
Sridharan et al. BMC Systems Biology  (2015) 9:5 
DOI 10.1186/s12918-015-0146-2
RESEARCH ARTICLE Open Access
Discovery of substrate cycles in large scale
metabolic networks using hierarchical modularity
Gautham Vivek Sridharan1†, Ehsan Ullah2†, Soha Hassoun2 and Kyongbum Lee1*
Abstract

Background: A substrate cycle is a set of metabolic reactions, arranged in a loop, which does not result in net
consumption or production of the metabolites. The cycle operates by transforming a cofactor, e.g. oxidizing a
reducing equivalent. Substrate cycles have been found experimentally in many parts of metabolism; however, their
physiological roles remain unclear. As genome-scale metabolic models become increasingly available, there is now
the opportunity to comprehensively catalogue substrate cycles, and gain additional insight into this potentially
important motif of metabolic networks.

Results: We present a method to identify substrate cycles in the context of metabolic modules, which facilitates
functional analysis. This method utilizes elementary flux mode (EFM) analysis to find potential substrate cycles in the
form of cyclical EFMs, and combines this analysis with network partition based on retroactive (cyclical) interactions
between reactions. In addition to providing functional context, partitioning the network into modules allowed
exhaustive EFM calculations on smaller, tractable subnetworks that are enriched in metabolic cycles. Applied to a
large-scale model of human liver metabolism (HepatoNet1), our method found not only well-known substrate
cycles involving ATP hydrolysis, but also potentially novel substrate cycles involving the transformation of other
cofactors. A key characteristic of the substrate cycles identified in this study is that the lengths are relatively short
(2–13 reactions), comparable to many experimentally observed substrate cycles.

Conclusions: EFM computation for large scale networks remains computationally intractable for exhaustive substrate
cycle enumeration. Our algorithm utilizes a ‘divide and conquer’ strategy where EFM analysis is performed on
systematically identified network modules that are designed to be enriched in cyclical interactions. We find
that several substrate cycles uncovered using our approach are not identified when the network is partitioned
in a more generic manner based solely on connectivity rather than cycles, demonstrating the value of targeting
motif searches to sub-networks replete with a topological feature that resembles the desired motif itself.
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Background
Cellular metabolism is exceedingly complex, involving
the coordinated actions of many enzymes and regulatory
molecules. A useful way to model cellular metabolism is
to represent it as a network of biochemical reactions,
where one enzyme-catalyzed reaction connects to an-
other through shared reactants, products, and/or cofac-
tors. A common theme in the study of these systems has
been to relate a network’s function(s) to its layout or
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“topology”. For example, evolved networks typically har-
bor hubs to which less connected nodes attach as they
join the network. This type of “small-world” property has
been demonstrated for metabolic networks, with implica-
tions for evolution of metabolic functions. Another im-
portant property is modularity; i.e., these networks appear
to contain smaller subsystems, analogous to integrated cir-
cuit modules comprising a larger digital circuit, which has
practical implications for engineering biological cells to
acquire new synthetic functions [1].
Several studies have shown that the modules in a

metabolic network have hierarchy [2]. These studies uti-
lized graphs, which facilitated the use of established al-
gorithms to compute topological properties. Recently,
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we introduced a graph-based metric, termed Shortest
Retroactive Distance (ShReD), to assess the degree of mu-
tual influence, or retroactive interactions, between reac-
tions in a metabolic network. This metric was used to
hierarchically partition a metabolic network into modules
that are enriched in allosteric feedback loops and meta-
bolic cycles [3]. Partitioning a network to achieve enrich-
ment of a particular feature, or motif, offers the benefit
that the motif can be studied in its modular context.
One motif of particular interest is the substrate cycle,

which refers to a set of reactions that forms a loop and
does not lead to a net production or consumption of the
participating metabolites. Thus defined, a substrate cycle
would be thermodynamically infeasible without coupling
the cycle’s operation to a thermodynamically favorable
process such as ATP hydrolysis. Examples of experimen-
tally confirmed substrate cycles involve opposing reactions
in glycolysis and gluconeogenesis: inter-conversion of glu-
cose and glucose 6-phosphate; fructose 6-phosphate and
fructose 1,6-bisphosphate; and phosphoenolpyruvate and
pyruvate. Often also labeled as futile cycles for the seem-
ingly wasteful energy expenditure, substrate cycles have
more recently been ascribed physiological functions, for
example, thermogenesis [4]. Futile or substrate cycles are
not to be confused with infeasible loops, which refer to
thermodynamically infeasible cycles.
In the context of cellular homeostasis, substrate cycles

could enable the cell to maintain an independent steady-
state cycle flux, where the cycle flux can in theory fluctu-
ate without directly altering other fluxes in the metabolic
network, provided the cycle does not drastically disturb
the cofactor pools. This feature could promote local ro-
bustness, which is a key property of modularity [5]. Con-
versely, if a substrate cycle significantly impacts the
consumption or generation of a particular cofactor, then
the enzymes of the cycle could be manipulated to select-
ively adjust the cofactor level while minimally perturbing
other parts of metabolism. This type of direct and select-
ive targeting of cofactors could be quite useful in modu-
lating cellular energy expenditure. A substrate cycle in
adipose tissue, esterification and hydrolysis of triglycer-
ides, has been investigated as a target to treat obesity
through manipulation of cellular bioenergetics [6]. Differ-
ential expression of substrate cycle enzymes has also been
explored as a possible approach to modulate cancer cell
metabolism [7].
In this light, comprehensively characterizing substrate

cycles embedded throughout metabolism could not only
shed light on the physiological role of this motif, but also
discover potentially novel targets to manipulate meta-
bolic function. Recently, Gebauer and coworkers showed
that cyclical elementary flux modes (EFMs) are potential
substrate cycles [8]. Using EFMEvolver [9], the authors
found more than 200,000 cyclical EFMs, with a median
length (defined as the number of reactions in an EFM) of
35. However, even this large number is likely an underesti-
mate, as the authors focused on substrate cycles involving
one specific cofactor, ATP. Given the very large number of
potential substrate cycles, the analysis would be greatly fa-
cilitated by placing the cycles into context.
We present in this paper an approach for identifying

substrate cycles in the context of hierarchical modularity.
We employ the ShReD metric to partition a large-scale re-
construction of human liver metabolism (HepatoNet1)
[10] into modules enriched in metabolic cycles, and con-
duct an EFM analysis on each module at varying levels of
partition hierarchy. We find that it is possible to complete
an exhaustive EFM enumeration for all but a small num-
ber of modules at the top of the hierarchy. Interestingly,
many of the cyclical EFMs identified in this study span
several metabolic modules, including transport, lipid syn-
thesis, folate metabolism, sugar metabolism, and amino
acid metabolism. The operation of these cyclical EFMs are
coupled to many different cofactors as well as transport of
inorganic hub compounds such as sulfate, phosphate, and
hydronium ions.

Methods
Substrate cycle definition
An elementary flux mode (EFM) is a steady-state flux
pattern in which flux proportions are fixed while their ab-
solute magnitudes are indeterminate [11]. A sequence of
reactions, or pathway, is an EFM if and only if it meets the
following three conditions. First, the reactions along the
pathway must proceed in a direction dictated by thermo-
dynamic feasibility. Second, all metabolites internal to the
network along the pathway are balanced under quasi
steady-state conditions. That is, each internal metabolite
does not accumulate or deplete. Third, each EFM must be
independent from other EFMs in the network. In a cyc-
lical EFM, the reactants of the first reaction in the path-
way coincide with the products of the last reaction. By
definition, a cyclical EFM contains a Strongly Connected
Component (SCC), as each metabolite node in the cycle is
reachable from any other metabolite node in the cycle.
A substrate cycle is defined similarly as a cyclical EFM,
except that not all internal metabolites are balanced,
including cofactor metabolites. Here, we define cofac-
tors as metabolites that contribute to the thermodynamic
feasibility of a reaction, but do not participate as a
recognizable reactant or product. Examples of cofactors
include electron and phosphate group donors and re-
ceivers (e.g. NADH, NAD+, ATP, ADP, etc.) as well as
inorganic molecules and ions involved in membrane
transport. A substrate cycle balances reactant and product
metabolites, but not the cofactor metabolites. Conse-
quently, steady-state operation of a substrate cycle results
in the net production or consumption of a cofactor. In the
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case of a network or sub-network that has been stripped
of cofactors, a cyclical EFM represents a putative substrate
cycle whose activity in vivo must be verified experimen-
tally. Given the above definitions for cyclical EFM and
substrate cycle, EFM enumeration techniques can be uti-
lized to identify novel substrate cycles if the enumeration
is performed on a network that does not include cofactors.
The cyclical EFMs found in the modified network without
the cofactors are not necessarily cyclical EFMs in the ori-
ginal network with the cofactors.
Due to the scalability limitation of existing EFM enu-

meration techniques, we pursued an approach that re-
stricts EFM analysis to sub-networks or modules, rather
than the entire network. While this approach has limita-
tions for traditional EFM analysis [12] EFM enumeration
is applied here to identify only cyclical EFMs. By defin-
ition, a cyclical EFM begins and ends with the same set
of balanced metabolites. Therefore, all parts of a cyclical
EFM found in a subnetwork reside in the subnetwork.
Given that a sub-network is a subset of the larger parent
network, it follows that a cyclical EFM found in a sub-
network will also be found in the larger parent network.

Metabolic models and graph representation
We used a published model of human liver metabolism
(HepatoNet1) [10] as the base network. From this base
model, we derived two additional models, one for EFM
analysis (hepEFM) and one for ShReD-based partitioning
(hepShReD).
To derive hepEFM, we first removed reactions that

either produce or consume an extracellular metabolite
from the network, resulting in a graph comprising 1,418
reaction nodes. The rationale for removing reaction nodes
connecting extracellular and intracellular metabolites
was to focus on EFMs internal to the network. We then
removed cofactors (for full list see Additional file 1:
Removed_Metabolites), as these metabolites were not
balanced for EFM computation to identify substrate cy-
cles. The classification of a metabolite as either cofactor
or main metabolite can in some cases be subjective. Even
nucleotides with multiple phosphate groups (such as
ATP), which are typically involved in many metabolic re-
actions as cofactors, sometimes participate in synthesis
(or degradation) pathways as main reactants and prod-
ucts. For example, UTP(c) was not classified as a cofactor
in this study, because it is a substrate for the production
of UDP-N-acetylglucosamine(c) (r0115). Moreover, the
degree connectivity of a metabolite does not provide a suf-
ficiently rigorous criterion either; i.e. a highly connected
“hub” metabolite is not necessarily a cofactor. Glutamine
(c) is a hub metabolite that participates in more than 100
reactions (Additional file 1: Metabolite_Degrees); however,
it is also a major substrate in numerous catabolic and ana-
bolic reactions, e.g. peptide synthesis reactions, and was
thus not classified as a cofactor in the present study. Con-
versely, we classified peroxisomal NADPH(p) and NADP
(p) as cofactors, even though they participate in only 3 re-
actions and thus are not hub metabolites. These examples
illustrate that the classification of metabolites as cofactors
is context-dependent.
The hepShReD model for modularity analysis was also

derived the same way as hepEFM except that certain co-
factors such as ATP, NADH, and NADPH were retained
in the model, since these molecules mediate important
regulatory interactions between reactions that are cap-
tured using the ShReD metric (for cofactors retained in
hepShReD, see Additional file 1: Removed_Metabolites).
However, other inorganic cofactors (H20, H

+, sulfate, etc.)
were still removed from hepShReD since reaction cou-
plings determined based on the shared production and
consumption of these metabolites are not meaningful in a
metabolic context. The final hepShReD model was then
abstracted as a reaction-centric directed graph based on
the scheme illustrated in Figure 1. In addition, reactions
producing or consuming extracellular metabolites were
also removed, similar to the hepEFM model.

Network partitioning
ShReD-based network partitioning
The hepShReD graph was partitioned into a hierarchical
tree of modules based on the ShReD metric as described
in our previous work [3]. Briefly, a ShReD value (length
of the shortest directed cycle spanning two reaction
nodes) was computed for every reaction pair in the parent
network. The reaction pairs were ordered based on their
corresponding ShReD values. The network was then parti-
tioned into two subnetworks such that reaction pairs with
larger ShReD values were split apart, whereas reaction
pairs with shorter ShReD values were placed into the same
sub-network. The ShReD-based partition was iterated on
each successively formed subnetwork until the resulting
partition no longer yielded a positive modularity score
[13]. In case a partition produced a subnetwork that was
not completely connected, the next iteration of the parti-
tion algorithm was performed on the connected compo-
nents of this subnetwork. The ShReD-based partitioning
algorithm takes into account both stoichiometric and
regulatory (e.g. allosteric) interactions between reactions
[3]. The latter could establish feedback loops that are
important in determining retroactivity. However, the present
study did not consider regulatory interactions, as the
Hepatonet1 model did not include this information.

Newman-based network partitioning
The hepShReD graph was also partitioned using Newman’s
metric [14], which only takes into account network con-
nectivity. Briefly, Newman’s method seeks to place two
nodes into the same module, if the number of edges



Figure 1 Representation of metabolic networks as reaction-centric graphs for cyclical EFM analysis. (A) An example of a bipartite graph
representing a small metabolic network. Circles and square represent metabolites and reactions, respectively. A directed edge from a metabolite
node to a reaction node indicates that the reaction consumes the metabolite. A directed edge from a reaction node to a metabolite node
indicates that the reaction produces the metabolite. Once cofactors and dead-end metabolites (M1, M4) are removed, EFM analysis finds
two flux modes: [R1, R2, R3] and [R2, R4, R5, R6]. The latter is a substrate cycle. (B) A reaction-centric graph of the network shown in (A).
Of the two elementary modes identified, only [R2, R4, R5, R6] comprises a SCC, and thus forms a cycle.
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between the nodes exceeds the number that is expected
due to random connections. In our prior work, we found
that the modules obtained using the ShReD method
was more likely to contain retroactively connected pairs
of nodes, i.e. cyclical pathways, compared to Newman’s
method [3].

Identifying substrate cycles as cyclical Elementary Flux
Modes (EFMs) within modules
Each module in the hierarchical tree of partitions was
analyzed for cyclical EFMs as follows. A stoichiometric
matrix (S-matrix) was constructed for the reactions within
a module by extracting the corresponding reaction col-
umns from the S-matrix of hepEFM, and removing all
dead-end metabolites without both a source and sink re-
action. The module S-matrix was then analyzed using
EFMTool [15] to enumerate all EFMs that can be formed
using all or some subset of the reactions in the module.
However, not every EFM necessarily represents a putative
substrate cycle. For example, EFMtool would report both
a cyclical and non-cyclical EFM for the network shown in
Figure 1A. Thus, an additional check is needed. In a di-
rected graph, every cycle forms a strongly connected com-
ponent (SCC), as there is a path from each node to every
other node. It follows that every nontrivial SCC contains
at least one directed cycle. Based on this property, we can
determine whether an EFM is cyclical by representing it
as a directed graph, and checking whether all vertices in
the corresponding graph belong to a single SCC. EFMtool
automatically splits a reversible reaction R into two irre-
versible reactions Rf (forward) and RR (reverse). However,
the tool does not report EFMs involving only one reaction.
Therefore, isomerization reactions at equilibrium (e.g. the
inter-conversion of citrate and cis aconitate in the TCA
cycle) would not be identified, even though they would be
considered substrate cycles by our definition.
The enumeration of cyclical EFMs started at the ter-

minal leaf modules of the hierarchical partition tree, and
proceeded in order of increasing module height (defined
as the maximum path length from the module to the root
of the partition tree). The number of reactions in a mod-
ule generally decreases from the root module (comprising
all reactions in the model) with decreasing module height.
Therefore, it was expected that the EFM calculations,
which can be computationally intractable for large net-
works, would most likely complete within a reasonable
run time (<1 h) for modules with small height. For a small
number of modules at greater height (near the root mod-
ule), EFMTool was indeed unable to complete the calcula-
tion in < 1 h. In this case, the EFM calculation moved on
to another module at the same height. This process was
repeated until no module remained that could be enu-
merated for EFMs in < 1 h. All computing was performed
using a 2.83 GHz Intel Xeon E5440 CPU with 24 GB
memory running Red Hat Linux.

Net consumption of production of cofactors
Once a cyclical EFM was identified as a potential substrate
cycle, the stoichiometric matrix of the original HepatoNet1
model was used to determine which cofactors were con-
sumed or produced by this substrate cycle on a net basis.
The stoichiometric matrix included all internal reactions of
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the HepatoNet1 model, including inter-compartmental
(e.g. mitochondria-cytosol) exchange reactions.

Results
ShReD-based partition of HepatoNet1 model
Hierarchical partitioning of the hepShReD model yielded
2,098 modules, each of which comprised a subset of the
original 1,418 intracellular reactions in the root module
(see Additional file 1: ‘ShReD_Module_Partition’ for par-
tition linkage by ID, and Sheet: ‘Modules’ for reaction
composition of each module). Figure 2 illustrates the
resulting partition as a graph. Each node represents a
module, and each pair of edges emanating from that node
represents a ShReD-based binary partition. The enumer-
ation of EFMs completed for all but nine modules that are
closest to the root node in the hierarchy. These nine
Figure 2 The partition is visualized as a hierarchical graph where eac
represent a ShReD-based binary partition. The partitioned network is d
pathways and cyclical EFMs for each of these groups are reported in Table
EFMs in the module.
modules contained too many reactions for EFMtool to
complete the calculation in a reasonable amount of time.
Interestingly, the number of cyclical EFMs in a module
did not correlate with the size (number of reactions) of
the module, and the density of cyclical EFMs (number of
EFMs/reactions in module) varied greatly across the mod-
ule hierarchy. For example, module # 144,976 (Figure 2A)
contains 139 reactions and only 8 cyclical EFMs, whereas
module # 143,829 (Figure 2B) contains 121 reactions and
226,014 cyclical EFMs (Table 1).

Module functions and representative substrate cycles
For each boxed group of modules shown in Figure 2,
Table 1 lists representative metabolic functions and cyc-
lical EFMs. We are careful to use the term ‘cyclical EFM’,
since not every cyclical EFM is necessarily an active
h node represents a module and edges emanating from a node
ivided into seven major groups, which are labeled A-G. Representative
1. N and CE, respectively, refer to the number of reactions and cyclical



Table 1 Representative modules and cyclical EFMs

Module ID Metabolic function(s) Representative cyclical EFM Newman

Figure 2A:
#144976

Cholesterol synthesis r1136: 4alpha-Methylzymosterol-4-carboxylate (r) + NADP+(r) ↔ 3-Keto-4-methylzymosterol(r) +
NADPH(r).

Yes

Lipoprotein synthesis r1137: NAD+(r) + 4alpha-Methylzymosterol-4-carboxylate (r) ↔ NADH(r) + CO2(r) +
3-Keto-4-methylzymosterol(r)

Figure 2B:
#143830

TCA cycle r0829: Succinate(c) + Sulfate(m) ↔ Succinate(m) + Sulfate(c) No

Mitochondria-cytosol
exchange

r0831: Malate(c) + Pi(m) ↔ Malate(m) + Pi(c)

r0931: Isocitrate(m) + Malate(c) ↔Isocitrate(c) + Malate(m)

r0915: Citrate(c) + Succinate(m) ↔ Citrate(m) + Succinate(c)

r0917: Citrate(c) + Isocitrate(m) ↔ Citrate(m) + Isocitrate(c)

Figure 2C:
#143829

β-Oxidation r0223: 2-Methyl-3-oxopropanoate(m) + CoA(m) + NAD+(m)→ Propanoyl-CoA(m) +
CO2(m) + NADH(m)

Yes

Glutamate and proline
metabolism

r0414: ATP(m) + Propanoyl-CoA(m) + HCO3-(m)→ ADP(m) + Pi(m) + Methylmalonyl-CoA(m)

Ketone body synthesis r0571: Methylmalonyl-CoA(m) + H2O(m) ↔ Methylmalonate(m) + CoA(m)

TCA Cycle r0643: 2-Methyl-3-oxopropanoate(m) + NAD+(m) + H2O(m) ↔ Methylmalonate(m) + NADH(m)

Figure 2D:
#142886

NADH(c) metabolism r0267: CMP-N-acetylneuraminate(c) + O2(c) + NADH(c) ↔ CMP-NeuNGc(c) + NAD+(c) + H2O(c) No

r0269: CTP(n) + N-Acetylneuraminate(n) ↔ PPi(n) + CMP-N-acetylneuraminate(n)

r0400: NAD+(c) + O2(c) + N-Acetylneuraminate(c) ↔ NeuNGc(c) + NADH(c) + H2O(c)

r0668: NeuNGc(c) + CTP(c) ↔ PPi(c) + CMP-NeuNGc(c)

r1461: CMP-N-acetylneuraminate(c) ↔ CMP-N-acetylneuraminate(n)

r1462: N-Acetylneuraminate(c) ↔ N-Acetylneuraminate(n)

Figure 2E:
#142887

Lipid biosynthesis r0225: THF(c) + NADP+(c) ↔Dihydrofolate(c) + NADPH(c) Yes

Folate metabolism r0227: 10-Formyl-THF(c) + H2O(c) + NADP+(c)→ THF(c) + CO2(c) + NADPH(c)

NADPH(c) metabolism r0293: 5,10-Methylene-THF(c) + NADP+(c) ↔ 5,10-Methenyl-THF(c) + NADPH(c)

r0371: 5,10-Methenyl-THF(c) + H2O(c) ↔ 10-Formyl-THF(c)

r0501: dUMP(c) + 5,10-Methylene-THF(c) ↔ Dihydrofolate(c) + dTMP(c)

Figure 2F:
#142411

Acyl-CoA activation
in cytosol

r0066: ATP(c) + Acetate(c) + CoA(c)→ AMP(c) + PPi(c) + Acetyl-CoA(c) No

Lipoprotein synthesis r0485: Glucosamine-6P(c) + Acetyl-CoA(c)→ CoA(c) + N-Acetylglucosamine-6P(c)

r0486: N-Acetylglucosamine-6P(c) + H2O(c) ↔ Glucosamine-6P(c) + Acetate(c)

Figure 2G:
#141811

Sugar metabolism r0487: Fructose-1,6PP(c) + H2O(c)→ Fructose-6P(c) + Pi(c) No

Amino acid metabolism r0736: ATP(c) + Fructose-6P(c)→ ADP(c) + Fructose-1,6PP(c)

Protein synthesis r0129: GSH(c) + H2O(c) ↔ Glutamate(c) + Cys-Gly(c)

r0131: ATP(c) + gamma-Glutamyl-cysteine(c) + Glycine(c)→ ADP(c) + Pi(c) + GSH(c)

r0212: ATP(c) + Glutamate(c) + Cysteine(c)→ ADP(c) + Pi(c) + gamma-Glutamyl-cysteine(c)

r0214: H2O(c) + Cys-Gly(c) ↔ Cysteine(c) + Glycine(c)

The first column lists the corresponding panel in Figure 2 and module ID (referenced in Additional file 1: ‘Modules’ for complete reaction list). The second column
lists conventional textbook metabolic pathways/functions associated with reactions contained in the module. The third column provides a sample cyclical EFM
identified for a given module. The fourth column indicates whether or not the cyclical EFM was identified when the network was partitioned using Newman’s
connectivity-based modularity metric.
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substrate cycle in vivo. For example, when all reactions
in a cyclical EFM are reversible, the flux direction pre-
dicted by the EFM calculation may be actually opposite
of the actual flux direction in the cell. In our analysis of
HepatoNet1, we identified a large number of cyclical
EFMs involving two reversible reactions that carry out
the same biochemical transformation using different co-
factors. An illustrative example of this motif is found in
module # 144,976 (Figure 2A). This module includes
reactions in cholesterol synthesis and very low-density
lipoprotein (VLDL) metabolism. The conversion of 3-
keto-4-methylzymosterol(r) to 4alpha-methylzymosterol-
4-carboxylate(r) is mediated by NADPH/NADP+ in one
reaction and NADH/NAD+ in the other. Substrate cycling
in this case could exchange NADPH into NADH or
NADH into NADPH, depending on the direction. This
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substrate cycle could be active, if the NADPH/NADP+

ratio is sufficiently different from the NADH/NAD+

ratio, allowing for both the forward and reverse reactions
to be thermodynamically feasible.
Another trend is that many cyclical EFMs involve trans-

port reactions across membranes. In particular, 221,576 of
the 226,014 cyclical EFMs (>98%) found in module #
143,830 (Figure 2B) include at least one reaction involved
in the transport of TCA cycle intermediates such as cit-
rate, malate, and succinate across the mitochondrial
membrane (Additional file 1: TCA_Transport_Reactions).
Depending on the cycling direction, the function of such
substrate cycles could be to transfer protons or phosphate
ions across the mitochondrial membrane without bringing
about a net change in other metabolite concentrations
across the membrane. These cyclical EFMs are part of a
module that also contains several TCA cycle carbon back-
bone reactions, underscoring the coupling between energy
production reactions and membrane charge transfer reac-
tions required to mediate the proton gradient for oxidative
phosphorylation.
In some cases, the placement of cyclical EFMs into a

particular module is intuitive and consistent with ex-
perimental observations. For example, module # 141,811
(Figure 2G) comprises reactions in sugar metabolism,
amino acid metabolism, and protein synthesis. Within this
module, the cyclical EFM involving the inter-conversion
of fructose-6-phosphate and fructose-1,6-bisphosphate is
part of both glycolysis and gluconeogenesis. Similarly, the
cyclical EFM involving the production and degradation of
glutathione at the expense of ATP directly influences the
metabolism of glutamate, cysteine, and glycine, the three
constituent amino acids of glutathione.
We also found less obvious associations between cyclical

EFMs and ShReD-based modules. The latter tend to group
together reactions that span several distinct textbook-
defined pathways based on the shared production and con-
sumption of metabolic cofactors [3]. For example, a cyc-
lical EFM in module # 142,886 (Figure 2D) that involves
N-glycolyneuraminate (NeuNGc) metabolism belongs to
the same module as lactate dehydrogenase, an enzyme in
glycolysis. Our analysis predicts a close interaction between
these reactions that have ostensibly unrelated functions,
because they share production and consumption of the
same cofactor (NADH) in the same cellular compartment
(cytosol). Similarly, a cyclical EFM in module # 142,887
(Figure 2E) represents the one-carbon cycle in folate me-
tabolism that results in net production of NADPH, which
directly connects to lipid biosynthesis and other reactions
that require this cofactor.
To assess the effect of the partitioning method on the

identification of substrate cycles, we compared the re-
sults obtained on modules generated using the ShReD
metric against results obtained using Newman’s metric,
which takes into account network connectivity but is not
specifically designed to favor modules that are enriched
with cyclical interactions. Overall, we found that the mod-
ules generated using Newman’s metric did not contain
many of the substrate cycles identified using ShReD-based
modules. In particular, 4 of the 7 representative substrate
cycles listed in Table 1 are not identified when the cyclical
EFM search was performed on Newman-based modules
(see column 4 in Table 1). It should be noted, however,
that a module-by-module comparison could not be per-
formed, as the two metrics yielded different modules of
varying sizes. In this regard, the partition metric clearly
impacts the identification of substrate cycles in modules.

Cofactors involved in substrate cycles
An important motivation for this work is to comprehen-
sively identify the full range of cofactors that are con-
sumed or produced by potential substrate cycles. Table 2
lists 30 cofactors that are the most frequently metabo-
lized by cyclical EFMs. The complete list is provided in
Additional file 1: ‘TableS2_Complete’. The vast majority of
cyclical EFMs are associated with cytosolic hydronium,
phosphate, and sulfate ions, suggesting a large number of
substrate cycles involved in membrane transport (Module
143,830, Figure 2B). For these cyclical EFMs, the net con-
sumption in one compartment is balanced by the net pro-
duction in the other compartment and vice versa, which
is reflected by the similar number of EFMs involved
with both the cytosolic and mitochondrial pool of an
ion metabolite (Table 2). Interestingly, the cofactor pairs
NADH(c)/NAD+(c) and NADPH(c)/NADP+(c) are metab-
olized by similar numbers of cyclic EFMs. According to
HepatoNet1’s annotation, many reversible reactions can
be catalyzed by either cofactor. Consequently, our al-
gorithm identifies cycles where one reaction consumes
NADH(c) in one direction and the other reaction con-
sumes NADPH(c) in the reverse direction. Lastly, we
found ~700 cyclical EFMs that utilize various deoxynu-
cleotide triphosphates, suggesting substrate cycles may be
involved in nucleic acid metabolism.
One consequence of our modular approach is that the

resultant cyclical EFMs are contained within a module,
limiting the size of substrate cycles that can be discovered.
Previously, Gebauer and coworkers reported a median
cyclical EFM length of 35 reactions for a genome-scale hu-
man metabolic network, with some cycles spanning up
to 100 reactions. In this study, the longest cyclical EFM
spanned 13 reactions. The median length of a cyclical
EFM ranges from 2 to 8, depending on the module. We
did not find a significant correlation between mean cyc-
lical EFM length and module size, suggesting that larger
modules may not necessarily possess longer cyclical EFMs
(Figure 3). For module # 141,811 (boxed in Figure 3),
which is the largest module analyzed for EFMs in this



Table 2 Number of cyclical EFMs associated with each
cofactor

Cofactor Number of cyclical EFMs:
net consumed

Number of cyclical EFMs:
net produced

H+(c) 70504 70446

H+(m) 70446 70504

Pi(c) 55051 55102

Pi(m) 55051 55055

Sulfate(c) 33046 33046

Sulfate(m) 33046 33046

Sulfite(c) 33046 33046

Sulfite(m) 33046 33046

H2O(c) 15015 14960

H2O(m) 14958 14956

ATP(c) 155 217

ADP(c) 208 152

dATP(c) 143 120

UDP(c) 106 151

dUTP(c) 155 96

CTP(c) 94 47

CDP(c) 57 82

GDP(c) 59 59

dGTP(c) 58 58

GTP(c) 69 45

dGDP(c) 44 68

dAMP(c) 27 37

dUDP(c) 25 37

dCTP(c) 23 35

dCDP(c) 23 35

NAD+(c) 24 24

NADH(c) 24 24

NADPH(c) 19 20

NADP+(c) 20 19

PPi (c) 3 24

For each of the top 30 cofactors that most frequently participate in a cyclical
EFM (column 1), the table reports the number of cyclical EFMs that consume
(column 2) or produce (column 3) the cofactor. The cofactors are sorted in
descending order based on the total number of cyclical EFMs in which they
participate. The letter in the parentheses indicates the cellular compartment
for each cofactor as either cytosolic (c) or mitochondrial (m).

Figure 3 For each module, the median cyclical EFM length is
plotted against the number of reactions in the module. The
median cyclical EFM lengths for the Hepatonet1 modules span
between 2 and 8 reaction steps.
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study, the distribution of cyclical EFM lengths is bi-modal
(Additional file 1: Figure S1). Multi-model distribution of
cyclical EFM lengths was also reported previously [8].

Discussion
In this study, we utilized a network partition approach
to identify substrate cycles in the context of metabolic
modules. Substrate cycles have been found experimentally
in many parts of metabolism, particularly across opposing
reactions of glycolysis and gluconeogenesis. However, due
to the complexity of metabolic networks, comprehensive
characterization has been difficult. In conjunction with
large-scale metabolic models, computational approaches
offer the benefit that they can systematically consider
most (if not all) reactions in a cell type or organism.
Performing motif searches on large-scale networks is

challenging, and often intractable, unless the motif is
very small. One way to address this problem is to place a
upper limit on the number of components in the motif,
but this can be arbitrary [16]. On the other hand, finding
substrate cycles by enumerating all directed cycles of any
size is computationally intractable, because the number of
cycles may grow non-linearly with the number of reactions
in a cycle. Recently, Gebauer and coworkers addressed this
challenge by narrowing their search to cyclical EFMs that
metabolize a specific cofactor, ATP. While the same algo-
rithm could be used to target other cofactors, there is
the potential drawback that relationships between cyc-
lical EFMs involving different cofactors could be missed.
In our work, we instead apply a constraint on the search
space. To identify appropriate search spaces while retain-
ing contextual information, we hierarchically partition the
network into modules such that the modules are enriched
in the desired motif, i.e. metabolic cycles. The trade-off
here is that we compromise on the possibility of finding
longer cyclical EFMs, as shown by the relatively short cyc-
lical EFM lengths (Figure 3). Even for the module with the
largest number of cyclical EFMs, the lengths range be-
tween 2 and 13 reactions (Additional file 1: Figure S1),
compared to lengths of up to 100 reactions that can be
identified from a global analysis [8]. The benefit of a
modular approach is that one can be exhaustive in search-
ing for all cyclical EFMs in a given module at a particular
hierarchical resolution, which can then facilitate the
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association of a cyclical EFM with a recognizable meta-
bolic function. Defining an appropriate neighborhood in
the network to search for a motif can be challenging, and
has often relied on a heuristic such as setting a fixed path
distance around a reaction of interest. ShReD-based parti-
tion provides a systematically derived grouping of reac-
tions that are enriched with metabolic cycles, and thus
defines a natural search space for substrate cycles.
In this paper, we have been thus far careful not to use the

terms ‘cyclical EFM’ and ‘substrate cycle’ interchangeably.
The cyclical EFMs were identified solely based on the
stoichiometry and reaction directionality as specified in the
published model. While these EFMs could represent sub-
strate cycles, it cannot be concluded that the substrate cycle
is active in vivo. For example, many of the cyclical EFMs
involve two reversible reactions where one consumes
NADP+ and produces NADPH in the forward direction,
and the other consumes NADH and produces NAD+ in
the reverse direction (Table 1, module # 144,976, Figure 2A).
However, whether or not these reactions can indeed oper-
ate in opposite directions at the same time with a net con-
version of NADP to NADPH at the expense of NADH (or
vice versa) depends on the intracellular conditions (e.g.
reactant and product concentrations) influencing the
thermodynamic driving force. One example of this type of
substrate cycle that has been observed in vivo occurs be-
tween isocitrate and ketoglutarate, where NAD-dependent
isocitrate dehydrogenase (IDH) catalyzes the conversion of
isocitrate to ketoglutarate and NADP-dependent IDH cata-
lyzes the conversion of ketoglutarate back to isocitrate [17].
The thermodynamic feasibility of these substrate cycles

could in principle be determined based on Gibbs free
energy estimates and experimental flux data [18]. Several
earlier studies have considered thermodynamic constraints
specifically in the context of cycles. Beard and co-workers
formulated the “loop law”, which states that the net flux
around a loop internal to a reaction network must be zero
[19]. It has been shown that these internal loops could be
identified using extreme pathway analysis [20] or by
enumerating linear combinations of vectors that span the
null space of the underlying reaction network. While
mathematically rigorous, enumerating null space vector
combinations can become intractable for large-scale
problems, similar to EFM analysis. More recently, add-
itional methods have been described that utilize the Gibbs
free energy criterion of the Second Law [21] to eliminate
thermodynamically infeasible reaction cycles. A computa-
tionally attractive alternative that does not rely on Gibbs
energy parameters was described by Schellenberger and
coworkers, who showed that the loop law can be inte-
grated into constraint-based flux analysis by reformulating
the optimization problem as a modified mixed integer
program (MIP) [22]. The main difference between the
present work and these previous studies lies in the type of
loop reactions that are targeted for identification. The
aforementioned studies sought to eliminate infeasible
loops, i.e. futile cycles, when computing flux distributions,
whereas the present work seeks to identify feasible loops,
i.e. substrate cycles.
In interpreting the results, one also has to consider the

“goodness” of the modular partitions. Our algorithm
places reactions into groups so as to enrich the modules
in cycles. However, it is possible that the algorithm finds
a locally optimal result due to the nonlinearity of the
problem. If this happens early in the partition process,
then it is possible that our algorithm does not identify
some substrate cycles. For example, Peterson and co-
workers have reported on a metabolic cycle in the rat
liver involving pyruvate carboxylase, malate dehydrogen-
ase, and malic enzyme with net oxidation of NADH and
NADPH [23]. Our algorithm does not identify this sub-
strate cycle, because cytosolic malic enzyme groups with
mitochondrial pyruvate carboxylase and malate dehydro-
genase only near the parent module (# 141,802), which
is too large for EFM enumeration. One way to address this
limitation is to include activity data. Recently, we showed
that weighting the edges with metabolic flux data results
in different modularity, reflecting the metabolic state of
the system [13]. We found that weighting the edges to re-
flect reaction engagements better ensured that highly ac-
tive cycles are prioritized in partitioning the network. The
practical challenge in adopting this scheme to analyze
large-scale networks is obtaining flux data from isotope la-
beling experiments. On the other hand, it has been shown
that methods such as flux balance analysis (FBA) and flux
variability analysis (FVA) could reasonably circumscribe
the feasible space of flux distributions for a number of
genome-scale models.
Prospectively, the discovery of new substrate cycles

could yield novel drug targets for metabolic diseases such
as obesity, diabetes and cancer [24]. For example, a pro-
posed mechanism for the insulin sensitizing action of thia-
zolidinedione (TZD) drugs is to induce glycerol kinase
gene expression and thereby promote a substrate cycle be-
tween lipolysis and fatty acid esterification [25]. Induction
of glycerol kinase and activation of the “futile” cycle could
reduce the efflux of free fatty acids, whose levels in serum
correlate with obesity-related insulin insensitivity. While it
remains to be established that this futile cycle is a domin-
ant mechanism in vivo, other studies have corroborated
that the glycerol kinase-dependent substrate cycle is a vi-
able mechanism for limiting free fatty acid efflux from hu-
man adipose tissue [26]. In addition, a study on cancer
cachexia found that the activity of triglyceride-fatty acid
substrate cycle was elevated in tumors of murine white
adipose tissue due to differential expression of the cycle
enzymes [27], which sets up an intriguing possibility of
modulating tumor growth by manipulating these enzymes.
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The Cori cycle is another substrate cycle with increased
activity in cachectic patients, where lactic acid produced
in the tumor is converted to glucose in the liver at the ex-
pense of ATP [28].
The methodology presented in this paper could be ex-

tended to identify other substrate cycles that span multiple
organ systems, similar to the Cory Cycle. This will obviously
require metabolic models that describe more than one cell
type or tissue. In this regard, genome-scale metabolic
models representing the metabolic networks of multiple
interacting cell types [29] or organisms [30] offer exciting
possibilities to identify novel, inter-organ or inter-species
substrate cycles in the context of recognizable biochemical
functions as defined by the corresponding module.

Conclusions
In this study, we present a novel algorithm for the
discovery of substrate cycles in large scale metabolic
networks by identifying cyclical EFMs in hierarchical
modules designed to preserve cyclical interactions using
our ShReD metric. Since ShReD-based modules natur-
ally group reactions together based on the shared
consumption and production of metabolic cofactors,
they serve as a suitable search space to identify substrate
cycles that have a net consumption or production of
specific cofactors. We show that several representative
substrate cycles are identified within their functional
context based on known metabolic pathways whose
reactions are present in each module. More importantly,
we show that many of those substrate cycles are not
identified if alternative partition metrics are used instead
of ShReD to determine the hierarchical modularity,
demonstrating the value of our ShReD-based algorithm
for discovering substrate cycles.
The methodology used to identify the substrate cycle

motif can be used to exhaustively enumerate cyclical
EFMs in hierarchically arranged modules, allowing the
analysis to circumvent the scalability limitation of existing
EFM analysis tools. Compared to connectivity-based
metrics, the ShReD metric used here is more likely to
preserve cyclical interactions among network compo-
nents, and thus is well suited to generating hierarchically
partitioned modules for cyclical EFM analysis. To illus-
trate the advantage of ShReD-based partitioning, we show
that several substrate cycles identified in the ShReD
modules and reported in the literature are not identified
in modules generated using a representative connectivity-
based partition metric.
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