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Abstract

Background: The Drosophila sex determination hierarchy is a classic example of a transcriptional regulatory
hierarchy, with sex-specific isoforms regulating morphology and behavior. We use a structural equation modeling
approach, leveraging natural genetic variation from two studies on Drosophila female head tissues – DSPR collection
(596 F1-hybrids from crosses between DSPR sub-populations) and CEGS population (75 F1-hybrids from crosses
between DGRP/Winters lines to a reference strain w1118) – to expand understanding of the sex hierarchy gene
regulatory network (GRN). This approach is completely generalizable to any natural population, including humans.

Results: We expanded the sex hierarchy GRN adding novel links among genes, including a link from fruitless (fru)
to Sex-lethal (Sxl) identified in both populations. This link is further supported by the presence of fru binding sites
in the Sxl locus. 754 candidate genes were added to the pathway, including the splicing factors male-specific lethal 2
and Rm62 as downstream targets of Sxl which are well-supported links in males. Independent studies of doublesex and
transformer mutants support many additions, including evidence for a link between the sex hierarchy and metabolism,
via Insulin-like receptor.

Conclusions: The genes added in the CEGS population were enriched for genes with sex-biased splicing and
components of the spliceosome. A common goal of molecular biologists is to expand understanding about
regulatory interactions among genes. Using natural alleles we can not only identify novel relationships, but using
supervised approaches can order genes into a regulatory hierarchy. Combining these results with independent
large effect mutation studies, allows clear candidates for detailed molecular follow-up to emerge.
Background
The Drosophila melanogaster sex determination hier-
archy consists of an alternative pre-mRNA splicing
cascade (Fig. 1) that directs somatic sex differences in
morphology reviewed in [1], sex chromosome dosage
compensation reviewed in [2], and adult reproductive
behaviors reviewed in [3, 4]. Sex differences initiate dur-
ing early embryogenesis with the sex-specific splicing of
Sex-lethal (Sxl) pre-mRNAs, producing functional Sxl
protein in females. Sxl regulates its own pre-mRNA
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splicing [5] and directs the sex-specific splicing of trans-
former (tra) [6]. Female-specific transformer (TraF) in
conjunction with non-sex-specific transformer-2 (Tra-2),
control all aspects of somatic sex determination by regu-
lating the splicing of the pre-mRNAs that encode the
sex-specific transcription factors doublesex (dsx) [7] and
fruitless (fru) [8], reviewed in [9]. This level understand-
ing of the sex hierarchy has taken several decades of
effort [8, 10–16], however the complete gene regulatory
network (GRN) is still unknown.
Recent efforts to expand the sex hierarchy GRN have

used genomic approaches to characterize global changes
in gene expression associated with large-effect mutations
in tra [17–19], dsx [18, 19], and fru [19–22]. These
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Fig. 1 The Drosophila sex determination hierarchy in females. Transcripts
are in red and proteins are in blue. Solid arrows are genetic interactions
(e.g. splicing, transcription) and dashed arrows are protein translation. (1)
Spf45→ Sxl [122], (2) Snf→ Sxl [123], (3) vir→ Sxl [27], (4) vir→ tra [27],
(5) fl(2)d→ Sxl [10], (6) Sxl→ Sxl [122], (7) Sxl→ Tra [28, 124], (8) Sxl -|
Msl-2 [2, 88, 125], (9) fl(2)d→ Tra [126], (10) Tra→DsxF [71], (11) Tra2→
DsxF [71], (12) DsxF→ Yps [16, 127, 128], (13) Her→ Yps [129], (14)
ix→ Yps [67]
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studies have identified thousands of novel genes regu-
lated by the sex hierarchy, but how best to incorporate
these results into the existing knowledge of the pathway
remains elusive.
Here we exploit natural alleles to provide a window

into the relationships among genes in the D. melanoga-
ster sex hierarchy GRN. Mutation is a driving force of
evolution and natural populations are reservoirs of gen-
etic variation. Segregating allelic variation provides
many small-effect mutations in regulatory and coding
regions of almost every gene reviewed in [23]. Natural
variation provides an opportunity to study the impact
of genetic variation on the sex hierarchy specifically
and more generally on GRNs [24–26]. While the
phenotypic consequences of large-effect mutations in
the sex hierarchy are well characterized [10, 27–29],
the consequences of small-effect mutations are under
investigation [24, 30, 31]. For example, genetic variation
in upstream splicing factors of the sex hierarchy are
known to affect the transcript abundance for down-
stream targets like Yolk protein [26].
Gene expression, from adult female heads, was mod-

eled using two separate transcriptomic datasets from
populations of natural alleles. The first was a microarray
dataset of 596 F1-hybrids created by crossing recombin-
ant inbred lines (RILs) from each sub-population in the
Drosophila Synthetic Population Resource (DSPR) [32].
The second was a RNA-seq dataset from (BioProject
PRJNA281652) [33]. This CEGS population was made
by crossing natural isogenic females from two North
American populations of D. melanogaster – Drosophila
Genetic Reference Panel (DGRP; [34]) and Winters
California [35] – to males of a laboratory stain (w1118).
A variety of methods have been used to re-construct

GRNs including partial correlations [36], differential
equations [37], graphical Gaussian networks [38], and
Bayesian networks [39–46]. To expand the sex hierarchy
GRN, we first built a baseline structural model using the
existing molecular knowledge. Then variations of the
baseline model were explored and tested using structural
equation modeling (SEM) [47]. SEM is a supervised
approach based on Sewell Wright’s path analysis [48],
where the order and direction of the relationships be-
tween genes is an intrinsic part of the structural model.
SEMs not only have been used historically [48, 49],

but have also been applied to variety of genetic ques-
tions. SEMs have been used to model relationships
between QTLs and phenotype in plant development in
Arabidopsis [50], grain yield in wheat [51], height and
diameter in loblolly pine [52], body size in mouse [53],
BMI in humans [54], and others (reviewed by [55]).
SEMs have also been used to order cis-eQTL [44, 56, 57].
In time course studies, the latent variable structure avail-
able in SEMs has been applied to model protein-DNA in-
teractions in yeast [58], transcription in yeast [59], cell
lineage determination in C. elagans [60], and cell cycle in
yeast [61]. They have also been used to construct local
GRNs based on patterns of differential gene expression
[30, 62]. Here we use the SEM framework to enable GRN
expansion. Using existing knowledge about a GRN as a
baseline model, we systematically scan the genome for
additional components and improve our understanding of
the existing GRN in a context that enables interpretation
and confirmation. We identified several novel relation-
ships among genes in the sex hierarchy and were able to
add novel genes to the sex hierarchy. These new relation-
ships were validated using additional gene expression data
from tra and dsx mutants.

Results
mRNA isoforms were initially modeled, as the sex hier-
archy is regulated by alternative isoforms, but covari-
ation among genes in female head tissue was similar for
different isoforms. Therefore, genes in the sex hierarchy
were modeled using SEMs and model fit was assessed
using four penalized model fit statistics (see Materials
and Methods; Additional file 1: Table S1). A baseline
model was constructed from the current molecular
understanding of the sex hierarchy (Fig. 1). This base-
line model was expanded by adding new paths among
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genes in the sex hierarchy GRN or by adding new genes
to all possible locations in the sex hierarchy GRN. Paths
that improved model fit compared to the baseline
model were considered putative relationships. These
models were validated using transcriptomic data from
the existing literature and two independent mutation
studies for tra [17] and dsx (presented here).
Baseline model
The directional path between any two genes in the sex
hierarchy was determined from prior molecular know-
ledge (Fig. 1). For each regulatory relationship identified
in the literature, the corresponding directed path param-
eters β and γ (Fig. 2 black arrows) were estimated in a
baseline model. The DSPR and CEGS populations had
slightly different baseline GRNs because dsx expression
was not measured in the DSPR. The dsx branch of the
sex hierarchy regulates three closely related Yolk protein
genes (Yp1, Yp2, and Yp3). These three Yolk protein
genes were highly correlated in both the DSPR and
CEGS, to avoid issues of multicollinearity only Yp2 was
included in the baseline model.
Many of the direct relationships between genes in the

sex hierarchy have been described, however the covariance
patterns among genes are not described. Therefore, three
Fig. 2 Identification of appropriate covariance structure for baseline mod
(a-c) and the CEGS (d-e). The full covariance model (a and d) allows all in
covariance model implies that there are unknown regulatory factor(s) tha
covariance model (b and e) constrains all covariances between exogenou
in the model are truly independent and are not regulated by some unkn
exogenous genes to freely covary (blue lines). The partial covariance mod
GRN may be controlled by an unknown factor such as the transcriptional
patterns of covariance were compared in the DSPR and
CEGS data. (1) The full covariance model estimates
covariance parameters between all independent genes
(Fig. 2a, d). The full covariance model implies that there is
at least one unmeasured factor (e.g., transcription factor
or splicing machinery) causing correlation among residual
error. The full covariance model simultaneously esti-
mates a matrix of covariance parameters (φ; Fig. 2a, d
blue lines) for all pairwise relationships among inde-
pendent genes. (2) The no covariance model assumes
that all independent genes in the pathway are not co-
regulated (Fig. 2b, e). The no covariance model con-
strains all covariance parameters (φ) to 0. (3) In
addition to the two extremes, full covariance and no
covariance, it is possible to specify a model where some
covariance is allowed. A partial covariance model has
both co-varying genes and independent genes. Covari-
ance may be due to co-regulation or to hidden effects.
The current sex determination literature does not
suggest direct co-regulation. However, we saw evi-
dence of co-variation among (tra2, snf, Sp45, and
fl(2)d) in both DSPR and CEGS data, and use this
empirical observation to fit a partial covariance
model (Fig. 2c, f ). The partial covariance model con-
strains some covariance parameters of independent
genes to 0 while estimating the remaining residual
el. Three separate covariance models were compared for the DSPR
dependent, or exogenous, genes to freely co-vary (blue lines). The full
t is drive expression of the genes in the sex hierarchy GRN. The no
s genes to 0. The no covariance implies that the independent genes
own factor. The partial covariance model (c and f) allows
els implies that some of the exogenous genes in the sex hierarchy
or splicing machinery
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covariance parameters in the SEM (φ’; Fig. 2c, f blue
lines).
The three covariance models were compared in both

the DSPR and CEGS populations using four penalized
fit statistics: adjusted goodness-of-fit (AGFI), parsimo-
nious goodness-of-fit (PGFI), consistent Akaike’s infor-
mation criterion (CAIC), and Bayesian information
criterion (BIC) (Additional file 1: Table S1). All 4 fit
statistics selected the no covariance model in the DSPR,
while the CEGS results were less clear (Table 1): AGFI
selected the full covariance model, PGFI selected the
no covariance model, and both CAIC and BIC selected
the partial covariance model. An examination of the
residual matrix suggest that there are potentially un-
identified components of the model. Together with the
unambiguous results from the DSPR, this suggest that
no covariance model is the most likely, with unknown
components present. For these reasons we focus on the
no covariance model for the remaining analyses for
both DSPR and CEGS.

Adding new paths to the sex hierarchy GRN
While much is known about the sex hierarchy, there
are potentially unidentified regulatory relationships
among the genes in this pathway. Indeed, after account-
ing for all the known relationships in the sex hierarchy
GRN in our baseline model, there were locations in the
residual matrix that showed large differences between
the estimated and observed values (Additional file 1:
Table S3 and S4). Model fit statistics were used to ex-
plore these relationships. All possible additional paths
– i.e., all possible pairwise interactions between genes
in the baseline model excluding interactions already
present in the baseline – were individually added to the
sex hierarchy and each model fit was compared to the
baseline model using BIC. There are 84 possible new
paths in the DSPR data and 104 possible new paths in
the CEGS data. In the DSPR, 24 paths improved model
fit using BIC (Additional file 1: Table S5) and 28 paths
improved model fit in the CEGS data (Additional file 1:
Table S6). Twelve of these paths overlapped between
the DSPR and CEGS (Fig. 3). These 12 paths included
five reciprocal relationships (e.g., fru→ Spf45 and fru←
Spf45) and two directed relationships (fru→ Sxl and
Table 1 Comparison of baseline models using 4 penalizing fit statis

DSPR

Full covariance No covariance Partial c

Adjusted GFI (AGFI) 0.7953 0.8456a 0.8368

Parsimonious GFI (PGFI) 0.3605 0.6993a 0.6505

CAIC 18196.00 18137.85a 18152.9

BIC 18140.00 18102.85a 18114.9
aindicates the model with the best fit according to the given fit statistics
Sxl→ her). The reciprocal relationships could represent
co-regulation, while the directed relationships could
represent direct or indirect causal paths (fru→ Sxl or
fru→ gene→ Sxl). The direct causal path of fru→ Sxl
is supported by molecular evidence showing that Sxl
locus contains fru DNA binding sites [20].

Identifying new genes and adding paths in the sex
hierarchy GRN
The sex hierarchy is a splicing and transcriptional regu-
latory cascade, that affects expression of many genes
[17, 19, 20]. To order potential targets in the sex hier-
archy, all expressed genes in the DSPR (7,411) and
CEGS (8,810) datasets were added one at a time to all
possible locations in the sex hierarchy GRN, putative
genes were identified by assessing model fit (BIC) com-
pared to the baseline model. The type I error rate of
this procedure was estimated via simulation (see Mate-
rials and Methods). There were 34 possible locations in
the DSPR no covariance baseline model, and 37 pos-
sible locations in the CEGS no covariance baseline
model. In DSPR, none of the 251,974 tested models
improved BIC compared to baseline, while CEGS had
12,565 models (754 genes: Fig. 4, Additional file 1:
Table S6) out of 325,970 total tested models (8,810
genes) that improved BIC by more than the level repre-
senting a 5 % type I error rate. To determine how sensi-
tive our inferences were to the specification of the
covariance model, we repeated the adding genes pro-
cedure with the full covariance model for both popula-
tions. No genes were added with to the DSPR and 925
genes were added to the CEGS model. The 925 genes
added by the full covariance model contained all 754
genes from the no covariance model along with an
additional 171 genes (data not shown). We conclude
that the results are similar regardless of covariance
structure used. In order to determine whether the
addition of genes to the baseline model was sensitive to
the structure of the model, we used the DSPR baseline
model (i.e., without dsx) for the CEGS data. Here we
found that 98 % of the genes added with the original
CEGS baseline model are also added alternate baseline
model (i.e., without dsx). We also added msl-2 to the
CEGS baseline model and the results from adding
tics

CEGS

ovariance Full covariance No covariance Partial covariance

0.9895a 0.9856 0.9875

0.468 0.7813a 0.7374

4 566.67 562.75 543.93a

4 507.67 524.75 502.93a



Fig. 3 New paths added in both the DSPR and CEGS populations. Directional arrows represent the path between genes. The baseline sex hierarchy
SEM is indicated with black arrows and is based on the current understanding of the literature (summarized in Fig. 1). Twelve additional paths
improved model fit for both the DSPR and CEGS population compared to their respective baseline models (Fig. 2). Ten of these show
bi-directional relationships (blue arrows) and two had a single directional relationship (unidirectional red arrows)
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genes to this expanded CEGS baseline were also almost
identical to the original CEGS baseline model. Finally,
we removed tra from the original baseline model and
identified 95 % of the same genes. It is worth noting
that while the vast majority of the same genes are iden-
tified, their most likely positions are subject to change.
The addition of genes is robust to some deviations in
the baseline model specification.

Validating expanded GRN
The core sex hierarchy GRN terminates with the tran-
scription factors dsx and fru. New models that incorpo-
rated genes downstream of dsx (models 3 and 25) or fru
(model 4) were clear targets for validation studies. There
were 329 genes where model 3 (dsx→ gene) or model
25 (dsx→ gene→ Yp2) improved model fit over the
baseline model. Of these, 12 genes selected model 3 or
model 25 as the most likely model (Table 2). Similarly
there were 389 genes where model 4 (fru→ gene) im-
proved model fit over the baseline model, and five of
these genes selected model 4 as the most likely model
(Table 3). Reassuringly, four of the five genes identified
as most likely to be downstream of fru contained a fru
DNA binding motif [20].
dsx encodes sex-specific transcription factors known

to control nearly all aspects of somatic sex differenti-
ation outside of the nervous system, and has a role in
the nervous system [63–66]. Sex-specific splicing of dsx
pre-mRNAs results in a smaller C-terminal region in
DsxF that can interact with the obligate binding partner
intersex (ix) to regulate transcription [67]. Genes af-
fected by dsx were identified by comparing differences
in gene expression between chromosomally XX dsx null
animals (dsxd+R3/dsxm+R15) and two strains of wild-type
files (Berlin and Canton S). To control for background
affects, a gene was considered differentially expressed if
an exonic region showed differential expression in the
same direction for both control comparisons (Berlin
and Canton S), with an FDR ≤ 0.05. There were a total
of 340 genes that increased gene expression and 208
genes that decreased gene expression as a result of dsx
knockout. Of these 208 genes, 13 genes added to the
sex hierarchy GRN and were enriched for DSX binding
sites ( = 0.0015) (Table 4).

Comparison with unsupervised approaches
Similar to supervised approaches, unsupervised GRNs
can be re-constructed from genome-wide expression
studies. Unsupervised GRNs reflect the correlation
structure in the gene expression data, often suggesting
novel connections and thus facilitate hypothesis gener-
ation. There are many methods for the re-construction
of unsupervised genome-wide GRNs [68–70]. Here we
use the GeneNet package [70] to build an unsupervised
GRN using graphical Gaussian networks (GGN). The
GGN of the DSPR (Fig. 5a) and CEGS data (Fig. 5b)
show no obvious clustering among genes in the sex
hierarchy, independent of whether the network was
constructed using data from genes or transcript isoform
(data not shown). To improve visualization, nearest
neighborhoods were created by focusing on sub-
networks of genes 1-step and 2-steps away from genes
in the sex hierarchy. Again, no obvious clustering of
genes in the sex hierarchy is evident in either the DSPR
(Fig. 5c, e) or CEGS data (Fig. 5d, f ). Finally, the sex hier-
archy regulatory structure could not be captured by only



Fig. 4 Sex hierarchy expansion. a All genes expressed in the CEGS data were added to the baseline model one at a time to all possible paths
and model fit was assessed using BIC. For each possible addition the regulatory relationship (arrows) has a parameter estimate (γ for exogenous→
endogenous and β endogenous→ endogenous). There were 754 genes with BIC values lower than the baseline. Some examples include: msl-2
downstream of Sxl b, Psa in between tra and fru c, and InR downstream of Sxl d

Table 2 Genes whose best fitting model was downstream
of dsx

Symbol Primary FBgn

lab FBgn0002522

mei-41 FBgn0004367

CG7099 FBgn0032517

Snap FBgn0250791

mxc FBgn0260789

Surf4 FBgn0019925

CG17841 FBgn0028480

CG9328 FBgn0032886

CG7461 FBgn0034432

sec63 FBgn0035771

CG2218 FBgn0039767

Aplip1 FBgn0040281
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focusing genes in the sex hierarchy (DSPR: Additional
file 1: Figure S1).
Isoforms of the same gene were reasonably close in

the estimated network. For example, when looking at
the nearest neighborhood sub-network for any of the fru
isoforms, all 15 fru isoforms were within two steps in
both the DSPR and the CEGS datasets (fru_PD;
Table 3 Genes whose best fitting model was downstream
of fru

Symbol primary_fbgn Fru binding sitea

cact FBgn0000250 1

Aats-asp FBgn0002069 0

MED15 FBgn0027592 1

CG17162 FBgn0039944 1

Rgk1 FBgn0264753 1
afru binding sites identified in [20]



Table 4 Genes added to sex hierarchy GRN that were also
repressed by dsx knockout

FBgn Symbol BICa fru binding siteb dsx binding sitec

FBgn0051635 CG31635 482.4517 1 0

FBgn0259111 Ndae1 484.761 1 0

FBgn0038659 endoA 489.4473 1 0

FBgn0031885 Mnn1 491.0274 1 0

FBgn0063649 CG6006 495.2368 1 0

FBgn0053144 CG33144 497.0297 1 0

FBgn0031390 tho2 499.8877 0 0

FBgn0030608 Lsd-2 503.0053 1 0

FBgn0037890 CG17734 503.0885 0 0

FBgn0011224 heph 503.2395 1 1

FBgn0037252 CG14650 509.1222 1 0

FBgn0037466 CG1965 509.3656 1 0

FBgn0013984 InR 511.9545 1 1
aImprove fit indicated by smaller BIC than baseline (524.7484) - 12
bGenes containing fru binding sites from [20]
cGenes containing dsx binding sites [95]
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Additional file 1: Figure S2). The sex hierarchy specific
GGN also clusters isoforms from the same gene in the
DSPR data (Additional file 1: Figure S1). Transcript iso-
forms are expected to share expression regulatory mech-
anisms including common transcription factors,
therefore highly correlated expression patterns are not
surprising between isoforms.
The lack of proximity among genes known to be part

of the core sex hierarchy was disappointing. Most genes
were not within two steps of each other with few excep-
tions. (Spf45_PA; Additional file 1: Figure S2). GGNs
show some plausible novel relationships. For example,
the DSPR GGN shows a putative novel relationship tra
and tra2 (tra_PA; Additional file 1: Figure S2). In
females, TRA and TRA2 form a protein complex that
regulates dsx and fru splicing [71]. Protein-protein
interactions are not necessarily expected to be re-
capitulated in GRNs, but transcriptional co-regulation
of tra and tra2 makes biological sense. GGNs also iden-
tify a large number of genes (grey nodes) not previously
associated with the sex hierarchy, though they show
strong expression correlations to members of the sex
hierarchy. These genes are candidates to further exam-
ine. This unsupervised network re-construction did not
robustly detect known relationships among genes in the
sex hierarchy.

Discussion
Drosophila lines from natural populations contain a res-
ervoir of genetic variation, with each line containing a
unique combination of numerous mutations of small to
moderate effect. For instance, among seven D. simulans
natural genotypes, 80 % of proteins have at least one
allele with altered protein sequence [72]. These alleles
are viable in the wild, implying that they are unlikely to
be large-effect deleterious mutations. Furthermore, mu-
tations in regulatory regions are likely to result in differ-
ences in gene expression between any two genotypes.
For example, when two different Drosophila lines are
compared, approximately 10 % of genes exhibit tran-
script abundance changes of 1.3-fold or larger [73–76].
Gene expression is also highly heritable [77, 78] and
there is abundant genetic variation in the transcript level
of all sex determination genes [30, 79]. Therefore, a
collection of a several dozen unrelated lines is expected
to contain regulatory mutations in almost every gene.
Genetic variation in the context of a GRN contributes

to phenotypic differences in complex traits [41, 80–85]
and natural variation is a powerful tool to expand know-
ledge of GRNs [24, 25, 82]. The number of regulatory
relationships that can be elucidated by any model, is
expected to depend upon the number of observable al-
lelic combinations in the population. The sex hierarchy
is an excellent target for proof of principle studies, with
relatively few genes in the core pathway (n = 12) and
there is extensive knowledge about the relationships
among these genes. This prediction was borne out by
our analysis, where the allelic combinations in the DSPR
and CEGS dataset readily identified possible new paths
among genes already in the sex hierarchy (Table 5).
In the CEGS population, the core sex determination

pathway was expanded. While in the DSPR there was
not enough evidence to add genes to the core pathway.
These two populations differ in their origin and con-
struction and there are several possible explanations for
this discrepancy. The inclusion of dsx in the CEGS data
where it was not detected in the DSPR, is the most
obvious possibility. This is unlikely to be the whole
explanation as there were only 12 genes that selected
downstream of dsx as their most likely model. We also
used the DSPR baseline model (without dsx) and found
that 98 % of the genes added in the original CEGS base-
line model we added to the DSPR baseline model using
the CEGS data. Taken together, this evidence suggests
that the absence of dsx in the DSPR is not driving the
lack of addition of new genes to the DSPR data.
Another possibility is the amount of allelic variation at
each locus. The CEGS data have almost twice the num-
ber of alleles at each locus, while the sample size is
smaller. To test this idea a random 50 % subset of
CEGS lines were used and the modeling process
repeated with this subset. The number of alleles, and
the results were nearly identical in this subset (Additional
file 1: Table S7) further suggesting that the number
of alleles is more important than the number of lines.
Another possibility is the presence of trans-effects.



Fig. 5 Genome-wide graphical Gaussian network of genes in the DSPR and CEGS. Red boxes represent genes that are part of the sex hierarchy or
associated splicing factors. Blue boxes are remaining genes in the DSPR (a, c, e) or CEGS (b, d, f). (a-b) Visualization of the genome-wide GGN.
(c-d) The primary neighborhood 1-step out from sex determination genes. (e-f) The secondary neighborhood 2-steps out from sex determination genes
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There is evidence for trans- effects among these
genes in D. simulans [86]. Since the DSPR have a
much higher degree of diversity among the alleles,
the trans- effects in the DSPR may be larger than in
CEGS, increasing the noise relative to the signal [87].
One of the struggles in genomic studies is how to

validate associations. The DSPR and the CEGS popula-
tion are two independent populations, created from dif-
ferent starting populations and assayed using different
technologies. The intersection of 12 additional links
lends strength to these associations, as it is unlikely
that the same spurious results would be found in two
independent populations. In particular, the fru to Sxl
link has additional support with the existence of fru
binding sites in the regulatory region of Sxl [20]. The
question of how to validate the addition of genes is
more complex, as the DSPR with fewer alleles did not
show evidence for GRN expansion. However, the sex
hierarchy has been the subject of much exploration;
therefore, it is possible to use the accumulation of
knowledge from previous studies for validation of novel
links suggested by the SEM models as well as the re-
sults from knock-out, knock down and overexpression
studies.
Genes identified by GRN expansion show previous

evidence of sex-biased differential expression, regula-
tion by the sex determination hierarchy, and sex-biased
splicing. There were 178 genes in the expanded GRN
that have previously been shown to have sex-biased
differential expression upstream or downstream of tra
[17, 19]. One of these sex-biased expressed genes, msl-
2, is known to be regulated by Sxl in males [2, 88]. The
inclusion of msl-2 improved model fit over baseline in
all models, and the most likely model just upstream or
just downstream of Sxl (Fig. 4b). The expanded GRN
was also enriched for genes with evidence of sex-biased
splicing [89] (p < 0.0001). For example, Rm62 improved
model fit over baseline in all models, and has been
shown to have sex-biased splicing in whole bodies [89].
Given that the sex hierarchy is a sex-specific splicing



Table 5 The number of alleles per gene of the sex determination hierarchy in the DSPR and CEGS populations

chr Start Stop Gene FBname CGnum DSPR CEGS (assume ref) CEGS (imputed)

2 L 16677185 16679691 her FBgn0001185 CG4694 11 28 16

2 L 22959606 22961118 Spf45 FBgn0086683 CG17540 4 11 7

2R 7246942 7247668 ix FBgn0001276 CG13201 4 9 7

2R 9707129 9712058 fl(2)d FBgn0000662 CG6315 13 23 13

2R 10489509 10491842 tra2 FBgn0003742 CG10128 NA 14 12

2R 12748826 12755219 Psi FBgn0014870 CG8912 NA 37 7

2R 19247715 19253878 vir FBgn0003977 CG3496 NA 62 44

3 L 16583159 16584150 tra FBgn0003741 CG16724 4 8 6

3 L 21837888 21925802 mub FBgn0262737 CG7437 NA 16 6

3R 3750045 3793130 dsx FBgn0000504 CG11094 NA 21 3

3R 5243662 5281222 ps FBgn0261552 CG42670 NA 29 10

3R 6610105 6612187 Rbp1 FBgn0260944 CG17136 4 5 NA

3R 9460584 9472026 sqd FBgn0263396 CG16901 NA 10 6

3R 9487033 9492613 B52 FBgn0004587 CG10851 12 17 6

3R 14239995 14371308 fru FBgn0004652 CG14307 15 73 40

X 5203275 5204534 snf FBgn0003449 CG4528 8 16 13

X 6968583 6992089 Sxl FBgn0264270 CG43770 NA 7 5

X 9944984 9946669 Yp2 FBgn0005391 CG2979 9 23 12

X 9947844 9949531 Yp1 FBgn0004045 CG2985 9 20 9

X 13653579 13655580 Yp3 FBgn0004047 CG11129 14 37 17

NA: Indicates that depth of coverage was insufficient to estimate the number of alleles
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cascade it was not surprising to find genes associated
with B52 splicing [90] were enriched in the expanded
GRN (p = 0.0117).
Of the 754 genes identified as co-regulated with the

sex determination GRN, there was enrichment for chro-
matin binding (p = 0.05) and helicase activity (p = 0.006)
after FDR correction (Additional file 1: Table S8). Genes
associated with these GO terms are consistent with a
role in sex determination. The chromatin genes include
transcriptional regulators of the homeotic and polycomb
group (PcG) that are involved in producing sex-specific
adult morphology, such as mxc and ph-p; as well as reg-
ulators of dosage compensation. Dosage compensation is
the component of sexual differentiation that yields a
similar ratio of X-chromosome to autosome gene ex-
pression in males and females [91, 92]. In Drosophila
males, the proteins MSL1, MSL2, and MSL3 combine
with the helicase MLE to form a chromatin-binding
complex called MSL. In females, SXL protein inhibits
formation of MSL complex by inhibiting the translation
of the msl-2 mRNA. In our female experiment, msl-2 is
linked to Sxl. MSL titrates the histone acetylase MOF
away from the autosomes, thereby reducing autosomal
gene expression. MSL also modulates MOF activity on
the X to produce a net two-fold increase in X chromosome
gene expression relative to the autosomes. Regulation of
gene expression by MSL and MOF involves the PcG group
genes and chromatin modifying complexes, including heli-
cases. The identification of chromatin binding genes and
helicase genes is logical in this context. Interestingly, the
genes that are identified on the chromatin list also include
components of the piRNA pathway, which regulates trans-
poson expression and chromatin structure in the germ-
line cells. The piRNA pathway was recently shown to
regulate sex-determination in the silkworm Bombyx mori
[93] and these genes are logical candidates for expansion
of the sex hierarchy GRN. Finally, components of the
nonsense-mediated decay (NMD) pathway, which is in-
volved in regulation of gene expression at the level of
RNA, including the sex-determination gene Tra [94] were
also identified.
In addition to the use of the literature as validation,

we conducted a mutational study for validation pur-
poses where dsx null mutants were examined. Genes
directly regulated by dsx should contain a dsx binding
site. Of the 13 genes added by GRN expansion and dif-
ferentially expressed in the dsx null experiment, InR
and heph contained a dsx binding site [95] suggesting
that these may be direct targets of dsx.
The present GRN analysis suggests a connection be-

tween InR and Sxl, (Fig. 4d). However, this relationship
may be more complicated given that there are also dsx
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binding sites in the InR locus. The lack of consistent dif-
ferences in InR transcript abundance between males and
females in head tissue supports the link found by the
SEM between Sxl and InR rather than a direct link from
dsx to InR. In Drosophila, Sxl is the master switch of the
sex hierarchy. Sxl is an RRM-type RNA binding pro-
tein [96], that is involved in splicing and transla-
tional regulation reviewed in [9]. According to
current gene models, InR isoforms do not show exon
skipping, indicating that the putative Sxl action is
binding to the 3’UTR and influencing mRNA stabil-
ity or translation efficiency. There is previous indir-
ect evidence for a connection between the sex
hierarchy and metabolism; Drosophila females are
larger than males and InR is required for the sex-
dimorphism in size [97]. Furthermore, studies have
also found an association between natural variation
in InR and body size [31]. Changes in insulin signaling also
affects re-mating behavior [98]. The Drosophila fat
body, analogous to adipose tissues, is important for
courtship behaviors [19, 99] and the fru-expressing
neurons that underlie courtship behavior are obesity
blocking neurons [100].
Natural allelic variation provides an elegant way to

estimate and potentially order relationships in a GRN.
Large scale unsupervised approaches quickly run out of
degrees of freedom and are often difficult to interpret
in the context of the existing literature. In the experi-
ments presented here, unsupervised methods identified
isoforms as belonging to the same gene, but failed to
cluster genes in the core sex hierarchy and did not yield
many associations that were able to be verified in the
existing literature. In contrast, a supervised SEM
approach combined with a genome-wide scan of
expressed genes leads to logical expansions of the GRN.
Novel relationships were validated by their presence in
two independent experiments, the DSPR and the CEGS.
Genes that are part of the putative GRN expansion
suggest that the sex determination pathway is involved
with sex-biased splicing in adult female heads and fur-
ther than the pathway’s expansion is significantly
enriched for components likely to help mediate this
sex-biased splicing. These results here also support
recent literature suggestion that transcription and spli-
cing are part of one continuous process reviewed in
[101, 102] and that the sex hierarchy in adult females is
an active part of this process.
Unlike with unsupervised approaches, GRNs con-

structed based on existing understanding of a particular
provide testable hypotheses. The promise of this ap-
proach is that it can be applied directly to human pop-
ulations where population level expression studies can
be modeled with SEM and cell culture experiments can
be used to test new links.
Conclusions
Understanding the biological processes by which geno-
type contributes to phenotype, has as a logical step along
the way of understanding how genes interact with each
other in a regulatory framework. Here we use a novel
method which combines classical molecular genetic
approaches (i.e., large-effect mutation studies) with pop-
ulations of natural alleles to not only identify but order
transcriptional regulatory interactions. Like other popu-
lation genetic studies, the number of alleles limits the
number of observable interactions and differences in
population panel design will have different strengths and
weaknesses. Here we not only identify novel transcrip-
tional relationships among genes within the sex hier-
archy GRN (i.e., fru→ Sxl), but identified 754 candidate
genes to add to the existing pathway structure. These
genes were enriched for sex-biased splicing, components
of the spliceosome, chromatin factors, and helicase
activity. Many of the genes added to the sex hierarchy
GRN have previous evidence in the literature for a con-
nection, which the SEM models confirm and/or were
supported by the dsx mutation study. Intriguingly, a
connection between the sex hierarchy and metabolism is
suggested here with the identification of InR as associ-
ated with this pathway.

Methods
Naturally derived populations
The DSPR F1-hybrids were constructed by crossing in-
dividuals from each sub-population in the DSPR [32].
Briefly, the DSPR population captures global genetic
variation by creating two RIL sub-populations using 15
highly inbred founder strains derived from wild-caught
D. melanogaster from around the world. These 15
founder strains were randomly split into two subpopu-
lations, each with eight strains (one line was shared
between populations). Subpopulations were maintained
separately for 50 generations, when mating pairs were
selected and total of ~1700 RILs were created [103]. To
create the DSPR F1-hybrids, King et al. crossed females
from population pA to males from population pB for a
total of 596 F1-hybrids.
The CEGS F1-hybrid population was created by cross-

ing 75 natural isogenic strains to a single laboratory
strain (w1118) as described by (BioProject PRJNA281652)
[33]. The 75 natural isogenic strains were derived from
two North American populations: the Drosophila Gen-
etic Resource Population (DGRP) from Raleigh North
Carolina [34], and a second population from Winters
California [35].

Allelic variation
We compared the amount of allelic variation present in
the starting genotypes used in the DSPR and CEGS
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populations. The number of alleles present in the 15
founder genotypes of the DSPR was determined by
extracting all SNP calls (DSPR founder’s data Release 3;
[104]) that intersected the CDS regions of genes in the
sex hierarchy. Similarly, we extracted all SNP calls that
intersected the CDS regions of the sex hierarchy genes
from 75 genotypes used in the CEGS population. For
both data sets, SNP calls at every variable position
within the CDS regions of a given gene were assigned
to an individual and for each individual the number of
unique SNP combinations across CDSs regions was
counted as the number of alleles for a gene. The num-
ber of alleles per gene for both data sets is summarized
in (Table 5). Two different filtering criteria were used
for the CEGS SNP calls, 1) All filtered SNP calls with
missing genotypes assumed to be reference and 2) All
filtered SNP calls with an additional MAF filter of 5 %
and imputed missing genotypes.

Gene expression
GRN models were constructed using two previously
published datasets: the DSPR: [32] and CEGS. For the
DSPR study, pre-processed gene expression data from
female head tissue were downloaded from [32]. Briefly,
King et al., isolated RNA from 596 F1-hybrids from a
pool of 250–300 adult female heads. Global gene expres-
sion was measured using Nimbelgen 12 x 135 k arrays
(16,637 transcripts with eight 60 bp probes per tran-
script). For the CEGS study, pre-processed gene expres-
sion data from female head tissues were obtained from
[33]. Briefly, Kurmangaliyev et al., isolated RNA from
75 F1-hybrids from a pool of 50 adult female heads. Glo-
bal gene expression was measured using HiSeq 2000 on
at least 3 biological replicates for each F1-hybrid.

Examination of isoforms
The sex hierarchy is a splicing cascade. Many of the
genes in the sex hierarchy are alternatively spliced to
give rise to sex specific transcript and protein isoforms.
A common splicing strategy seen in many genes of the
sex hierarchy is the inclusion of premature stop codons
resulting in non-functional proteins. There are also sex
specific alteration of 3’ and 5’ UTRs in some of the genes
in the hierarchy, sex specifically changing mRNA pro-
cessing efficiency. Given the importance of isoform
usage in the sex hierarchy several methods were used to
determine if covariation among genes was driven by
variation in isoform expression.
Patterns of variation in the correlation between iso-

forms, exons, or genes within the sex hierarchy GRN
were identified with factor analysis. The FACTOR pro-
cedure (SAS v9.3) was used with the PRINCIPAL
method and VARIMAX orthogonal rotation. For each
dataset, the number of factors was selected using scree
plots and the proportion of explained variation. Isoform
level factor analysis of the DSPR identified a total of 16
factors. For each gene, the majority of isoforms loaded
on the same factor, indicating that isoforms do not drive
variation at the level of the gene (Additional file 1:
Table S9). Isoforms were summarized to the gene
level and a second factor analysis selected 8 factors
(Additional file 1: Table S10). While each factor did
not seem to represent a specific part of the sex hier-
archy, many of the splicing factors loaded together, and
the yolk proteins also loaded together (Additional file 1:
Table S10). The CEGS population showed similar re-
sults with a total of 17 factors identified when analyzing
exons, again the majority of exons within a gene loaded
together (Additional file 1: Table S11). Variation in ex-
onic correlation did not inform variation in correlation
between genes. Exons were collapsed to the gene level
and factor analysis identified 12 factors with good gene
separation (Additional file 1: Table S12).
Modulated modularity clustering (MMC) was also

used to group related genes into modules [105]. Similar
to factor analysis MMC uses variance-covariance structure
to identify relationships. MMC identified 23 modules in
the DSPR isoform data (Additional file 1: Table S13)
and 2 modules in the exon level CEGS population
(Additional file 1: Table S14). Variation in gene ex-
pression was not driven by variation between isoforms
or exons, therefore gene level expression was used.
The DSPR and CEGS captured expression for most
genes in the sex hierarchy, but the DSPR experiment
did not capture dsx or msl-2 expression.
Structural equation models (SEM)
Path analysis, a predecessor to SEM, was first introduced
by the geneticist Sewall Wright [48, 49]. Path analysis
relates observed covariances to parameters in a struc-
tural model, these parameters represent direct and indir-
ect causal interactions between of variables and can then
be estimated from the data. In the GRN framework, the
structure of a transcriptional regulatory pathway (i.e.,
splicing/transcriptional relationships between genes) is
modeled (Fig. 1). Here, each gene is a node in the net-
work and causal relationships between genes are direc-
tional paths. The directional paths between genes can
be thought of as regression coefficients. Within this
model there are two classes of genes: independent
genes (fl(2)d, her, ix, snf, Spf45, tra2, and vir) have no
paths leading into them (i.e., can be thought of as x’s in
regression), and dependent genes (dsx, fru, Sxl, tra, and
Yp2) have at least one path going into them (i.e., can be
thought of as y’s in regression). Following the general
notation of SEM [47] we write the SEM for the sex
hierarchy as:
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η ¼ Bηþ Γξ þ ζ ð1Þ

where B5 × 5 is the coefficient matrix for the relationship
between dependent variables, Γ5 × 7 is the coefficient
matrix for the relationship between independent and
dependent variables, η5 × 1 is the vector of dependent
variables, ξ7 × 1 is the vector of independent variables,
and ζ5 × 1 is the vector of random errors. In addition,
there are two covariance matrices: Φ the covariance
matrix for ξ and Ψ the covariance matrix for ζ. Max-
imum Likelihood estimation is then used to solve for the
parameters by minimizing the difference between the
covariance matrix implied by the structural model and
the covariance matrix of the data (Bollen). SEMs require
a large number of samples and assume the data follow a
multivariate normal distribution [106]. The DSPR data
set contains a large number of samples (n = 596) and
expression levels of data in the sex hierarchy are ap-
proximately normally distributed (Additional file 1: Table
S3A). The CEGS population has a moderate number of
samples (n = 75) and while RNA-seq data are based on
counts, after log transformation and upper quartile
normalization the genes in the sex hierarchy in the CEGS
data are also approximately normal (Additional file 1:
Table S3B). RNA-seq data have been modeled by others
as normal after transformation (e.g. [107–109]). Results
were consistent with a number of different normalization
strategies, including standardization. We also looked at
the covariance/correlation structure of genes in the sex
hierarchy and found that DSPR has weaker correlations
among genes in the sex hierarchy while having a more
variation (Additional file 1: Figure S4).

Identifiability
A key consideration for any network re-construction
method is the identifiability of the model. A model is
identified if it is possible to derive a unique estimate for
every model parameter. Identifiability is a property of
the model and not the data, therefore it can be (and
should be) ascertained prior to data collection [106]. If a
model is not identified, it is impossible to solve for
unique estimates, regardless of the amount of data
collected. A structural model is identified if all of the
unknown parameters can be formulated as functions of
the known parameters and that these functions can lead
to unique solutions [47]. This is an algebraic exercise
where unknown parameter (i.e., B’s, Γ’s, Φ’s, Ψ’s) are
solved in terms of the variance and covariance matrix Σ.
We refer the reader to [47, 106, 110] for a detailed dis-
cussion on what makes a model identifiable. The sex
determination hierarchy is an ideal case for identifica-
tion, it is a linear cascade, with few known feedback loops
(only Sxl autoregulation). To maintain identifiability in
our baseline model (below), we assume that residual er-
rors of the endogenous variables do not co-vary.
Goodness of fit
Various model fit statistics have been developed to
measure how well observed data fit the covariance struc-
ture implied by the structural model [47, 106, 110]. This
has the advantage of simultaneously evaluating all of the
relationships in the GRN and is analogous to evaluating
the overall model fit of a linear model. Three well estab-
lished model fit criteria – AIC [111], CAIC [112], and
BIC [113] are considered. The goal of AIC is to select
the best approximating model or set of models sup-
ported by the data. CAIC is a small sample version of
AIC which should be used when sample size is much
smaller than the number of parameters being estimated
[114]. In contrast, BIC will asymptotically select the
‘true’ model, assuming the ‘true’ model is in the set. All
of these criteria (AIC, CAIC, and BIC) allow compari-
son and ranking of models to separate those that are
equally useful from those that are not [114]. These cri-
teria are also flexible enough to be used as an overall fit
index or as an incremental fit index (Additional file 1:
Table S1).
Development of a baseline model
We fit three separate baseline models using the CALIS
procedure (SAS v9.3) for both the DSPR and CEGS
data. The baseline model is based on the imperfect
understanding we currently have of the sex hierarchy.
It is not only possible, but likely that other similar
models would fit the data at least equally as well as the
model derived from the current literature. In addition,
we are uncertain about the appropriate covariance
structure. We examined this initial baseline model with
different covariance structures. The full covariance
model (Fig. 2a, d) defined the structural model based
on the sex hierarchy pathway, and estimated parame-
ters for each path and all covariances between inde-
pendent genes. The no covariance model (Fig. 2b, e)
was the same as the full covariance model, except that
covariances between independent genes were set to 0.
The partial covariance model (Fig. 2c, f ) was the same
as the no covariance model except the covariances
between: tra2 ↔ snf, tra2 ↔ Spf45, and tra2 ↔ fl(2)d
were estimated.
As with any model selection and model specification

process, there are likely to be issues of model equiva-
lence. That is, there are likely to be several alternative
formulations of the model that are equivalent in their
ability to describe the data. Indeed, as with any modeling
approach, it is important to keep in mind that the
models employed are likely incorrect and to assess
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several alternate formulations to determine the impact of
model specification has on the downstream inferences.

GRN expansion
The GRN was expanded by adding paths one-at-a-time
either as new links among genes within the sex hierarchy
or as new genes in various locations within the sex hier-
archy. A custom python module (SEMNET) was created
to write the CALIS (SAS v9.3) code for each of these
models. First, this module takes a representation of the
pathway of interest and generates CALIS code adding all
possible new links among genes within the pathway. Sec-
ond a list of expressed genes not in the pathway, and
CALIS code will be generated adding these genes to all
possible locations in the pathway. SAS was then used to
run all models and BIC scores were analyzed to deter-
mine which models improve fit compared to a baseline
model.

Type I error rate
Data were simulated from both the DSPR and CEGS
populations. Genes within the baseline sex hierarchy
GRN were simulated by first fitting the baseline SEM
with the R package lavaan [115] and then using these
parameter estimates with the R package simsem [116] to
generate simulated data with the correct mean and
covariance structure. A gene was simulated from a nor-
mal distribution with a mean and variances drawn at
random with replacement from the population (DSPR or
CEGS). This process was repeated 8,000 times. Random
genes whose BIC was lower than the simulated baseline
represent type I errors. For the CEGS data 95 % of the
genes with BIC values lower than the baseline had a dif-
ference of less than 12. The simulation was repeated and
the BIC threshold was almost identical. We then used a
difference in BIC of 12 as a 5 % type I error cutoff to
determine whether to add a gene to the model with the
real data for the CEGS population. For the DSPR, no
simulated genes were found to have BIC values lower
than the baseline in the DSPR data, suggesting the
model might be saturated. To allow for the possibility of
real data being more informative than the random data,
we used a cutoff of a BIC difference of 0 for the DSPR
data. The type I error simulation can also indicate
when a model is potentially underfit. Using the non-
transcriptionally regulated pathway (InR/tor), the cor-
responding type I error simulations had the opposite
result, with almost all random genes showing BIC
values lower than the baseline, suggesting that the
baseline model for this pathway has little information
in it and can be improved by the addition of almost
any gene. These type I error simulations not only
allow us to control for the type I error in adding genes
to the network, but also provide an window into the
baseline model fit, and can indicate when baseline
models are potentially underfit (InR/tor) or overfit
(DSPR).

DSPR and CEGS GRN expansion
Using GRN expansion, all possible new paths were
added among genes within the sex hierarchy GRN for
both the DSPR and CEGS. A total of 84 (104) new
models were created for the DSPR (CEGS) data. Each
model was evaluated and model fit was compared to the
no covariance baseline model. All expressed genes not in
the sex hierarchy GRN were then added to all possible
paths. A total of 34 (37) locations in the GRN that a
gene could be added to DSPR (CEGS) data. Each model
was evaluated and model fit was compared to the no
covariance baseline model. A difference of 12 BIC was
required to consider the model different from baseline.

dsx null mutant for GRN validation
A large-scale perturbation in dsx was created as a mo-
lecular validation. Transcriptome libraries were prepared
from adult heads in three independent biological repli-
cates for each of the following strains: Canton S females,
Berlin females, and dsxd+R3/dsxm+R15 females. All flies
were collected 0 to 16 h post-eclosion under CO2

anesthetization and allowed to recover for 8 h before
being snap frozen in liquid nitrogen. Snap frozen whole
animals used for head collections were stored at −80 °C
until head were collected.
Adult heads were separated from bodies by mechanical

tapping of the cryovial. A piece of plastic was cooled on
dry ice, on which the heads were separated from the
bodies and immediately transferred to TRIzol®. Approxi-
mately 200 heads were harvested per biological replicate
of each genotype, and homogenized in 1 mL of Trizol.
Total RNA was extracted using TRIzol® protocol (Invi-
trogen, Carlsbad, CA), with the following modification
to the precipitation step: precipitate using 250 μL Iso-
propanol and 250 μL 1.2 M NaCitrate, 0.8 M NaCl in
DEPC-treated H2O. Total RNA was DNase (Ambion)
treated to remove any trace amounts of DNA. Poly(A) +
transcripts were isolated subsequently using MicroPo-
ly(A) Purist™ Kit (Ambion). To facilitate quality control
of reads across our samples, at this stage of library con-
struction we spiked-in small amounts of exogenous
RNA from ArrayControl™ Kit (Ambion) into 100 ng
poly(A) + RNA. Spike-in control sequences selected
had similar lengths (~1 kb), had no significant align-
ment to the D. melanogaster transcriptome using 25
base pair alignments, and had no significant align-
ment among the other spike-in sequences chosen.
Five spike-in controls (Ambion ArrayControl™ RNA
Spike 3 through 7) were added to each of our 12
samples in decreasing amounts following a log2 scale.
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The combination of spike-in controls represented, on
average, 0.08 % of the total RNA pool for each sam-
ple. 100 ng of Poly(A) + transcripts were fragmented
for 3 min 50 s at 70 °C to approximately 250 base
pairs by chemical fragmentation (Ambion). First
strand cDNA was synthesized using SuperScript® II
Reverse Transcriptase (Invitrogen) and a combination
of random hexamer and oligo (dT) primers. Second
strand cDNA was synthesized using DNA polymerase I
in combination with ribonuclease H (NEB). Double
stranded cDNA templates were blunt ended using End-
It™ Repair Kit (Epicentre), and A-overhangs were added
at both ends with Klenow fragment (3'→ 5' exo-
minus). Illumina sequencing adapters were then ligated
to both ends of the cDNA templates using Fast-Link™
DNA Ligation Kit (Epicentre). We then enriched for
cDNA templates by performing multiplex incorporat-
ing PCR reactions (≤18 cycles), and isolating 250–550
base pair fragments by gel purification. During PCR,
unique index sequences (Illumina) were incorporated
into each biological sample to allow identification of
reads from each sample when multiple samples were
sequenced on a single lane of the flow cell. All samples
were run on a 72 base pair single end flow cell. Images
were processed using Illumina's GenomeStudio soft-
ware. On average ~6 million reads were obtained per
sample.
Reads were mapped and analyzed as in [20]. A total

of 44,585 exonic regions were detected at least once in
each treatment group and were assessed for differential
gene expression. A linear model was fit for each exonic
region separately, and all comparisons were done using
contrasts with a single model with a FDR correction
[117]. To reduce the chances of a strain effect, all
treatment groups were compared to 2 control strains
(Berlin and Canton S). Exonic regions were summa-
rized to the gene level. A gene was considered differ-
entially expressed if it had an exonic region with a
FDR ≤ 0.2 in both control comparisons. Fold-change
direction was used to designate a gene as repressed or
induced.

GRN validation
New paths identified using GRN re-construction need to
be independently validated. Instead of performing an
individual experiment for each new path, genomic data
can be harnessed for validation. First, DNA binding site
studies can be used to support direct molecular interac-
tions between the upstream and downstream genes.
Three previous studies identified putative DNA binding
sites for fru [20], dsx [95], and tra [17]. Second, single-
gene perturbation studies can be used to identify
changes in patterns of global gene expression, identifying
gene directly or indirectly regulated by the perturbed
gene. Two previous studies looked at the effects of
perturbing tra in female heads [17, 19], and a new
study presented here looks at the effects of dsx perturb-
ation in female heads. New paths identified by GRN ex-
pansion were validated by looking for support for the
relationship in DNA binding sites and single-gene per-
turbation studies.

Unsupervised approaches
Graphical Gaussian networks (GGN) are a popular
method to infer gene network structure [118–121]. An
unsupervised approach, GGNs use partial-correlation
to infer conditional dependency, allowing the construc-
tion of a hypothetical network without prior knowledge
of its structure. We constructed two GGNs, one
genome-wide and one based on the sex hierarchy GRN,
were constructed using the R package GeneNet [38] for
both the DSPR and the CEGS populations. Edges were
selected using either an FDR cutoff of 0.2 or a number
cutoff of 20 edges.

Availability of supporting data
RNA-seq data for the dsx null experiment is available at
the Gene Expression Omnibus (GSE67400). All other
datasets have been previously published, please see cita-
tions for more information.

Software availability
SAS PROC CALIS was used for all SEM analysis. A py-
thon package (SEMNET) was created to generate adding
links and adding genes PROC CALIS statements (http://
github.com/McIntyre-Lab/semnet). All scripts related to
the analysis of this project can be found at http://github.
com/McIntyre-Lab/papers/tree/master/fear_sem_sd_2015.
Additional file

Additional file 1: Table S1. Structural equation modeling measures of
overall model fit. Adapted from (Hoyle). Table S2. DSPR no covariance
raw residual matrix of genes in the sex hierarchy GRN. Table S3. CEGS
no covariance raw residual matrix of genes in the sex hierarchy GRN.
Table S4. New links added between genes in the DSPR sex hierarchy
GRN. Table S5. New links added between genes in the CEGS sex
hierarchy GRN. Table S6. Gene added to the CEGS sex hierarchy GRN.
Table S7. Number of alleles per gene of the sex determination hierarchy
in a random 50 % subset of CEGS lines. Table S8. Genes added to the
sex hierarchy GRN that showed enrichment for chromatin binding and
helicase activity. Table S9. DSPR isoform level factor analysis. Table S10.
DSPR gene level factor analysis. Table S11.
CEGS exonic regions factor analysis. Table S12. CEGS gene level factor
analysis. Table S13. DSPR isoform level modulated modularity clustering
(MMC). Table S14. CEGS exon level modulated modularity clustering
(MMC). Figure S1. Graphical Gaussian network of genes in the sex
determination hierarchy (DSPR Collapsed Isoforms). Figure S2. Examples
of secondary neighborhood structure from a genome-wide graphical
Gaussian network. Figure S3. Distribution of genes in the sex hierarchy.
Figure S4. Correlation and covariance matrices for genes in the sex
hierarchy. (DOCX 1153 kb).
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