-70 yrs old and >70 yrs old) and y-axis is the expression level. In the preprocessing
step, we removed batch and age effects of expression level and methylation level for every single gene.

into either hyper or hypo state, and the copy number status
into two states: gain or loss. The discretized variables were
the input of the Bayesian network to be discussed below.

Feature selection
The pipeline we propose in this paper assumes that can-
cer phenotype is directly associated with gene expression,
which can be potentially driven by genetic and epigenetic
changes (this assumption was made from the biologi-
cal point of view. It can be dropped without affecting
the modeling and computing). Figure 2 illustrates the
workflow of our proposed framework. We first identify
a set of tumor suppressors and oncogenes by differen-
tial expression analysis between the cancer and control
groups. This set of genes, together with those that were
previously reported in the literature as cancer-relevant,
form the set of seed genes for further feature selection.
These seed genes are then fed into our proposed stepwise
correlation-based selector (SCBS) to select other features.
The SCBS is motivated by the hierarchy of causality in
the Bayesian network. For example, suppose there is a

causal relationship A→B→cancer. Though A to B or B
to cancer has strong directed association, the associa-
tion between A and cancer could decay greatly so that
it cannot be detected. The SCBS procedure starts with
detection of features significantly correlated with the can-
cer and then progressively selects subsequent features that
correlate with the selected features. Our simulation study
presented in the Methods section shows that the pro-
posed SCBS is more effective to select important features
that are involved in the phenotype-related pathways but
indirectly associated with the cancer phenotype.
The first step in feature selection is to define a set

of seed genes out of 12,000 genes that have records of
expression level and at least one of the three (epi)genetic
factors (i.e., CNV, methylation and mutation). We con-
ducted a nonparametric test to identify the most dif-
ferentially expressed genes between case and control
groups, as well as themost differentially methylated genes,
most differentially mutated genes and genes with most
differentiate copy numbers. A gene was defined as a
candidate oncogene or tumor suppressor if it satisfies all
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Figure 2Workflow of our integrative framework.

the following three conditions: (1) the p-value of gene
expression was statistically significant under Benjamini-
Hochberg (BH) procedure with false discovery rate
(FDR) ≤ 0.05; (2) the p-value of somatic mutation/
promoter methylation/copy number was also significant
under BH procedure with FDR ≤ 0.05; and (3) the abso-
lute value of correlation coefficient between gene expres-
sion and somatic mutation/promoter methylation/copy
number was greater than 0.4. The p-values were calcu-
lated using Wilcoxon rank-sum test and the correlation
coefficients were calculated using Pearson’s method. This
procedure resulted in 48 potential tumor suppressors or
oncogenes (Table 2), 16 of which were well-studied tumor
suppressors and oncogenes for ovarian cancer from litera-
ture (out of a total of 36 presented in [2], Table 3). The
union of the two sets of 68 genes were defined as seed
genes and generated an additional 271 nodes out of more
than 50,000 candidate features by the stepwise correlation
based selection (SCBS) procedure, which include 177 gene
expressions, 82 copy number variation sites, 11 methyla-
tion sites and one somatic mutation site at gene TP53.

Bayesian network prediction
The 339 nodes (discretized if continuous) were fit into
the Bayesian network through a logit link function

using the blockwise coordinate descent algorithm for
penalized maximum likelihood estimation procedure [20]
(Methods).The predicted network contains 698 edges
(Figure 3, details are tabulated in Additional file 1: Table
S1), where the direction of the edge indicates the down-
stream feature is regulated by the upstream one. We
found the CNVs are the major factor that accounts for dif-
ferential gene expression. In addition most of the 82 genes
were CNV-amplified in cancer samples, suggesting that
many amplified genes may act as cancer drivers, confirm-
ing findings from a breast cancer study [21]. This network
also confirmed many previously reported gene-gene
interactions. To name a few, for example, the edge from
TPX2 to AURKA could be explained by the fact that the
protein encoded by the TPX2 gene activates AURKA
by inducing autophosphorylation [22]. The connection
between BRCA1 and NBR2 could be due to the shared
bi-directional promoter between the two genes [23]. The
connection between STAT3 and ETV6 was suggested
previously that ETV6 is a negative regulator of STAT3
activity [24]. The edge from CDKN2A to CCNE1 is a
known gene-gene regulation in the RB signaling pathway
[1]. The edge from MYC to IMPHD2 confirms that MYC
depletion results in repression of IMPHD2 (a gene coding
rate-limiting enzyme) [25]. These results suggested that
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Table 2 48 tumor suppressors and oncogenes from TCGA data

Oncogene/suppressor Gene symbol Name

Suppressor CDKN2A Cyclin-Dependent Kinase Inhibitor 2A

Suppressor MAP2K4 Mitogen-Activated Protein Kinase Kinase 4

Suppressor MAGEC1 Melanoma Antigen Family C, 1

Suppressor RIMBP2 RIMS Binding Protein 2

Suppressor DIRAS3 DIRAS Family, GTP-Binding RAS-Like 3

Suppressor PEG3 Paternally Expressed 3

Suppressor DAB2 Disabled Homolog 2, Mitogen-Responsive Phosphoprotein

Suppressor NF1 Neurofibromin 1

Suppressor ARID1A AT Rich Interactive Domain 1A

Suppressor OPCML Opioid Binding Protein/Cell Adhesion

Suppressor PLAGL1 Pleiomorphic Adenoma Gene-Like 1

Suppressor CASP9 Caspase 9, Apoptosis-Related Cysteine Peptidase

Suppressor WWOX WW Domain Containing Oxidoreductase

Suppressor RPS6KA2 Ribosomal Protein S6 Kinase, 90kDa, Polypeptide 2

Suppressor SPARC Secreted Protein, Acidic, Cysteine-Rich

Suppressor DLEC1 Deleted In Lung And Esophageal Cancer 1

Oncogene THY1 Thy-1 Cell Surface Antigen

Oncogene ALG3 Alpha-1, 3-Mannosyltransferase

Oncogene ATP5E ATP Synthase, H+ Transporting, Mitochondrial F1 Complex, Epsilon Subunit

Oncogene ATP6V1C1 ATPase, H+ Transporting, Lysosomal 42kDa, V1 Subunit C1

Oncogene C19orf53 Chromosome 19 Open Reading Frame 53

Oncogene CSNK2A1 Casein Kinase 2, Alpha 1 Polypeptide

Oncogene CTSF1 Cathepsin F

Oncogene DERL1 Derlin 1

Oncogene HSF1 Heat Shock Transcription Factor 1

Oncogene ITPA Inosine Triphosphatase

Oncogene MRPL34 Mitochondrial Ribosomal Protein L34

Oncogene NCBP2 Nuclear Cap Binding Protein Subunit 2

Oncogene NDUFA13 NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 13

Oncogene NDUFB7 NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 7

Oncogene NDUFB9 NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 9

Oncogene OSBPL2 Oxysterol Binding Protein-Like 2

Oncogene POLR2H Polymerase (RNA) II (DNA Directed) Polypeptide H

Oncogene PIK3R1 Phosphoinositide-3-Kinase, Regulatory Subunit 1

Oncogene AKT2 V-Akt Murine Thymoma Viral Oncogene Homolog 2

Oncogene ERG V-Ets Erythroblastosis Virus E26 Oncogene Homolog

Oncogene PTK2 Protein Tyrosine Kinase 2

Oncogene RAE1 RAE1 RNA Export 1 Homolog

Oncogene RIOK1 RIO Kinase 1

Oncogene SNRPB2 Small Nuclear Ribonucleoprotein Polypeptide B

Oncogene SNX5 Sorting Nexin 5

Oncogene SRXN1 Sulfiredoxin 1

Oncogene STX10 Syntaxin 10

Oncogene TRMT1 TRNA Methyltransferase 1 Homolog

Oncogene TRMT6 TRNA Methyltransferase 6 Homolog

Oncogene WDR53 WD Repeat Domain 53

Oncogene YWHAZ Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, Zeta Polypeptide

Oncogene RAB25 RAB25, Member RAS Oncogene Family

Presented in the table are the symbol and name of 48 tumor suppressors and oncogenes identified from TCGA data.
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Table 3 36 tumor suppressors and oncogenes from literature

Oncogene/suppressor Gene symbol Name

Suppressor RB1 Retinoblastoma 1

Suppressor PTEN Phosphatase And Tensin Homolog

Suppressor DAB2 Disabled Homolog 2, Mitogen-Responsive Phosphoprotein

Suppressor DLEC1 Deleted In Lung And Esophageal Cancer 1

Suppressor TP53 Tumor Protein P53

Suppressor NF1 Neurofibromin 1

Suppressor SPARC Secreted Protein, Acidic, Cysteine-Rich

Suppressor TMPRSS2 Transmembrane Protease, Serine 2

Suppressor CASP9 Caspase 9, Apoptosis-Related Cysteine Peptidase

Suppressor PLAGL1 Pleiomorphic Adenoma Gene-Like 1

Suppressor WWOX WW Domain Containing Oxidoreductase

Suppressor RPS6KA2 Ribosomal Protein S6 Kinase, 90kDa, Polypeptide 2

Suppressor BRCA1 Breast Cancer 1, Early Onset

Suppressor BRCA2 Breast Cancer 2, Early Onset

Suppressor DIRAS3 DIRAS Family, GTP-Binding RAS-Like 3

Suppressor PEG3 Paternally Expressed 3

Suppressor ARID1A AT Rich Interactive Domain 1A

Suppressor OPCML Opioid Binding Protein/Cell Adhesion

Oncogene MYC V-Myc Myelocytomatosis Viral Oncogene Homolog

Oncogene CDC25A Cell Division Cycle 25A

Oncogene PIK3CA Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase

Oncogene NOTCH3 Notch 3

Oncogene EIF5A2 Eukaryotic Translation Initiation Factor 5A2

Oncogene STAT3 Signal Transducer And Activator Of Transcription 3

Oncogene ETV6 Ets Variant 6

Oncogene EGFR Epidermal Growth Factor Receptor

Oncogene FGF1 Fibroblast Factor 1

Oncogene AKT2 V-Akt Murine Thymoma Viral Oncogene Homolog 2

Oncogene KRAS V-Ki-Ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog

Oncogene RAB25 RAB25, Member RAS Oncogene Family

Oncogene AURKA Aurora Kinase A

Oncogene PIK3R1 Phosphoinositide-3-Kinase, Regulatory Subunit 1

Oncogene ERG V-Ets Erythroblastosis Virus E26 Oncogene Homolog

Oncogene ATAD2 ATPase Family, AAA Domain Containing 2

Oncogene PDGFRA Platelet-Derived Growth Factor Receptor, Alpha Polypeptide

Oncogene ERBB2 V-Erb-B2 Erythroblastic Leukemia Viral Oncogene Homolog 2

Presented in the table are the symbol and name of 36 tumor suppressors and oncogenes reported in the literature [2].

the proposed pipeline is capable of revealing important
genetic or epigenetic pathways that underlie the complex
cancer phenotype.
The average degree (indegree plus outdegree) of

the graph is 4.124 indicating that the inferred net-
work is sparse with moderate complexity. Due to the
directionality of BN, one could also obtain the indegree

and outdegree separately for every single node. Figure 4
shows the observed distribution of outdegree, where the
mean and standard deviation are 2.15 and 2.31 respec-
tively. We identified 13 nodes with significantly larger
outdegree (greater than mean + 2 × SD, ≥ 7 edges)
in the network including ARID1A, C19orf53, CSNK2A1,
DERL1, TRMT6, COL5A2, TCF21, LUM, TPX2, UBE2C,



Zhang et al. BMC Systems Biology  (2014) 8:1338 Page 7 of 18

Figure 3 Predicted graph by Bayesian network model with logit link function and blockwise coordinate descent algorithm, with 339
nodes including expression level of 245 genes (yellow), copy number at 82 sites (blue), methylation at 11 sites (green) and 1 somatic
mutation at gene TP53, connected by 698 directed edges. Direction of the edge indicates the downstream feature is regulated by the upstream
one. Red edge represents activation and black edge represents suppression. Details are listed in Additional file 3: Table S3.

DPM1, NDUFB7, and NDUFB9 (Table 4). These hub
genes all have known functions and have causal effect
on at least seven neighboring genes, suggesting that they
may play important roles in driving corresponding local
subnetworks. Some of the hub genes have been reported
in the literature that are related to ovarian cancer. For
instance, ARID1A is known to promote the formation
of SWI/SNF chromatin remodeling complexes containing
BRG1 or BRM, and is a candidate tumor suppressor not
only in clear cell ovarian cancer but also in endometrioid
cancers and uterine endometrioid carcinomas [22,26,27].
C19orf53 is known to be associated with Leydig cell
tumors which are amember of the sex cord-stromal tumor
group of ovarian and testicular cancers and it has a poten-
tial role in hypercalcemia of malignancy [22]. CSKN2A1
is a well-known oncogene that can phosphorylate a num-
ber of key intracellular signaling proteins implicated in
tumor suppression (P53 and PTEN) and oncogenesis
(MYC, JUN, NF-kappaB). This gene also influences Wnt
signaling via beta-catenin phosphorylation and the PI3K

signaling pathway via the phosphorylation of AKT [22].
Interestingly these 13 hub genes can clearly distinguish
the cancer samples from the normal samples as revealed
by a multi-dimensional scaling plot (MDS, [28]) based on
the correlation dissimilarity metric (comparable cluster-
ing effect was observed based on the entire set of 245
genes, Figure 5a,b). This suggests that the thirteen hub
genes may present the major difference between the can-
cer and normal samples. The early-stage and high-grade
tumor samples however are not well distinguished.

Gene clusters
The 245 genes (listed in Additional file 2: Table S2) were
identified to fall into four major clusters correspond-
ing to distinct functions by k-means clustering method
(Figure 6b). Cluster 1 (black in Figure 7a) contains 18
genes, mainly related to cell division, mitosis, spindle
formation etc. Cluster 2 (red) contains 23 genes, most
of which are functionally related to growth factor, cell
shape, cell motility, tumor invasion etc. Cluster 3 (green)
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Figure 4 Histogram of outdegree (number of edges going out
from the node) for each gene in the predicted network, the
mean degree and standard deviation are 2.15 and 2.31
respectively. Genes with outdegree greater than 7 (mean+2SD) are
identified as hub genes. The 13 hub genes are listed in Table 4.

contains 20 genes, mostly related to mitochondrial sys-
tem, membrane process etc. Cluster 4 (blue in Figure 7a)
is the largest and most complicated cluster harboring 184
genes. This large cluster communicates between the other
three clusters (as shown in Figure 7b), which are nearly

Table 4 13 local drivers (hub genes) in the predicted
network

Gene symbol Name

ARID1A AT Rich Interactive Domain 1A

C19orf53 Chromosome 19 Open Reading Frame 53

CSNK2A1 Casein Kinase 2, Alpha 1 Polypeptide

DERL1 Derlin 1

TRMT6 TRNA Methyltransferase 6 Homolog

COL5A2 Collagen, Type V, Alpha 2

TCF21 Transcription Factor 21

LUM Lumican

TPX2 Microtubule-Associated, Homolog

UBE2C Ubiquitin-Conjugating Enzyme E2C

DPM1 Dolichyl-Phosphate Mannosyltransferase Polypeptide 1,

Catalytic Subunit

NDUFB7 NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 7

NDUFB9 NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 9

Presented in the table are the symbol and name of 13 hub genes identified from
the predicted Bayesian network.

independent from each other. This can be seen from the
summary statistics of within and between cluster causal
edges in Table 5. These findings could be implicative of
some important molecular pathways, which may or may
not have been identified, that drive the development of
ovarian cancer.
We also looked into the subnetwork within each clus-

ter. Figure 8 shows the local subnetwork corresponding to
the first cluster which is involved mainly in cell division
processes. Two hub genes, TPX2 and UBE2C, are in the
central positions of this network. Our finding that there
are four gene clusters may suggest that the development
of ovarian cancer could be partially driven by the cell cycle
regulation, as well as the pathways related to cell shape and
motility, and mitochondrial system. Intervention (activa-
tion or suppression) on the hub genes or other important
genes may alter the entire network, therefore may control
key aspects of disease development.

Survival-centric network prediction
We applied SCBS and Bayesian network model to con-
struct a survival-centric network. In feature selection,
we used continuous data to select genetic/epigenetic fea-
tures that were most relevant to the overall survival
time of ovarian cancer patients. Starting from the first
node (overall survival time in days), the SCBS procedure
selected 66 genes (Table 6) and two methylation sites as
the nodes in the Bayesian Network. Interestingly only 6
genes including CCDC19, MMP1, SLC family, TEKT2,
WDR family and ZMYND10 had been reported relevant
to cancer survival in a separate study (where a total of
88 genes were reported, [29]). The death risk (binary) is
then used as the phenotype node to build a phenotype-
induced network. We defined the overall survival time
for less than 2 years as the "high-risk" (134 patients)
and the survival time greater than 4 years as the "low-
risk" (101 patients). In our predicted graph, there are 9
hub genes (similarly defined as above) that drive cor-
responding local subnetworks including C2orf39, FAP,
SLC2A2, LAPTM5, CD53, THBS2, CCDC63, SLC17A,
and LCT. Gene FAP has a known function to con-
trol fibroblast growth or epithelial-mesenchymal inter-
actions during development, tissue repair, and epithe-
lial carcinogenesis [22]. The inferred Bayesian network
(Figure 9, details are tabulated in Additional file 3: Table
S3) identified two genes, namely PSG11 and GALNT10,
that may be directly associated with the overall sur-
vival time of ovarian cancer patients (Figure 10). Both
genes are functionally related to glycoprotein synthe-
sis, as well as many other genes in the network such
as SLC2A2, SLC17A, CD53, THBS2, LCT, GYPA [22].
This indicates the biological pathway related to glyco-
protein synthesis may be implicative of death risk of
ovarian cancer patients. As reported in literature [30,31],
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MDS plot based on 245 cancer related genes
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Figure 5Multidimensional Scaling (MDS) plots for sample classification. (a)MDS plot based on 13 hub genes only where the distance
between samples is measured by Euclidean distance of the gene expression level; (b)MDS plot based on all the 245 genes in the predicted network
where each dot represents one sample and totally 580 samples including 8 normal samples (cancer-free, red), 15 early-stage samples (cancer at
stage I, green) and 557 high-grade samples (cancer at stage II or higher, black).

several tumor-associated glycoproteins were found on
the surface of many cancer cells including ovary, breast,
colon, and pancreatic cells and they may play poten-
tial roles in early detection of caners. One well-known
such glycoprotein is CA-125 (encoded by gene MUC16),
which is the primary protein used to measure serous
cancer tumor load, especially during recurrence, and it
is heavily glycosylated [31]. Pregnancy-specific glycopro-
teins (PSG) are mainly produced by the placental syncy-
tiotrophoblasts during pregnancy and these proteins com-
prise a subgroup of the carcinoembryonic antigen family
[22]. The protein encoded by gene GALNT10 may have
increased catalytic activity toward glycosylated peptides
compared to activity toward non-glycosylated peptides

[22]. As pointed out by several research groups [32-34],
some certain glycoproteins are closely associated with
women cancers such as ovarian cancer and breast can-
cer, affecting the death risk, chemotherapy resistance
and prognosis of ovarian cancer patients. The network
also involves genes of other important functions includ-
ing microtubules (RSHL3, TEKT1 and OLR1), extracel-
luar processes (ECM1, THBS2), hematopoietic (MS4A4,
SRGN, LAPTM5), and human immune system (LILRA1,
SIGLEC7, LAT2, LAIR1). This network suggested many
causal relationship between different features, some of
which have been known, for example, the edgeHOTAIR→
HOXC10 may be due to the fact that HOTAIR (a noncod-
ing RNA gene) is located within the Homeobox C (HOXC)

MDS plot for 245 cancer related genes
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Figure 6 Identification of gene clusters. (a)MDS plot based on correlation dissimilarity metric among 245 genes (each circle represents one gene),
where 13 hub genes are indicated by red dots; (b) The proportion of variance that can be explained by clustering (y-axis) against the number of
clusters (x-axis) based on different values of k (k= 1, 2, . . ., 7) by k-means clustering method. From this plot, the most likely number of clusters is four.
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Figure 7 Four major clusters with distinct cellular functions. (a)Multidimensional (MDS) plot based on correlation dissimilarity metric between
245 genes (each circle represents one gene). Genes falling into four clusters (by k-means clustering method where k = 4) are indicated by different
colors; (b) Correlation plot of the four clusters, the connection between a pair of genes represents a significant correlation.

gene cluster and it regulates the expression of HOX genes
such as HOXC and HOXD [22,35].

Discussion
In this paper we proposed an integrative approach in the
Bayesian network framework for causal inference between
genetic and epigenetic features in complex cancer data. It
presents novelty in two aspects. First, we demonstrated
that the stepwise correlation-based selection approach is
more effective than simple single-round selection method
in identifying important features in the genetic/epigenetic
pathways, particularly those that are indirectly associated
with the underlying phenotype. The method we proposed
relies on the correlation strength among connected nodes
andmay fail when the connections are weak, especially for
high-dimension data where assigning significance is chal-
lenging. Using literature-verified genes as seeds helps to
better select features relevant to the phenotype. The SCBS
procedure is model-free and computationally efficient and
it can be applied to other graphical models such asMarkov
Random Field (MRF, undirected graph) and gene-gene or
protein-protein interaction (PPI) network problems.

Table 5 Number of causal edges within/between four
clusters in the TCGA ovarian cancer data

Cluster 1 Cluster 2 Cluster 3 Cluster 4
(23) (18) (20) (184)

Cluster 1 (23) 46 0 2 35

Cluster 2 (18) 28 0 40

Cluster 3 (20) 40 29

Cluster 4 (184) 384

Presented in the table are the number of predicted edges within and between
clusters. The number of genes in each cluster is listed in the parentheses.

Second, we proposed amethod formodeling causal rela-
tionships between features of different types (continuous
or discrete) in a Bayesian network through a logit link
function. The block-wise coordinate descent (BCD) algo-
rithm accompanied with the Bayesian networkmodel pro-
vides a simple and efficient way to estimate the parameters
in the model. With a moderate sample size, this method
achieves reasonable accuracy even for a moderate-scale
network containing 200 nodes. This pipeline can be read-
ily applied to other complex cancer data for pathway anal-
ysis or to find the common pathways between different
but correlated phenotypes. For example, the TCGA now
has accumulated more than 1,000 samples from breast
cancer patients. It would be highly intriguing to know
whether these two common diseases share any common
molecular basis, especially for the basal-like breast can-
cer. As previously reported in literature [36], the basal-like
subtype of breast cancer is the most distinct of the four
subtypes (Luminal A, Luminal B, HER2-enriched and
Basal-like) and it is similar to high-grade serous ovarian
cancer at the mRNA expression level.
The Bayesian network model allows strict probabilistic

inference, but also has limitations. First, it lacks flexibil-
ity to model cyclic causal relationships. The BN cannot
model any cyclic pathways, for example, A→B→C→A,
which though may exist in gene regulation in vivo. Sec-
ond, most of the existing BN learning algorithms assume
sparsity for computational feasibility. If the true net-
work is dense or locally dense (dense subnetworks),
the weak causations may fail to be detected. Our pro-
posed BN with logit link function can model categorical
variables and discretized continuous variables simultane-
ously, while discretization procedure may cause loss of
information. A more desirable way could be to model
the discrete variable nodes with logit distribution, but
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Figure 8 Subnetwork extracted from Figure 3 which is corresponding to cell division process (mitosis, spindle formation etc), containing
18 nodes and 28 directed edges. Direction of the edge indicates the downstream feature is regulated by the upstream one. Red edge represents
activation and black edge represents suppression. TPX2 and UBE2C are two hub genes that may drive this subnetwork.

the continuous variable nodes with Gaussian or other
continuous distributions. This direction demands future
research. The coordinate descent is successful in solv-
ing the LASSO-type problem, especially in the sparse
BN problem. Due to the super-exponentially increased
number of possible BNs, the traditional sampling-based
methods such as Metropolis-Hastings algorithm ([13,14])
is computational infeasible to estimate the network with
moderate number of nodes, e.g., 100 nodes. In our prob-
lem involving 339 nodes, the BCD algorithm took about
20 minutes on a single CPU to complete the estima-
tion for a given penalizing parameter λ (Materials and
Methods).
We illustrated the flexibility of this pipeline with two

phenotypes, namely the ovarian cancer phenotype itself
and the survival time of the cancer patient. The induced
network by the cancer phenotype contains a set of 245
genes forming into four major clusters of distinct major
functions, coordinated by 13 hub genes. Some of the

hub genes (e.g., ARID1A) have been reported by other
researchers for their important roles in genetic pathways,
while other genes (NDUFB7 and NDUFB9) are newly dis-
covered in this study. Their functions in ovarian cancer
need to be further investigated. Our discovery that the
mitochondrial systems are regulated in serous tumors is
consistent with the hypothesis that the Warburg effect
impacts tumor progression as suggested in published
studies ([37]). We also found that pathways related to gly-
coprotein synthesis, hematopoietic and immune systems
correlate with the survival rate of ovarian cancer patients.
In particular, we discovered that the two genes related to
glycoprotein synthesis, PSG11 and GALNT10, can signif-
icantly affect the overall survival time of ovarian cancer
patients.

Conclusions
Understanding the biological mechanism of ovarian
cancer has significant practical importance for clinical

Table 6 66 survival-related genes

AK7 C2orf39 CCDC19 LOC136288 WDR38 C1orf192 CCDC37

FLJ23049 RSHL3 TEKT1 CXorf41 ZMYND10 RNASE3 LILRA1

MS4A4A RNASE2 SIGLEC7 ABI3 LAT2 OLR1 SIGLEC9

CD53 LAIR1 SAMSN1 SRGN RGS18 LAPTM5 PSG11

C10orf96 HOTAIR HTR5A TDH CCDC83 GYPA USP9Y

UTY HOXC10 LCT NPY5R SLC2A2 MBL2 PEX5L

PSG8 SLC17A2 CCDC63 HOXA11 GALNT10 GJB2 ITGA5

MMP2 RUNX1 FAP INHBA THBS2 VCAN ADAMTS2

ALPK2 ECM1 SPHK1 AEBP1 COL5A1 LUM ANTXR1

C21orf96 COL8A1 HOM-TES-103
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Figure 9 Survival induced Bayesian network, including expression level of 66 genes (yellow) and promoter methylation at 2 sites (green).
Two genes, PSG11 and GALNT10, have direct effect on the survival time. Direction of the edge indicates the downstream feature is regulated by the
upstream one. Red edge represents activation and black edge represents suppression. Details are listed in Additional file 3: Table S3.

diagnosis and treatment. Timely advent of TCGA project
has provided the most comprehensive genomic data
resource for cancer study at the molecular and system
level. Nevertheless, how to utilize these complex data for
discovery ofmolecularmechanism of cancers remains one

of the biggest challenges in this field. To this end, we
propose a new integrative approach in this paper, which
presents two innovations: a stepwise feature selection
procedure and a Bayesian network model that incorpo-
rates both continuous and discrete features for causal

a b

Figure 10 Survival probability against time of different groups by the expression level of gene GALNT10 (a) and gene PSG11 (b). The x axis
represents the survival time (in days) and y axis represents survival rate. By log-rank test, the p-values are 4.9 × 10−5 and 2.2 × 10−9 for PSG11 and
GALNT11, respectively. The black solid line is based on all subjects (235 patients) and the 95% confidence limits are represented by the black dashed
lines. The red and blue lines are based on overexpressed and underexpressed group, respectively.
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inference. The predicted graph for the ovarian cancer data
confirmed numerous genetic pathways reported in the lit-
erature, as well as many new ones that may provide new
clues to guide future research. The graph suggested 13
hub genes that may drive certain subnetworks therefore
play important roles in ovarian cancer. Clustering analy-
sis suggested four gene clusters corresponding to distinct
biological processes including cell division, tumor inva-
sion and mitochondrial system. In addition, we found
that genes related to glycoprotein synthesis, hematopoi-
etic, immune system could be highly predictive of overall
survival time of ovarian cancer patients.

Methods
Data
Datasets in ovarian cancer were downloaded from the
Cancer Genome Atlas (TCGA) data portal (http://tcga-
data.nci.nih.gov). We extracted four types of molecular
data including gene expression, promoter methylation,
somatic mutation and DNA copy number variation, using
the "data matrix" tool provided by TCGA data portal.

Bayesian network with a logit link function
Bayesian Network can be used to model a set of ran-
dom variables (nodes) and their conditional dependencies
(directed edges) [11]. In general, the joint likelihood func-
tion of nodes X1, . . . ,Xp in a BN can be expressed as:

P(X1, . . . ,Xp) =
p∏

i=1
P

(
Xi|�G

i

)
(1)

where graph G = (V ,E) represents the topological struc-
ture of the Bayesian network, V = {

X1, . . . ,Xp
}
denotes

the set of nodes and E =
{
Xj → Xi,Xj ∈ ∏G

i

}
denotes

the set of edges, and �
G
i ⊆ {

X1, . . . ,Xp
} \ {Xi} stands

for the parent set of Xi. We say Xj ∈ �
G
i if Xj causes Xi,

written as Xj → Xi. A BN is called Gaussian Bayesian Net-
work (GBN) if Xi is normally distributed with the mean
equal to a linear combination of Xj ∈ �

G
i . The GBN is the

most popular BN model and its structure learning prob-
lem has been discussed by several researchers [20,38]. In
our motivating example, however the network involves
both continuous and discrete random variables. Here we
discretize the continuous random variable and consider a
multinomial logistic model.
Let Xi take values from {1, . . . ,Ki} with probabilities{

πi1, . . . ,πiKi

} (
s.t.

Ki∑
k=1

πik = 1
)
, the BN model with logit

link function can be written as:

log
πik
πiKi

= βik0 +
∑
j �=i

Kj−1∑
l=1

βikjlI
{
Xj = l

}
, (2)

where k = 1, . . . ,Ki − 1 and i = 1, . . . , p. Here we trans-
form the network structure to a coefficient matrix where
βikjl = 0 for all k and l means Xj �→ Xi, and other-
wise Xj → Xi. Therefore estimating the structure of G is
equivalent to estimating matrix {βikjl}. For simplicity, we
illustrate the parameter estimation using binomial logistic
model where all Xi’s only take values 0 or 1. Define πi ≡
prob(Xi = 1), then

log
πi

1 − πi
= βi0 +

∑
j �=i

βijXj. (3)

Suppose we observe data from N subjects. Let Xn =
(Xn0,Xn1, . . . ,Xnp)T , where Xn0 = 1 is the dummy
variable, and Xni = 0 or 1 for n = 1, . . . ,N ; i = 1, . . . , p.
Define πni ≡ prob (Xni = 1). LetXn−i = (Xn0, . . . ,Xn(i−1),
Xn(i+1) . . . ,Xnp)T , and βi = (βi0, . . . ,βi(i−1),βi(i+1), . . . ,
βip)T , then:

πni = exp
(
βT
i Xn−i

) /(
1 + exp

(
βT
i Xn−i

))
. (4)

To achieve the sparsity, we apply the L1 penalty to the log-
likelihood ([20,38]) as follows:

L∗(β) =
N∑

n=1

p∑
i=1

(
Xniβ

T
i Xn−i − log

(
1 + exp

(
βT
i Xn−i

)))

− λ

p∑
i=1

‖βi‖L1 .

(5)

We aim to optimize the objective function (5) under
the constraint of acyclicity. Finding the global maximizer
is typically difficult in such a high dimensional space.
Here we consider the coordinate descent (CD) algorithm,
which has been successfully used to solve lasso regres-
sion problems [20,39]. The CD algorithm is based on
single-parameter updating strategy tominimize the objec-
tive function coordinate-by-coordinate. For our model,
the single-parameter updating can be done as follows,
in particular, we seek the maximizer β̂ij of the following
objective function given all the other parameters, denoted
β−ij:

L∗
i
(
βij|β−ij

) =
N∑

n=1

(
Xniβ

T
i Xn−i−log

(
1 + exp

(
βT
i Xn−i

)))
− λ|βij|.

(6)

After excluding the constant part, we have:

L∗
i
(
βij|β−ij

)=C1βij − λ|βij| −
N∑

n=1
log

(
1 + C2n exp

(
C3nβij

))
.

http://tcga-data.nci.nih.gov
http://tcga-data.nci.nih.gov
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where C1 =
N∑

n=1
XniXnj ≥ 0, C2n = exp

( ∑
k �=i,j

βikXnk

)
>

0, C3n = Xnj ≥ 0. Note that L∗
i
(
βij|β−ij

)
is concave

and differentiable at (−∞, 0) ∪ (0,∞). Let f
(
βij

) = −
N∑

n=1
log

(
1 + C2n exp

(
C3nβij

))
, do the following to find the

maximizer of L∗
i
(
βij|β−ij

)
:

1. If f′(βij)|βij=0 ∈ (−∞,−C1 − λ), then L∗
i (βij|β−ij) is

decreasing at 0 and β̂ij < 0. Find β̂ij by Newton’s
method;

2. If f′(βij)|βij=0 ∈ (−C1 − λ,−C1 + λ), then
L∗
i (βij|β−ij) is increasing on (−∞, 0) and decreasing

on (0,∞), so β̂ij = 0;
3. If f′(βij)|βij=0 ∈ (−C1 + λ,∞), then L∗

i (βij|β−ij) is
increasing at 0 and β̂ij > 0. Find β̂ij by Newton’s
method.

The acyclicity constraint brings a major difficulty in BN
learning problem, especially when the topological order
of nodes is unknown. One immediate result of this con-
straint is that βij and βji cannot be both nonzero. To
take advantage of this implication, Fu and Zhou (2013)
proposed a blockwise coordinate decent (BCD) algorithm
where the p(p − 1) parameters are partitioned in to
p(p − 1)/2 blocks. Each block consists of βij and βji.
The BCD algorithm [20] can be implemented as follows
(starting from an empty network where all βij=0):

• Step 1: For each pair of βij and βji, β̂ij ⇐ 0 stands for
that β̂ij has to be 0 under the constraint of acyclicity:

a. If β̂ji ⇐ 0, find the maximizer β̂ij of L∗
i w.r.t.

βij.
b. If β̂ij ⇐ 0, find the maximizer β̂ji of L∗

j w.r.t.
βji.

c. If either β̂ij or β̂ji can be nonzero, then
compare the two sums:
S1 = L∗

i |βij=0 + L∗
j |βji=β̂ji

and
S2 = L∗

i |βij=β̂ij
+ L∗

j |βji=0. Find maximizer of
max(S1, S2).

• Step 2: Repeat step 1 until the maximum difference
between two successive cycles is below some
threshold.

To check the acyclicity of the candidate graph after edge
i −→ j is added, we use a simple breadth-first algorithm
detailed as follows. The time complexity of this algorithm
is O(|V | + |E|):

• Step 1: Remove all the edges coming into j and
identify the children set of j, denoted by CSj.

• Step 2: If i ∈ CSj, then stop. Otherwise remove all the
edges coming into CSj and find the children set of CSj.

• Step 3: Repeat until i is found or all the edges were
removed.

Notice that in multinomial setting, the acyclicity con-
straint forces multiple β’s to be zero. For instance, in
ternary case, Xi → Xj indicates that four β’s are
zeroes simultaneously. Another important issue in Lasso
regression is the choice of the tuning parameter λ.
Cross-validation is the most commonly used method for
selecting λ, which however, tends to select a too small λ

resulting in high false positive rate ([20]). To overcome
this difficulty, an empirical λ selection method was pro-
posed in [20] that can guarantee significant increase of
the maximized likelihood value as a function of the graph
complexity (number of edges). We employed this method
for the selection of λ and the sequence of candidates is set
to be {1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16}.

Simulation I: BCD algorithm for BN with discrete nodes
In the first simulation, we evaluated the performance of
BCD algorithm in the proposed Bayesian network with
logit link function as follows. We first simulated a ran-
dom graph (i.e., G = (V ,E)) with p nodes and 2p edges
respectively. The simulated graph is a weakly connected
directed graph generated using R package bnlearn ([40]).

Table 7 Simulation I results

p |E| β N P TPR (skeleton) FDR (skeleton)

50 100 0.5 500 46.0 0.298 (0.410) 0.468 (0.152)

1000 63.2 0.420 (0.627) 0.333 (0.063)

2000 78.4 0.600 (0.783) 0.273 (0.032)

1 500 78.2 0.550 (0.740) 0.294 (0.051)

1000 92.8 0.676 (0.910) 0.265 (0.019)

2000 98.4 0.781 (0.960) 0.236 (0.017)

100 200 0.5 500 110.6 0.260 (0.400) 0.528 (0.272)

1000 124.2 0.328 (0.557) 0.484 (0.104)

2000 168.4 0.590 (0.825) 0.291 (0.019)

1 500 163.2 0.539 (0.735) 0.349 (0.098)

1000 167.8 0.614 (0.892) 0.347 (0.018)

2000 194.4 0.768 (0.959) 0.216 (0.010)

200 400 0.5 500 252.6 0.225 (0.358) 0.647 (0.444)

1000 272.8 0.383 (0.597) 0.438 (0.132)

2000 326.4 0.546 (0.791) 0.337 (0.031)

1 500 347.2 0.535 (0.825) 0.377 (0.073)

1000 364.8 0.583 (0.872) 0.359 (0.044)

2000 396.4 0.698 (0.963) 0.294 (0.028)

Presented in the table are the average number of predicted edges (P), true
positive rate (TPR) and false discovery rate (FDR) for both directed and
undirected (skeleton) edges over 10 replicated samples in each setting
(p |E|,β, N). The number of edges |E| is set to be 2p.
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Given each G, we simulated N independent observations,
i.e., Xn = (Xn1, . . . ,Xnp), for n = 1, ..,N . If Xnj is caused
by other nodes, then we simulated it based on Bernoulli
distribution with success probability following the logis-
tic regression model. For simplicity, for each observation
the causal effect βij (if Xi → Xj in G) in the logis-
tic regression model was set as a constant. For those
nodes in the network but not caused by any other nodes,
we simulated them from binomial distribution indepen-
dently with success probability randomly generated from
uniform distribution from 0.1 to 0.9. In this simula-
tion we consider a crossed design of p = 50, 100, 200,
βij = 0.5, 1 and N = 500, 1000, 2000. For each setting
of (p,βij,N), 10 replicated samples were generated. We
evaluated the estimated network under two different cri-
teria: the directed version and undirected version of net-
work (skeleton). In the former, we count an edge as a true
positive only if it has the correct link and direction. For
the skeleton comparison, an edge is counted as a true pos-
itive as long as it has the correct link. Table 7 presents the
average number of predicted edges (P) from the 10 repli-
cates for each setting, true positive rate (TPR) and false
discovery rate (FDR) for both directed and undirected
edges. Unsurprisingly the estimation of network structure
is affected by the complexity of network, magnitude of
causal effect and sample size. For a sparse network with

200 nodes, and sample size N = 2000, and β = 1, the
BCD algorithm achieves an average TPR of 0.7 and 0.96
for directed and undirected (skeleton) graphs respectively.
This simulation demonstrates that the BCD algorithm
performs reasonably well when applied to categorical data
in a moderate complex network when the sample size is
relatively large.

Comparison of three BNmodels on real data
To benchmark our logistic BN model, we compared it
with two other BN models, namely the Gaussian BN
model and multinomial BN model, on a popular data
set [41] where the true causal network is known and
experimentally-validated. This data set contains the
abundance measurement of 11 proteins in 5400 samples,
and has been used to elucidate the signaling pathway
structure. Both the continuous and discrete versions of
data are available online. The known protein-protein net-
work is a Bayesian Network containing 11 nodes and
20 directed edges. Because this data set is based on
experimental interventions, we adapt our model by delet-
ing the intervention terms from the likelihood func-
tion. Figure 11 shows the true graph and estimated
graphs by three different models and Table 8 summa-
rizes the true positive rate and false discovery rate by
three models. In terms of TPR and FDR, the logistic

a b

c d

Figure 11 Comparison of three different Bayesian network models. (a) The known signaling pathway (Bayesian network) containing 11
proteins (nodes) and 20 causal relations (directed edges); (b) Predicted network by logistic BN model; (c) Predicted Network by Gaussian BN model;
(d) Predicted network by Multinomial BN model.
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Table 8 Comparison of three different BNmodels

Model P TPR (skeleton) FDR (skeleton)

Gaussian BN 26 0.55 (0.70) 0.58 (0.46)

Multinomial BN 20 0.40 (0.60) 0.60 (0.40)

Logistic BN 22 0.55 (0.80) 0.50 (0.18)

Presented in the table are the number of predicted edges (p), true positive rate
(TPR) and false discovery rate (FDR) for both directed and undirected (skeleton)
edges using three different BN models. The true network is known and it
contains 11 nodes and 20 edges.

model appears to perform slightly better than other two
models.

Simulation II: stepwise correlation-based feature selector
In the second simulation, we compare the proposed step-
wise correlation-based feature selector with other existing
methods. The feature selection step is to define a set of
nodes of smallest possible size but include most possi-
ble nodes that are involved in the casual structure in the
true phenotype-induced Bayesian network. Suppose we
aim to select p variables from S (S >> p) candidates as
the nodes in Bayesian network based on a random sample
of N observations. Assume that the phenotype-induced
Bayesian network truly has p + 1 nodes (including the
phenotype itself ). The proposed stepwise feature selection
method starts with the phenotype node and selects the
features that are most correlated with the current nodes in
a stepwise fashion based on a correlation or mutual infor-
mation metric (in this paper, we use correlation). This
procedure is a natural mimic of network structure and can
identify those nodes indirectly associated with the phe-
notype. In practice, the method can be implemented as
follows:

• Step 1: Calculate the correlation coefficients between
the current node Xi and all the other nodes, denoted
by ρij, j �= i. Keep k most correlated nodes with Xi
based on ρij for further filtering.• Step 2: Calculate the p-value of correlation coefficient
for each of the k nodes from step 1, select the node if
the p-value is significant under Benjamini-Hochberg
(BH) procedure with FDR≤ 0.05.

• Step 3: Repeat step 1 and 2 until p nodes are selected.

In practice we need to pre-define the value of p and k
based on the complexity of the network. The choice of p
is subject to the feature pools size S and the scale of the
network to build. The computing time is sub linear to p.
We recommend to choose a k of 4, 5 or 6 to attain moder-
ate complexity or sparsity of the network (see a simulation
study below for the choice of k).
To test the SCBS method, we conducted a simulation

study with S = 10, 000 features, among which only p = 49
are truly involved in the phenotype related network. We
first generated 50 random sparse graphs (i.e., G = (V ,E))

consisting of 50 nodes and 100 directed edges (one node
will be randomly chosen to be the phenotype node) using
bnlearn ([40]). For each graph, we simulated eight sam-
ples according to the binomial logistic model, four with
constant βij = 1 and the rest with βij = 2 at four dif-
ferent sample sizes N = 500, 1000, 2000, 5000. By using
the topological order, each node can be simulated con-
ditioning on the outcome of its parent nodes. For those
nodes in the directed network but not caused by any
other nodes, or the 9950 features outside the network,
we simulated them from binomial distribution indepen-
dently with success probability randomly generated from
uniform distribution from 0.1 to 0.9. The SCBS with k = 4
was applied to each data set and 49 features are identi-
fied from the sea of 10,000 candidates. Compared to the
Pearson’s Chi-square test (single-round test for features
between two phenotypic groups), the proposed SCBS per-
forms uniformly better in all situations in terms of true
positive rate (as shown in Figure 12, total positives were
controlled at 49 for both methods). In particular, a small β
poses more challenges in estimation or testing, while the
SCBS can outperform the Chi-square test by 3-4 folds in
true positive rate of identified phenotype-related features.
A further simulation study on the choice of k was car-

ried out using the same strategy as above with S = 10, 000,
p = 49, βij = 1 and N = 1000. We generated 50 random
graphs with average degree 4 (100 edges), 50 graphs with

Figure 12 Simulation II: Comparison between Pearson’s
Chi-square test and SCBS procedure in feature selection.
Four curves presented in the plot are based on the true positive
rate (TPR) by two methods under two different causal effects β = 1
and β = 2. Sample sizes are set to be 500, 1000, 2000 and 5000. The
total number of positives is restricted to be 49 for both methods
and the TPR is calculated as the number of true positives divided
by 49.
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Figure 13 True positive rate (TPR) of selected feature against the
choice of k based on networks with average degree 4 (100
edges, blue curve), 8 (200 edges, black curve) and 12 (300 edges,
red curve), respectively. It is shown that increasing network density
leads to increasing TPR, and a k of 4, 5 or 6 performs better in all
situations.

average degree 8 (200 edges) and 50 graphs with average
degree 12 (300 edges), then apply SCBS with different k
(k = 1, 2, . . . , 10) to each data set and select 49 features.
Figure 13 shows the true positive rates of the selected
features under different choices of k for networks with
different average degrees. It is shown that increasing net-
work density leads to increasing true positive rates, and a
k of 4, 5 or 6 performs better in all situations. Therefore
for networks with moderate complexity, we recommend
to choose k = 4, 5, 6 since smaller k tends to miss weakly
connected nodes and larger k tends to catch more false
positives.
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