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Abstract

Background: Rational design of microbial strains for enhanced cellular physiology through in silico analysis has
been reported in many metabolic engineering studies. Such in silico techniques typically involve the analysis of a
metabolic model describing the metabolic and physiological states under various perturbed conditions, thereby
identifying genetic targets to be manipulated for strain improvement. More often than not, the activation/inhibition
of multiple reactions is necessary to produce a predicted change for improvement of cellular properties or states.
However, as it is more computationally cumbersome to simulate all possible combinations of reaction perturbations, it
is desirable to consider alternative techniques for identifying such metabolic engineering targets.

Results: In this study, we present the modified version of previously developed metabolite-centric approach, also
known as flux-sum analysis (FSA), for identifying metabolic engineering targets. Utility of FSA was demonstrated by
applying it to Escherichia coli, as case studies, for enhancing ethanol and succinate production, and reducing acetate
formation. Interestingly, most of the identified metabolites correspond to gene targets that have been experimentally
validated in previous works on E. coli strain improvement. A notable example is that pyruvate, the metabolite target for
enhancing succinate production, was found to be associated with multiple reaction targets that were only identifiable
through more computationally expensive means. In addition, detailed analysis of the flux-sum perturbed conditions
also provided valuable insights into how previous metabolic engineering strategies have been successful in enhancing
cellular physiology.

Conclusions: The application of FSA under the flux balance framework can identify novel metabolic engineering
targets from the metabolite-centric perspective. Therefore, the current approach opens up a new research avenue for
rational design and engineering of industrial microbes in the field of systems metabolic engineering.

Keywords: Flux-sum, Constraints-based flux Analysis, Genome-scale metabolic modeling, Metabolic engineering,
Strain design

Background
Previous microbial engineering for strain improvement
was largely based on biological intuition and/or trial-
and-error methods, such as random mutagenesis.
However, with the recent advent of high-throughput ex-
perimental technologies and improved in silico modeling
capabilities, there is growing interest in the application of
the systems biology approach to metabolic engineering
studies [1–3]. Notably, genome-scale metabolic models

(GEMs) provide a convenient and cost-effective platform
for systems biologists to carry out metabolic perturbation
studies in silico and rationalize findings from high-
throughput experiments. This practical utility conse-
quently fueled the reconstruction of over 100 GEMs
representing the metabolic organization of various organ-
isms across all three domains of life [4, 5].
Specifically, in silico analysis of GEMs enables us to

achieve the following goals: (1) interpreting high-
throughput omics data, (2) aiding design of metabolic
engineering strategies, (3) generating new testable hy-
potheses to gain knowledge of the biological system, (4)
investigating inter-cellular and inter-species interactions
and (5) understanding of complex genotype-phenotype
relationships leading to discovery of emergent properties
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[6–9]. Among these, the successful application of GEM
analysis to aid cellular metabolic engineering has been
consistently reported in numerous studies ranging from
simple in silico simulation of gene deletions [10, 11], to
more sophisticated computational techniques such as
OptKnock [12], OptReg [13], OptStrain [14], OptGene
[15], flux response analysis [16], RobustKnock [17], flux
scanning based on enforced objective flux [18], OptForce
[19] and most recently, cofactor modification analysis
[20] for identifying valid gene knockout, up-, down-
regulation and cofactor engineering targets (see [21] for
thorough review). These in silico methods share the
common theme of identifying suitable genetically and
environmentally perturbed conditions by optimizing the
cellular objective, typically cell growth, under mass bal-
ance, reaction reversibility and flux capacity constraints.
Basically, such a constraints-based technique mimics the
wet-lab genetic engineering experiments by imposing
relevant constraints on the metabolic reaction fluxes and
can thus be considered “reaction-centric”. However,
more often than not, these techniques have encountered
the computational issue of combinatorial explosion due
to consideration of multiple reaction perturbations.
Hence, to deal with this limitation, an alternative
method is needed to further expand our in silico capa-
bility of multiple reaction targets identification.
Recognizing that many metabolites are involved in

multiple reactions, a “metabolite-centric” approach can
potentially find individual metabolite targets implicating
some combination of reaction flux constraints. In this
way, the metabolite-centric flux-sum analysis (FSA) was
initially utilized to evaluate the structural and evolution-
ary properties of cellular metabolism in E. coli [22, 23].
Later, the same concept was successfully utilized to com-
pare and contrast the metabolic capabilities of Z. mobilis
and E. coli [24]. Nonetheless, its potential applicability of
identifying metabolic engineering targets for strain
improvement remains unexamined. Therefore, in this
study, we demonstrate the efficacy of FSA by applying it
to Escherichia coli for increasing succinate and ethanol
production, and reducing acetate formation as case
studies.

Results
Flux-sum analysis for identifying metabolic engineering
targets
In this work, we harness the previously presented com-
putational technique, flux-sum analysis [22], to identify
metabolite targets that will “force” the overproduction of
desirable by-products or the reduction in formation of un-
desirable metabolites upon the attenuation or intensifica-
tion of metabolite turnover, also known as “flux-sum”.
The concept of “forcing” the desired metabolic behavior is
similar to a previous study [19]. Briefly, first, the

conventional constraints-based flux analysis problem is
solved with biomass maximization as objective and the
wild-type flux-sum of all metabolites are calculated as a
reference. Second, the minimal and maximal flux-sum
values of each metabolite are computed to determine the
allowable range for attenuation and intensification from
the reference state, respectively. Next, a MILP problem is
sequentially solved for all metabolites to attain the max-
imum cell growth at various flux-sum perturbations be-
tween the calculated minimal and maximal values. Finally,
using this growth values as additional minimum biomass
production constraint, the same optimization problem is
again solved for all metabolites to investigate whether the
perturbation of a particular metabolite’s flux-sum im-
proves the desired target compound production or not
(see Methods). To demonstrate the applicability of this
proposed framework, we apply it to the E. coli genome-
scale metabolic model, thereby identifying the possible
metabolite attenuation/intensification targets which can
enhance the production of ethanol/succinate, and reduce
the formation of toxic acetate. The list of identified best
metabolite targets are summarized in Table 1 and will
continue to examine each case in detail to gain a better
understanding of their effects on cellular metabolism (see
Additional file 1 for the target compound production pro-
file under flux-sum perturbation of metabolites presented
in Table 1).

Ethanol production under flux-sum attenuation
The flux-sums of individual metabolites are attenuated
to investigate their effects on ethanol production. The
ethanol production profile (Fig. 1) generated by FSA re-
vealed that the attenuation of acetate and acetylpho-
sphate flux-sums can “force” ethanol production rates to
increase. It has also been demonstrated in previous ex-
perimental studies that deletion of the phosphate acetyl-
transferase gene (pta) resulted in improved ethanol
production rate [25, 26]. The identification of acetate
and acetylphosphate as flux-sum attenuation targets for
ethanol overproduction is also an example of how paral-
lel pathways compete for same carbon flux where the
perturbation of one can positively favor the other (Fig. 2).
This is similar to the previously identified essential me-
tabolites located along parallel biosynthetic pathways
which could cause sub-optimal distribution of metabolic
fluxes and attenuated cell growth when their flux-sums
were perturbed [22].
Another flux-sum attenuation target identified by FSA

for the ethanol production is formate. Generally, acetyl-
CoA in a cell can be synthesized in two ways. The pyru-
vate formate lyase (PFL) reaction yields acetyl-CoA and
formate as the co-product. Another alternative is the
pyruvate dehydrogenase (PDH) reaction that generates
acetyl-CoA, CO2 and NADH. Therefore, attenuating
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formate flux-sum promotes acetyl-CoA formation
through the PDH reaction, leading to increased NADH
generation, which in turn drives the NADH-consuming
alcohol dehydrogenase (ALCD) reaction towards ethanol
production. Interestingly, it has been reported that a
high flux through PDH can increase ethanol yield [27].
Hence, the construction of a PFL-repressed and PDH-
overexpressed E. coli strain can be explored in future
experimental validation to further improve ethanol
production.

Ethanol production under flux-sum intensification
Flux-sum intensification analysis identified several target
metabolites such as 6-phospho-D-gluconate, erythrose-
4-phosphate, ribulose-5-phosphate, sedoheptulose-7-
phosphate and xylulose-5-phosphate that can improve
ethanol production. Clearly, these metabolites are pre-
dominantly active in the NADPH-generating pentose
phosphate pathway (PPP). Hence, flux-sum intensifica-
tion of such metabolites will increase the formation of
NADPH, which can be re-oxidized to NADP via the
soluble NAD transhydrogenase (UdhA) reaction and
simultaneously regenerate NADH. The elevated NADH
regeneration rate can thus improve ethanol production.
However, the in vivo activity of UdhA has been reported
to be low [28] and this scenario of increased NADPH re-
generation will most likely cause its accumulation that
can possibly cause growth inhibition. Therefore, the
simultaneous overexpression of UdhA and flux-sum
intensification of PPP metabolites by overexpressing the
glucose-6-phosphate dehydrogenase and gluconate de-
hydrogenase will be a promising strategy to increase
ethanol production without the inhibitory effect.
Another target identified by the flux-sum intensification

analysis is 5,10-methylenetetrahydrofolate (MLTHF), a key
metabolite in folate metabolism. Examination of metabolic
reactions involving MLTHF revealed that the metabolite
can only be formed by glycine hydroxymethyltransferase
reaction and the glycine cleavage reaction, where the
latter reaction is coupled with NADH regeneration.

Table 1 List of metabolic engineering targets

Objective Target metabolites Flux-sum perturbation Experimental validation

Enhance ethanol production Acetate Attenuation [25, 26]

Acetylphosphate Attenuation [25, 26]

Formate Attenuation N.A.

6-Phospho-D-gluconate Intensification N.A.

Erythrose 4-phosphate Intensification N.A.

5,10-Methylenetetrahydrofolate Intensification N.A.

Sedoheptulose 7-phosphate Intensification N.A.

Enhance succinate production Pyruvate Attenuation [11]

Glyoxylate Intensification [30, 31]

Menaquinone/menaquinol Intensification N.A.

Minimize acetate production Acetate Attenuation [34, 35]

Acetylphosphate Attenuation [34, 35]

3-Phosphoglycerate Intensification N.A.

4-Methyl-2-oxopentanoate Intensification N.A.

Isocitrate Intensification [36]

Lactate Intensification [34]

Ribulose 5-phosphate Intensification N.A.

Succinic semialdehyde Intensification N.A.

Fig. 1 Ethanol production profile under metabolite flux-sum attenuation.
The horizontal dashed line indicates the wild-type ethanol
production value. Only the ethanol production profile corresponding
to 3 metabolites are shown because flux-sum attenuation of the other
metabolites do not yield such a desirable profile
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Furthermore, FSA predicts that fluxes through both the
reactions can be increased when MLTHF flux-sum is
intensified. Thus, such a metabolic perturbation will have
a positive effect on the ethanol-producing pathway which
requires NADH as the co-substrate.

Pyruvate decarboxylase insertion alters ethanol
production profile
In previous metabolic engineering studies, it has been
reported that the insertion of pyruvate decarboxylase
(PDC) and alcohol dehydrogenase II genes can signifi-
cantly improve ethanol production [29]. We can mimic
this metabolic engineering strategy by inserting the PDC
reaction into the GEM of E. coli, iAF1260 model and
increasing ALCD flux, which is also equivalent to inten-
sification of acetaldehyde flux-sum. Our simulation has
shown that the intensification of acetaldehyde flux-sum
in the wild-type E. coli GEM without the PDC reaction
did not result in consistently increasing ethanol produc-
tion. Thus, we carried out flux-sum intensification on
the modified GEM of E. coli with the PDC reaction to
further understand how PDC insertion can influence the
ethanol production profile.

The new simulation results indeed show that addition
of PDC reaction to the metabolic network improved the
ethanol production profile under acetaldehyde flux-sum
intensification (Fig. 3). In addition, a slightly higher cell
growth rate can be achieved when the PDC reaction is
available. This phenomenon of enhanced ethanol pro-
duction due to such a metabolic engineering strategy
can be understood by examining the reactions originat-
ing from pyruvate to acetaldehyde (Fig. 4). Wild-type
conversion of pyruvate to acetaldehyde occurs via PDH
or PFL, and then acetaldehyde dehydrogenase (ACALD).
The addition of PDC allows the engineered E. coli strain
to directly convert the pyruvate into acetaldehyde dir-
ectly without forming the acetyl-CoA intermediate. Such
direct conversion may positively assist the ethanol pro-
duction as it circumvents the possible limitations which
are associated with CoA regeneration in the ACALD
step. Interestingly, intensification of acetaldehyde flux-
sum beyond a certain point in wild-type decreases the
ethanol production as the excess acetaldehyde gets con-
verted into acetate via aldehyde dehydrogenase and then
into acetyl-CoA via phosphotransacetylase (PTA) and
acetate kinase (ACK), forming a cycle.

Succinate production under flux-sum attenuation
Similar to the ethanol production case, we apply FSA to
identify metabolite targets for strain improvement in the
aspect of succinate production. The corresponding pro-
file under metabolite flux-sum attenuation upon glucose
uptake indicated that pyruvate is the only metabolite
which can be targeted for enhancing succinate produc-
tion (Fig. 5). This result has also been experimentally
confirmed, demonstrating the improvement of succinate
production through the reduction of total metabolic
fluxes towards pyruvate by knocking out the genes of
pyruvate-forming enzymes [11]. Moreover, our simu-
lation also shows that succinate production can be nega-
tively affected when pyruvate flux-sum is excessively

Fig. 3 Ethanol production and cell growth profile under acetaldehyde
flux-sum intensification. Wild-type acetaldehyde flux-sum was evaluated
as 4.17 mmol/gDCW-hr using constraints-based flux analysis

Fig. 2 Mixed acid fermentation pathway of E. coli. The pathways
illustrate that the formation of various organic acids and ethanol occurs
in parallel, utilizing phosphoenolpyruvate as the common precursor.
Blue colored reactions represent the biosynthesis of desired products,
succinate and ethanol, whereas red color indicates the production of
unwanted acetate. Abbreviation: ac, acetate; acald, acetaldehyde; accoa,
acetyl-CoA; actp, acetylphosphate; etoh, ethanol; for, formate; lac,
lactate; mal, malate; oaa, oxaloacetate; pep, phosphoenolpyruvate; pyr,
pyruvate; ACALD, acetaldehyde dehydrogenase; ACK, acetate kinase;
ALCD, alcohol dehydrogenase; FRD, fumarate reductase; FUM, fumarase;
LDH, lactate dehydrogenase; MDH, malate dehydrogenase; PFL,
pyruvate formate lyase; PPC, phosphoenolpyruvate carboxylase; PTA,
phosphate acetyltransferase; PYK, pyruvate kinase
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attenuated (Fig. 5). Thus, we will further examine the
corresponding flux distribution to gain a better under-
standing of how pyruvate flux-sum perturbation can
alter the cellular metabolism.
Under the anaerobic condition, succinate dehydrogen-

ase reaction is not utilized since oxygen is unavailable to
regenerate the electron acceptor ubiquinone. Hence,
instead of producing NAD through the ubiquinone-
dependent NADH dehydrogenase reaction, NAD regen-
eration occurs mainly via ethanol-producing ACALD
and ALCD reactions, which are part of the mixed acid
fermentation pathway. Thus, by examining this pathway,
we will attempt to explain how pyruvate flux-sum at-
tenuation can lead to enhanced succinate production.
From Fig. 2, it is clear that pyruvate is the precursor for
acetate, ethanol, lactate and formate and synthesis.
Pyruvate formation via the pyruvate kinase (PYK) and
phosphoenolpyruvate/glucose phosphotransferase sys-
tem (PTS) competes for the metabolic fluxes that could
potentially flow towards succinate formation. Hence,
attenuating pyruvate flux-sum favors the redirection of
metabolic fluxes at the phosphoenolpyruvate branch
towards succinate synthesis. Since pyruvate flux-sum
attenuation also causes a concomitant decrease in NAD

regeneration by LDH, ACALD and ALCD, the metabolic
flux is preferably channeled towards succinate-producing
fumarate reductase (FRD), where the NAD shortage can
be compensated by the coupling of FRD with the
menaquinone-dependent NADH dehydrogenase reaction.
Therefore, the substitution of LDH, ACALD and ALCD by
FRD as the major NAD regenerator can increase the suc-
cinate production under pyruvate flux-sum attenuation as
depicted by the right section of the succinate production
profile (Fig. 5). For the same reason, it may be possible
that the in vivo deletion of ptsG and pykFA have given rise
to more than eight-fold increase in succinate yield [11].
On the other hand, the left section of the profile

(Fig. 5) can be explained by realizing that pyruvate flux-
sum attenuation is also accompanied by decreased ATP
regeneration due to lower ACK and pyruvate kinase
(PYK) fluxes. Hence, when ATP regeneration is attenu-
ated below the threshold which affects glucose uptake,
we immediately observe a decrease in succinate pro-
ductivity, thus explaining the triangular shaped succinate
production profile under pyruvate flux-sum attenuation.

Succinate production under flux-sum intensification
Flux-sum intensification analysis allowed us to ob-
serve the increase in succinate production when the
flux-sum of several metabolites involved in redox re-
actions and the glyoxylate pathway were intensified.
As the succinate-forming FRD consumes menaquinol
to produce menaquinone, flux-sum intensification of
such metabolites is expected to directly promote
succinate production. It should be noted that the
iAF1260 model accounts for two species of menqui-
nones, demethylmenaquinone-8 and menaquinone-8,
which were thus detected as potential targets for flux-
sum intensification.
In the case of glyoxylate flux-sum intensification, its

perturbation effect was understood by examining the
TCA cycle with glyoxylate bypass. Under anaerobic con-
dition, the metabolic flux through the TCA cycle is low:
energy (ATP) is mainly regenerated by substrate-level
phosphorylation rather than oxidative phosphorylation.
Thus, increasing glyoxylate flux-sum will force a redistri-
bution of fluxes away from the ethanol production path-
way towards the TCA cycle. Consequently, the role of
ACALD and ALCD in the ethanol production pathway
as the major NAD regenerator is replaced by the
succinate-producing FRD in the TCA cycle, similar to
the metabolic state observed under pyruvate flux-sum
attenuation. This strategy has also been demonstrated in
a previous experimental study whereby the deletion of
iclR, a repressor of the glyoxylate bypass operon aceBAK
[30], increased glyoxylate pathway utilization and en-
hanced succinate production yield of more than eight
fold [31].

Fig. 4 Metabolic reactions from pyruvate to acetaldehyde. Note that
the black colored reactions are naturally present in wild-type E. coli
whereas the blue colored pyruvate decarboxylase (PDC) is not

Fig. 5 Succinate production and cell growth profiles under pyruvate
flux-sum attenuation. Apart from pyruvate, the attenuation of other
metabolite flux-sums does not cause an increase in succinate production
rates. The wild-type succinate production rate is 0.06 mmol/gDCW-hr
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Minimizing acetate secretion under flux-sum perturbation
From the viewpoint of strain improvement, acetate se-
cretion is usually undesirable as it inhibits cell growth
and biochemical production [32, 33]. Hence, metabolite
flux-sum perturbations for reducing acetate secretion
will be of interest in this section. For flux-sum
attenuation, only metabolites directly involved in acetate
formation pathway, such as acetyl-CoA and acetylpho-
sphate, were identified as targets. Previous experimental
studies have also validated that the knockout of acetate
kinase (ackA) or pta, which is equivalent to attenuating
acetylphosphate flux-sum, can effectively reduce acetate
formation [34, 35].
On the other hand, for flux-sum intensification, we

identified about 30 potential metabolite targets, some of
which are shown in Table 1. These metabolites were
found to be mostly present in parallel biosynthetic
pathways that compete with the acetate pathway for the
same precursors. Thus, intensifying the flux-sum of key
metabolites in these pathways may deprive the acetate
pathway of metabolic fluxes, leading to reduced acetate
formation. Examples of these metabolites include lactate
from mixed acid fermentation pathway, isocitrate from
TCA cycle, and ribulose 5-phosphate from the pentose
phosphate pathway and 4-methyl-2-oxopentanoate from
the leucine biosynthetic pathway. Some of these perturb-
ation strategies to reduce acetate production have also
been verified experimentally, e.g. isocitrate flux-sum in-
tensification through deregulation of isocitrate lyase [36]
and lactate flux-sum intensification by overexpression of
lactate dehydrogenase [34].
An interesting and novel flux-sum intensification target

for reducing acetate formation is 3-phosphoglycerate
(3PG). As 3PG is an upstream precursor required for pro-
ducing acetate, it is unexpected that increasing its turnover
rate will attenuate acetate production. However, further
examination of the flux distribution indicated that as the
3PG flux-sum increases, the pathway for glyoxylate cata-
bolic process becomes activated. In short, glyoxylate cata-
bolic process begins the synthesis of glyoxylate from
isocitrate lyase and continues through a series of reactions,
glyoxylate carboligase, tartronate semialdehyde reductase
and glycerate kinase, where glyoxylate is converted back to
3PG. Since 3PG is a precursor for serine biosynthesis, the
utilization of the glyoxylate metabolic pathway redistri-
butes the fluxes such that cell growth is lowered. Conse-
quently, the decrease of both energy requirement and
resources for acetate synthesis leads to less flux through
acetate kinase. Interestingly, a concomitant production of
succinate was also observed as a result of glyoxylate bypass
utilization. Thus, the intensification of 3PG flux-sum via
overexpression of glyoxylate catabolic process can be a de-
sirable metabolic engineering strategy for reducing acetate
formation and increasing succinate production.

Discussion
Recently, the application of flux-sum to a strain im-
provement study for vanillin production in S. cerevisiae
was reported [37]. In that study, FSA was used to com-
pute the minimum metabolite turnover which reflects
the lower bound for the degree of resource allocation re-
quired to achieve a particular metabolic state. Subse-
quently, FSA was demonstrated to be a useful evaluation
tool that provides insight into the cellular metabolism of
engineered microbial strains from the metabolite per-
spective. Since the flux-sum concept can characterize
resource distribution to various metabolites within the
network, the application of FSA can be systematically
utilized to identify metabolic engineering targets, rather
than being used only as a supplementary tool to under-
stand cellular metabolism. Accordingly, herein, we have
proposed a systematic workflow to identify metabolic
engineering targets using the FSA approach and demon-
strated its applicability by applying it to E. coli for en-
hancing ethanol and succinate production, and reducing
acetate formation. In general, this procedure can be sim-
ply applied to any other organism of interest whose
genome-scale metabolic model is readily available. For ex-
ample, we also applied the proposed FSA to S. cerevisiae
using the iMM904 model [38] for succinate overpro-
duction case and identified glyoxylate and acetyl-CoA as
intensification and ethanol as attenuation targets, respect-
ively (see Additional file 2 for details). Notably, the glyoxy-
late intensification strategy is very similar to the one
identified in E. coli where the redirection of carbon flux
towards glyoxylate cycle instead of the TCA cycle is bene-
ficial for succinate overproduction. Collectively, such re-
sults reveal that the utilization of glyoxylate cycle could be
a global strategy for succinate overproduction across dif-
ferent organisms.
The metabolic engineering targets identified using the

metabolite-centric technique can be equivalent to the re-
action targets obtained by the gene deletion-based ap-
proach. Thus, we compared the results of current work
with that of OptKnock, OptReg and OptForce algo-
rithms for the succinate overproduction case [19] to
examine the uniqueness of the metabolite targets. Such
comparison between reaction and metabolite targets re-
vealed that although there are some comparable ones,
not all the metabolites have an equivalent reaction (s)
candidate (Table 2). For example, OptKnock consistently
identified the deletion of PTAr and ACKr, corresponding
to the attenuation of acetylphosphate and acetate,
respectively. Similarly, the deletion/downregulation of
PFL, as identified by OptKnock, OptReg and OptForce
also correspond very well with the formate attenuation.
Moreover, the overexpression of citrate synthase and
aconitase in conjunction with the isocitrate dehydro-
genase deletion may be an equivalent strategy to
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augment the glyoxylate pool as identified by FSA. How-
ever, despite such comparable results, the pyruvate flux-
sum attenuation for succinate overproduction does not
have many equivalent targets in reaction-centric algo-
rithms, except PYK deletion, which is presumably due to
pyruvate’s association with multiple reactions. Inten-
sification of menaquinol/menaquinone is unique target
identified by FSA which does not have equivalent
reaction-centric targets. Such results clearly demonstrate
the efficacy of FSA in identifying novel metabolite tar-
gets that could only have been found via the multiple
reaction deletion analysis. In this sense, FSA can be con-
sidered as a useful tool to circumvent the much higher
computational cost of perturbing the large number of
reaction flux combinations. Nonetheless, the flux-sum
analysis method is not completely superior to conven-
tional gene/reaction deletion analysis as we have also
identified unique reaction targets using the latter
method. Such examples include the downregulation of
malate dehydrogenase (MDH) identified by OptForce,
which prevents the malate from getting converted into
oxaloacetate and redirects the flux towards fumarate,
and then to succinate. Hence, we propose FSA as a com-
plementary procedure within the general constraints-
based flux analysis framework for strain improvement
studies.
While using FSA for metabolic engineering, following

the identification of metabolite targets, we envisage two
different approaches to manipulate the flux-sum of tar-
get metabolites. The first approach could be based on

the genetic engineering of genes around the target
metabolite in the metabolic network. For example, in
order to intensify the 6-phospho-D-gluconate produc-
tion levels, we can either overexpress the corresponding
biosynthetic gene, glucose-6-phosphate dehydrogenase
(zwf ) or forcefully reroute excess carbon flux into the
desired pentose phosphate pathway by deleting the
phosphofructokinase (pfk) or phosphoglucose isomerase
(pgi) genes from the parallel glycolytic pathway. In the
second approach, more intuitive strategies such as the
use of antimetabolites or co-feeding of certain pathway
intermediates in the culture media could possibly restrict
or enhance the target metabolites’ turnover rates.
Although the use of such compounds to manipulate the
flux-sum of a particular metabolite has never been
attempted before, it could still be an interesting option
to explore.

Conclusion
In this study, we successfully identified potential metab-
olite targets that can enhance the cellular physiology of
E. coli using the FSA method developed in our previous
work [22]. The original FSA framework was modified to
elucidate changes in cellular metabolism under flux-sum
perturbation, leading to the identification of metabolic
engineering targets for strain improvement. The in silico
simulation presented results that were highly consistent
with previous wet-lab experimental observations, and
also novel findings that could be validated in future works.
In addition, comparison with reaction targets identified by

Table 2 Comparison of metabolic engineering targets identified by various reaction-centric approaches and its equivalents in FSA
for succinate overproduction in E. coli

Reaction-centric algorithm FSA

Algorithm # interventions Targets Equivalent target

OptKnock Two PFL (X), LDH (X) PFL (X) corresponds to formate (↓)

Three ALCD (X), PFL (X), LDH (X) PFL (X) corresponds to formate (↓)

ALCD (X), PTA (X), ACK (X) PTA (X) and ACK (X) corresponds to acetate (↓)

Four ALCD (X), PTA (X), ACK (X), PYK (X) PTA (X) and ACK (X) correspond to acetate (↓). PYK (X) corresponds to pyruvate (↓)

ALCD (X), PTA (X), ACK (X), TKT (X) PTA (X) and ACK (X) correspond to acetate (↓)

OptReg Two PFL (X), PPC (↑) PFL (X) corresponds to formate (↓)

Three PFL (X), PPC (↑), ALCD (↓) PFL (X) corresponds to formate (↓)

Four PPC (↑), CS (↑), PDH (↓), ALCD (↓) CS (↑) possibly correspond to isocitrate (↑)

OptForce Two PPC (↑), CS (↑) CS (↑) possibly correspond to isocitrate (↑)

OptForce Three PPC (↑), CS (↑), MDH (↓) CS (↑) and MDH (↓) possibly correspond to glyoxylate (↑) and isocitrate (↑)

PPC (↑), ACONT (↑), MDH (↓) ACONT (↑) and MDH (↓) possibly correspond to glyoxylate (↑) and isocitrate (↑)

OptForce Four PPC (↑), CS (↑), MDH (↓), PFL (↓) CS (↑) and MDH (↓) possibly correspond to glyoxylate (↑) and isocitrate (↑).
PFL (↓) corresponds to formate (↓)

PPC (↑), ACONT (↑), MDH (↓), PFL (↓) ACONT (↑) and MDH (↓) possibly correspond to glyoxylate (↑) and isocitrate (↑).
PFL (↓) corresponds to formate (↓)

Results of OptKnock, OptReg and OptForce are reproduced from Ranganathan et al. [19]. X - Deletion, ↑ - Upregulation or Intensification and ↓ - Downregulation
or Attenuation
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conventional gene/reaction deletion analysis shows that
FSA has the capability to identify unique metabolite
targets. Thus, the application of FSA complemented with
conventional gene deletion analysis will provide re-
searchers with a wider choice of potential metabolic en-
gineering targets for stain improvement, which will be
beneficial to the field of systems metabolic engineering.

Methods
Constraints-based flux analysis
Constraints-based flux analysis is an in silico method
that simulates cellular metabolism such that a hypothet-
ical cellular objective, usually cell growth, is maximized
under stoichiometric and reaction capacity constraints
[39–41]. The mathematical formulation is in the form of
a linear programming (LP) problem as follows:

max Ζ1 ¼
X
j

cjvj ð1Þ

Subject to:
X
j

Sijvj ¼ 0

aj≤ vj≤βj

where cj is the coefficient of the desired cellular objective
to be maximized, vj is the flux of reaction j and Sij indicates
the stoichiometric coefficient of metabolite i involved in re-
action j. Values of αj and βj can be specified based on
experimental measurements or any hypothetical flux per-
turbation. Solving Eq. (1) by setting Z1 to be equal to cell
growth rate, without any flux perturbation constraint,
yields the wild-type (WT) metabolic flux distribution.

Quantification of metabolite flux-sum
Conventional constraints-based flux analysis does not pro-
vide a means to quantify the degree of individual metabol-
ite utilization. Hence, we introduced the flux-sum concept
to quantify metabolite turnover rates [22, 23]. Under the
steady-state flux balanced condition, the consumption
and generation rates for any metabolite are equal.

i.e
X
j

Sijvj
�� ��

consumption ¼
X
j

Sijvj
�� ��

generation

Thus, the flux-sum of any intermediate metabolite i,
Φi, can be calculated as half the sum of the absolute rate
of all reactions consuming or producing the metabolite:

Φi ¼ 0:5
X
j

Sijvj
�� �� ð2Þ

Unlike the mathematical formulation of the basic
constraints-based flux analysis, the flux-sum expression

is nonlinear due to the modulus operator and directly
imposing constraints on the flux-sum expression will
result in a nonlinear problem. Hence, additional con-
straints are introduced to recast the problem to a linear
integer form as discussed previously [22]:

Φi ¼ 0:5
X
j

gþij þ g−ij
� �

where Sijvj ¼ gþij −g
−
ij

gþij ≥0 ; g−ij ≥0

gþij ≤ I
þ
ij ⋅M ; g−ij ≤ I

−
ij⋅M

Iþij ∈ 0; 1f g ; I−ij ∈ 0; 1f g

Iþij þ I−ij ¼ 1

The positive variables, gij
+ and gij

−, refer to the gener-
ation and consumption components of metabolite i due
to reaction j, respectively. Binary variables, Iij

+ and Iij
−,

serve as switches to turn the generation and consump-
tion components on and off such that only one of the
component is active, effected by the Iij

+ + Iij
− = 1

constraint. Big M can be an arbitrarily large flux value,
e.g. 1000 mmol/gDCW-hr.

Flux-sum analysis for identifying metabolic engineering
targets
To identify the attenuation and intensification meta-
bolite targets which lead to the enhanced production of
desired compound, we first need to quantify the flux-
sum of all metabolites in the wild-type strain. This can
be determined by first solving the constraints-based flux
analysis problem (Eq. 1) with biomass maximization as
objective, and then substituting the resulting flux distri-
bution into Eq. (2). Next, we need to solve the below
mentioned MILP problem to identify the flux-sum max-
ima and minima to determine the feasible ranges of indi-
vidual metabolite flux-sum such that they can be
attenuated or intensified within this limit:

max=min Φi ¼ 0:5
X
j

gþij þ g−ij
� �

for fiven metabolitei

ð3Þ
Subject to:
X
j

Sijvj ¼ 0

αj≤vj≤βj

Sijvj ¼ gþij −g
−
ij

gþij ≥0 ; g−ij ≥0

Lakshmanan et al. BMC Systems Biology  (2015) 9:73 Page 8 of 11



gþij ≤ I
þ
ij ⋅M ; g−ij ≤ I

−
ij⋅M

Iþij ∈ 0; 1f g ; I−ij ∈ 0; 1f g

Iþij þ I−ij ¼ 1

Once the reference flux-sum values are established,
i.e. wild-type, maxima and minima values, we then
solve the below mentioned MILP problem to analyze
the effects of perturbing a particular metabolite’s
turnover rate on cellular growth.

max vbiomass ð4Þ
Subject to:
X
j

Sijvj ¼ 0

αj ≤ vj ≤ βj

Sijvj ¼ gþij −g
−
ij

gþij ≥ 0 ; g−ij ≥ 0

gþij ≤ I
þ
ij ⋅M ; g−ij ≤ I

−
ij⋅M

Iþij ∈ 0; 1f g ; I−ij ∈ 0; 1f g

Iþij þ I−ij ¼ 1

C1ð Þ: 0:5
X
j

gþij þ g−ij ≤Φ
min
i þ katt ΦWT

i −Φmin
i

� �

OR

C2ð Þ: 0:5
X
j

gþij þ g−ij ≥Φ
WT
i þ k int Φmax

i −ΦWT
i

� �

where constraint (C1) and (C2) is applicable for at-
tenuation and intensification problems, respectively.
Parameters katt and kint are gradually varied between
0 and 1 in steps of 0.1 to analyze the effect of me-
tabolite attenuation between minimal and wild-type
values, and intensification of metabolite turnover be-
tween the wild-type and maximal values, respectively.
Finally, the objective value obtained from the solution

of Eq. (4) is used as the lower limit for cell growth in the
fourth step whereby (Eq. 4) is solved again with the tar-
geted worst-case scenario as the objective function. For
example, if we aim to increase succinate production rate,
the respective flux can be minimized to evaluate the
worst case scenario. The corresponding mathematical
formulation is as follows:

min vEX succ

Subject to:

vbiomass≥Bi;k

X
j

Sijvj ¼ 0

αj ≤ vj ≤ βj

Sijvj ¼ gþij −g
−
ij

gþij ≥ 0 ; g−ij ≥ 0

gþij ≤ Iþij ⋅M ; g−ij ≤ I−ij⋅M

Iþij ∈ 0; 1f g ; I−ij ∈ 0; 1f g

Iþij þ I−ij ¼ 1

C1ð Þ: 0:5
X
j

gþij þ g−ij ≤Φmin
i þ katt ΦWT

i −Φmin
i

� �

OR

C2ð Þ: 0:5
X
j

gþij þ g−ij ≥ΦWT
i þ k int Φmax

i −ΦWT
i

� �

where Bik is the maximum biomass obtainable while solving
problem (Eq. 4) for ith metabolite at kth attenuation/
intensification levels. Here, it should be noted that we
problem (Eq. 4) in two steps whereby first maximizing
biomass objective and then maximizing/minimizing tar-
geted worst-case scenario with minimum biomass con-
strained at the value obtained in previous step to make
sure that there is no other alternative optima present.

Implementation of flux-sum analysis
The FSA procedure is applied to the iAF1260 metabolic
model of E. coli [42] to investigate the effects of flux-sum
perturbation on ethanol, succinate and acetate production.
All in silico simulations were carried out based on a glu-
cose uptake rate of 1 g/gDCW-hr, such that all flux values
can also be interpreted as yield in mmol/g glucose or g/g
glucose. Since by-product formation in E. coli typically oc-
curs under the anaerobic condition, we also constrained
oxygen uptake rate to zero. All the optimization problems
were solved using the GAMS IDE software version 22.4
[43] with IBM ILOG CPLEX solver.
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