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Abstract

Background: Development of human cancer can proceed through the accumulation of different genetic changes
affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such
as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated

bioinformatics, and statistics.

and combined analyses.

by the application of such integrative approaches.

in cancer. The integrative methods that are used to investigate these data involve different fields, including biology,

Results: These methodologies are presented in this review, and their implementation in breast cancer is discussed with
a focus on integration strategies. We report current applications, recent studies and interesting results leading to the
identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual

Conclusion: This review presents a state of art of the role of different technologies in breast cancer based on the
integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered

Introduction

Breast Cancer (BC) is the most common cancer in
women and the second most common cause of cancer
mortality among females [1]. Classification of BC is cur-
rently based on histological types and molecular sub-
types in order to reflect the hormone-responsiveness of
the tumour. The three most common histological types
include invasive ductal carcinoma, ductal carcinoma in
situ and invasive lobular carcinoma. The molecular sub-
types of BC, which are based on the presence or absence
of estrogen receptors (ER), progesterone receptors (PR),
and human epidermal growth factor receptor-2 (HER2),
include luminal A (ER+ and/or PR+; HER2-), luminal B
(ER+ and/or PR+; HER2+), basal-like (ER—, PR—, and
HER2-), and HER2-enriched (ER—, PR—, and HER2+)
subtypes [2, 3]. This classification reflects the BC hetero-
geneity and the complexity of diagnosis, prognosis, and
treatment of BC.

* Correspondence: isabella.castiglioni@ibfm.cnr.it
Institute of Molecular Bioimaging and Physiology (IBFM), National Research
Council (CNR), Milan, Italy

( ) BiolVled Central

High-throughput approaches allow today a tumour to
be investigated at multiple levels: (i) DNA with copy num-
ber alteration (CNA), ii) epigenetic alterations, specifically,
DNA methylation, histone modifications and microRNA
(miRNA) expression level alterations, and (iii) mRNA,
with gene expression (GE) de-regulation. These high-
throughput approaches redefined the different types of BC
in terms of classification, showing the presence of only
two BC profiles with different prognosis [4—6].

Development of human cancer can proceed through
the accumulation of genetic and epigenetic changes af-
fecting the structure and function of the genome. Several
studies have reported that the epigenetic silencing of
one allele may act in concert with an inactivating genetic
alteration in the opposite allele, thus resulting in total al-
lelic loss of the gene [7, 8]. Birgisdottir et al. [9] have re-
ported hypermethylation and deletion of the BRCAI
promoter and suggested Knudson's two 'hits' in sporadic
BC [9]. Li et al. [10] were focused on the expression of
beclin 1 mRNA and they demonstrated that loss of
heterozygosity and aberrant DNA methylation might be
the possible reasons of the decreased expression of
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beclin 1 in the BC. In BC, a biallelic inactivation of the
FHIT gene could be a consequence of epigenetic inacti-
vation of both parental alleles, or epigenetic modification
of one allele and deletion of the remaining allele [11].

In 2006, Feinberg et al. suggested that epigenetics and
genetics should be combined or integrated in order to
achieve better understanding of cancer [12]. A systems
biology approach has been employed to explore the
functional relationships among multidimensional “omics”
technologies. This approach has been demonstrated to be
important for addressing a patient to the optimal treat-
ment in a personalized way, in order to improve the effi-
cacy of the treatment for that patient [13].

This review refers to current studies of genetic and
epigenetic changes associated with BC, focusing in par-
ticular on the processes controlled by CNA, epigenetic
alterations (DNA methylation, histone modifications and
miRNAs), and GE. Several approaches combining gen-
etic and epigenetic data, in particular regarding CNA
and miRNA deregulation, have been considered with the
final purpose to identify new biomarkers for BC diagno-
sis and prognosis suitable to be translated into a clinical
environment. Furthermore, experimental and computa-
tion methods used for the study and the analysis of these
biomarkers are presented. We also discuss the biological
insights and clinical impact from such analyses as well
as the future challenges of these combination approaches.

Copy number alterations in BC

Biological insights

CNAs are alterations of the DNA of a genome that re-
sult in a cell having an abnormal number of copies of
one or more sections of the DNA. They have been iden-
tified as causes of cancer diseases and developmental
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abnormalities (e.g. [14]). Changes in DNA copy number
(CN) can occur in specific genes or involve whole chro-
mosomes, usually genomic regions between 1lkbp and
1Mbp in length [14].

Figure 1 shows an example of a wild type (WT) cell with
two copies of DNA segments that suffer of alterations in
tumour cells bringing deletions (CN=0; CN=1) or
amplifications (CN = 3; CN = 4) of the DNA section.

The ability of cancer cells to accumulate genetic alter-
ations is crucial for the development of cancer in order
to inactivate tumour suppressor genes (TSGs) and
activate oncogenes (OGs).

In BC, several genetic alterations have been found.

Frequent CN deletions between axillary lymph node
metastasis and BC primary tumours were revealed, includ-
ing aberrations at 6q15-16, containing the gene PNRCI
(a putative tumour suppressor) [15]. Amplification and
overexpression of the HER2 (HER2/neu, ERBB2) oncogene
on chromosome 17q12 has been observed in 15-25 % of
invasive BC [16]. HER2-amplified (HER2+) has been asso-
ciated with poor prognosis in BC [17], amplification of the
HER?2 gene leading to HER2 protein levels 10-100 times
greater than normal levels [18].

EGFR amplification has been frequently associated
with indices of poor prognosis in BC patients, such as
large tumour size, high histological grade, high prolifera-
tive index, HER2 negative, upregulation of PR [19], and
negative ER status [20].

In the same region of HER2 (17q12-21) other genes
have been found co-amplified or deleted, e.g. topoisomer-
ase (TOP2A) [21]. Different studies observed the possibil-
ity of guiding therapy based on TOP2A status [22, 23].

A recent study has shown alterations of PIK3CA and
MET in BC [24]. High CN of PIK3CA and MET was

Tumour cell
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Copy number alterations

amplification

CN=0 CN=1 CN=2 CN=3 CN=4
Fig. 1 Copy Number alterations. WT cell, since diploid organisms, carry two copies of each gene (red segments). Deletions in tumour cells lead to
no copy (CN=0) or one copy (CN = 1) of this section of DNA, rather than two copies (CN = 2). Amplifications in tumour cells lead to three (CN =3) or
more copies (CN = 4) of DNA section
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associated to a poor prognosis, and these alterations occur
often in triple receptor negative BC [24]. Alterations were
also found at 9q31.3-33.1, where the genes DBCI and
DECI (regulators of apoptosis) are located [15].

OGs activation by genomic amplification occurs in
the members of different oncogene families, e.g. MYC
and CCND. MYC is a key regulator of cell growth,
proliferation, metabolism, differentiation, and apoptosis
[25]. This oncogene is located on chromosome 8q24,
and several mechanisms are implicated in its deregula-
tion in BC, including gene amplification and trasloca-
tions. MYC amplification plays a role in BC progression
because it has been detected in the more aggressive
phenotype of ductal carcinoma in situ [26] or in inva-
sive processes [27-29].

Gene amplification of CCND1 has been observed in a
subgroup of BCs with poor prognosis and associated
with resistance to tamoxifen [30]. Region of amplifica-
tion is 11q13, and CCNDI acts as a cell cycle regulator,
promoting progression through the G;-S phase [31].

Higher ESRI1 gene amplification is found in BC with
CCND1 gene amplification in comparison with tumours
without CCNDI1 gene amplification [32]. Amplification
of ESRI has been associated with negative ER [32]. The
gene TSPANI (on 1p34.1) has been found deleted in me-
tastasizing BC and might represent an important TSG
[33]. Another gene, EMSY was found involved in spor-
adic BC. EMSY amplification has been shown to be asso-
ciated with a poor prognosis [34].

Compared to non-metastatic invasive ductal carcinoma,
metastatic invasive ductal carcinoma showed a unique
pattern of CNAs, including gains at 2p24-13, 2q22-33,
9q21-31, 12q21-23, 17 q23-25 and loses at 11q23-ter,
14q23-31, 20p11-q12, 2q36-ter, 8q24-ter, 9q33-ter, 2pl1-
qll1, and 12q13 [35, 36].

Table 1 reports a synthesis of the considered mutated
genes in BC, with their genetic alterations due to CNs.

Table 1 Genes mutated and their alterations in BC

Genes Genetic alterations References
MYC Amplifications and translocations [25-29]
CCND1 Ampilifications and Translocations [30]
HER2 Amplifications [15-18]
TOP2A Amplifications or Deletions [22, 23]
PIK3CA, MET Amplifications [24]
PNRC1 Deletions [15]
DBC1 and DECI Amplifications or Deletions [15]
TSPANT Deletions [33]
EGFR Amplifications [19, 20]
ESR1 Amplifications [32]
EMSY Amplifications [34]
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Experimental methods

Current experimental methods for the identification of
CNA include cytogenetic techniques, microarrays, and
sequencing-based computational approaches.

Karyotyping is a cytogenetic technique performing a
standardized and effective single cell screening in order
to identify significant genomic aberrations in patho-
logical and in normal samples.

In a standard karyotyping, a dye like Giesma or Quina-
crine is used to stain bands on the chromosomes. Each
chromosome presents banding pattern for detecting
CNAs. Thus, any alteration in banding pattern repre-
sents a CNA [37].

Spectral karyotyping (SKY technique) is a novel tech-
nique for chromosome analysis [37], based on the
approach of the fluorescence in situ hybridization tech-
nique (FISH). Sky refers to the multicolour-FISH tech-
nique where each chromosome is represented with
different colours (a dye with different fluorophores).
This technique is used to identify CNAs in cancer cells
and in other disease conditions when other techniques
are not enough accurate [37].

Resolution is the main limitation of both techniques,
the chromosome profile obtained by karyotyping being
not enough sensitive to notice short and relevant abnor-
malities [38].

Hybridization-based microarray approaches, including
array comparative genomic hybridization (array CGH)
and Single Nucleotide Polymorphism (SNP) microarrays,
have been used as an alternative technology to conven-
tional cytogenetic approaches [39]. They are able to infer
CNAs (amplifications and deletions) compared to a refer-
ence sample. Array CGH platforms compare quickly and
efficiently two labelled samples (different fluorophores -
test and reference). Denaturation of the DNA in single
stranded allows the hybridization of the two samples to
microarrays containing DNA sequence probes of known
genome position (e.g. bacterial artificial chromosomes,
¢DNAs, or more recently, oligonucleotides). By using a
fluorescence microscope and a dedicated computer
software, the signal ratio of different coloured fluores-
cents is measured in order to identify chromosomal
differences between the two sources. An important
consideration is the consequence of the reference sam-
ple on the CN profile. A comprehensive-characterized
reference is the key for the correct interpretation of
array CGH data [40].

SNP-arrays have a higher resolution than CGH-arrays,
and can be used to identify allele-specific information.
SNP microarray has few key differences from CGH tech-
nologies. Probe designs are specific to single-nucleotide
differences between DNA sequences.

Ultimately, next generation sequencing (NGS) have
replaced microarrays as the platform for discovery and
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genotyping, and present considerable computational and
bioinformatics challenges.

Computational methods

We can summarize CNA analysis from microarray in
three steps: 1) normalization, 2) probe-level modelling,
and 3) CN estimation [41].

The target of normalization is to remove non relevant
effects, such as the GC content of the fragment ampli-
fied by PCR, technical variations between arrays occur-
ring from differences in sample preparation or labelling,
and array production or scanning differences [42].

Probe-level modelling is usually performed at two
levels: single locus and multilocus. Single locus model-
ling measures the CN of a specific target fragment or
DNA probe locus in order to produce a raw fragment
CN. Multilocus modelling combines the raw CNs of
neighbouring fragments or DNA probe loci into a
“meta-probe set” which determines the CN of the whole
region [41, 42].

Computerized methods to estimate CNs (e.g. segmen-
tation) performs the detection of break points which
separate neighbouring regions based on the Log ratio of
probe intensity [41, 42].

Several methods are suitable for analysing CNA on
microarray data.

i) The first CNA analysis method has been developed
by Affymetrix: Chromosome Copy Number Analysis
Tool [43]. Normalization is performed by quantile
normalization. Modelling uses robust multichip
average. CN estimation can be done subsequently
with an arbitrary algorithm.

DNA-Chip Analyzer (dChip) [44] normalizes

using an invariant set method which corresponds

to a normalization of the arrays based on the
identification of a common baseline array and on
adjustment of all the other arrays relative to the
baseline array. Modelling is based on a model-
based expression index (MBEI) for single-locus.

This output is then used by a Hidden Markov

Model (HMM) to infer CNs [44].

iii) Copy Number Analyser for GeneChip arrays
(CNAG) [45] normalizes the arrays in order to have
the same mean signal intensity for all autosomal
probes. This allows fragment probes comparable
between arrays to be obtained. The signal intensity
ratios is corrected for the differences in PCR product
length and GC content. An HMM algorithm is
applied to infer CNs along each chromosome.

iv) Birdsuite's Birdseye [46] normalizes using quantile
normalization. Modelling and segmentation are
performed together at the multi-loci level. HMM
estimates CNs.

=

ii
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v) Copy-number estimation using Robust Multichip
Analysis (CRMA) [47] has been developed as an
extension of the RMA model. Normalization is
obtained by allelic cross-hybridization correction
(ACC). Modelling uses robust multichip average
(RMA). CNA analysis can be done using an arbitrary
segmentation algorithm.

Given the different existing computational methods
for CNA detection using SNP arrays, researchers have
the problem to choose the optimal tool for their analyses.

With the aim of offering a support to bioinformatics
researches and to answer to their emerging needs to
choose among different CNA detection algorithms, the
CNV Workshop was developed [48]. It represents the
first cohesive and convenient platform for detection, an-
notation, and assessment of the biological and clinical
significance of structural variants [48]. The purpose of
the platform is to process data from a wide variety of
SNP arrays, and to implement different normalization
and CN estimation algorithms.

Since one of the main problem in the choice of the
tool is the detection of discrepancies among different
platforms [49], some studies have compared the different
analysis using the same data set. Although limited to few
methods, due to the high computational cost, several
studies allowed the assessment of advantages and disad-
vantages of some techniques [49-51].

Baross et al.[49] found that CNAG, dChip, CNAT and
GLAD are suitable for high-throughput processing of
Affymetrix 100 K SNP array data for CN analysis. How-
ever, the tools revealed considerable variations in the
numbers of putative CNA. dChip found more CNA than
the other tested tools. The highest rate of false positive
candidate deletion calls was produced by CNAG. In gen-
eral, the performance of all tools in the detection of sin-
gle copy deletions was better than that of single copy
duplications. The authors recommend also the use of
reference data set for accurate analysis, processed in the
same laboratory and ideally from samples with an ethnic
composition similar to the sample set.

Eckel-Passow et al. [50] provided a description of four
freely-available software packages (PennCNYV, Aroma.
Affymetrix, Affymetrix Power Tools (APT), and Cor-
rected Robust Linear Model with Maximum Likelihood
Distance (CRLMM)) that are commonly used for CNA
analysis of data generated from Affymetrix Genome-
Wide Human SNP Array 6.0 platform. APT obtained the
best performance with respect to bias. However,
PennCNV and Aroma.Affymetrix had the smallest vari-
ability associated with the median locus-level CN.

Zhang et al. [51] assessed four software programs cur-
rently used for CNA detection: Birdsuite (version 1.5.2),
PennCNV-Affy (a trial version), HelixTree (Version
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6.4.2), and Partek (Version, 6.09.0129). They evaluated
the accuracy in detecting both rare and common CNVs
in the Affymetrix 6.0 platform. They found considerable
variations among the programs in the number of CNAs.
Birdsuite obtained the highest percentages of known
HapMap CNAs containing more than twenty markers in
two reference CNA datasets. In the tested rare CNA
data, Birdsuite and Partek had higher positive predictive
values than the other tools.

Other methods exist for analysing CNA on NGS and
they are not described in this review. However, most of
the more recent algorithms for CNA discovery are mod-
elled on computational methods which were first used
to analyse capillary sequencing reads and fully se-
quenced large-insert clones [39].

Therapeutic approach

A future challenging direction is the discovery of gene
CN changes for the development of therapies. For ex-
ample, duplication of one gene encoding a specific re-
ceptor can be associated with a particular pathology.
Thus, compounds that down regulate receptor expres-
sion may lead benefit in patients.

Cancer is the prime case in which CNAs have been
shown to drive disease [52] and therapies where overex-
pressed or amplified oncogenic drivers are targeted have
been already considered. In particular, in BC, the gene en-
coding epidermal growth factor receptor (EGFR) results to
be amplified, and small molecules such as gefitinib, erloti-
nib, lapatinib, and cetuximab have been applied to inhibit
EGFR with benefits for patients [53, 54].

ERBB?2, encoding HER?2, is amplified in 30 % of BC
[17, 55]. In the therapy of HER2-amplified BC, trastuzu-
mab, an anti-HER2 antibody, has been used [56]. Pertu-
zumab, a humanized monoclonal antibody, binds HER2,
and like trastuzumab, it stimulates antibody-dependent,
and cell mediated-cytotoxicity [57]. Pertuzumab and
trastuzumab binds to different HER2 epitopes acting in
the same way. When given together, they operate
reinforcing antitumor activity [58].

These proven benefits, although limited to few genes
involved in BC, raise the exciting possibility that target-
ing amplified disease drivers may offer opportunities for
therapy development in BC where effective treatments
are still limited.

Epigenetic alterations in BC

DNA methylation and histone modifications

DNA methylation and histone modifications play a
crucial role in the maintenance of cellular functions
and identity. In particular, the main cellular networks
affected by epigenetics are cell cycle, apoptosis, DNA
repair, detoxification, inflammation, cell adhesion and
invasion.
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In cancer, the DNA methylation and histone modifica-
tions are perturbed, leading to significant changes in GE,
which confer to the tumoral cells advantages in prolifera-
tion and maintenance of tumoral phenotype. For instance,
the genomic inactivation of a tumor suppressor gene (p53,
BRCAL,...) or the activation of an oncogene (i.e, Myc)
contribute to the malignant transformation. Epigenetic
changes differ from genetic changes mainly because they
occur at a higher frequency than genetic changes, they are
reversible upon treatment with pharmacological agents
and occur at defined regions in a gene.

DNA methylation refers to the addition of a methyl
group (-CH3z) covalently to the base cytosine (C) in the
dinucleotide 5'-CpG-3'. CpGs islands are in the pro-
moter region of many genes [59, 60]. Most CpG dinucle-
otides in the human genome are methylated, and often
leads to silencing of GE. The observation that CpGs
islands of housekeeping genes are mainly unmethylated,
and the methylation is associated with loss of GE led to
the hypothesis that DNA methylation plays an important
role in regulating GE [59, 60].

Figure 2 shows how DNA methylation affects GE. Me-
thyl groups in the recognition elements of transcription
factors inhibits the binding of transcription factors to
DNA, thus resulting in reduced transcriptional activity.

Histones are considered DNA-packaging protein
components of chromatin, able to regulate chromatin
dynamics. In fact they are subjected to several post-
translational modifications, occurring at the amino-
terminal end of the histone tail protruding from the
surface of the nucleosome [61]. The modifications of
histone tails, including lysine acetylation, lysine and
arginine methylation, lysine ubiquitylation, phosphoryl-
ation, sumoylation, and ribosylation, can significantly
affect the expression of genes in a dynamic manner
[61]. The most studied histone epigenetic alterations
are acetylation/deacetylation, and methylation/demeth-
ylation. In BC, abnormal histone modification and
DNA hypermethylation are frequently associated to
epigenetic silencing of tumor suppressor genes and
genomic instability [62, 63].

Biological insights

The distribution of methylated and unmethylated CpGs
in the genome shows different patterns of methylation
confirming tissue-specific manner [64].

DNA methylation biomarkers for early detection and
prognosis of cancer have been studied in the last years.
Table 2 shows genes differentially methylated in BC.

Fackler et al. [65] found that promoter methylation of
4 genes (RASSF1A, CCND2, TWIST, HIN1) was more
frequently detected in tumor than in normal tissue. In
another study [66], 4 genes CCND2, RASSF1A, APC
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Fig. 2 DNA methylation regulating GE. Methylated CpG restricts the binding between transcription factor and the gene promoter. Unmethylated

and HINI were able to classify between invasive carcin-
omas, fibroadenomas, and normal tissue. 10 hyper-
methylated genes, APC, BIN1, BMP6, BRCAI, CST6,
ESR-b, GSTP1, P16, P21 and TIMP3, were identified to
distinguish between cancerous and normal tissues [67].

Several studies provide strong evidence of DNA
methylation signatures with prognostic role. DNA
methylation status of the PITX2 in BC cell lines is
negatively associated with PITX2 mRNA expression
and with poor prognosis [68].

Previous studies observed several candidate methyla-
tion sites that are associated with the hormone receptor
status of BC. RASSFIA and CCND2 were significantly
more methylated in the ER+ than ER- BC [69], whereas
the inverse correlations were identified between hyper-
methylation of the PGR, TFF1, CDHI3, TIMP3,
HSD17B4, ESRI and BCL2 genes and ER status [70].

Table 2 Genes differentially methylated in BC

Hypermethylation of the ESRI, TGFBR2, PTGS2 and
CDH13 genes was associated with PR status [70].

Li et al. [71] used 27 K arrays in a small sample of ER/
PR+ and ER/PR BC samples, and identified and vali-
dated four genes: FAMI24B and ST6GALNACI were
significantly hypermethylated, and NAVI and PERI were
significantly hypomethylated in ER+/PR+ BC.

Fang et al. [72] used genome wide analysis to
characterize BCs based on their metastatic potential.
The study found a coordinated methylation of a large
number of genes discovering a “methylator” phenotype.
The methylator phenotype was associated with low
metastatic risk and survival.

Identification of promoter methylation of biomarker
genes in the DNA of bodily fluids, like serum or
plasma, is a rapidly growing research field in cancer
detection.

Genes Biological effects References

RASSFIA and CCND2 Significantly more methylated in the ER+ than ER— cancers [69]

PGR, TFF1, CDH13, TIMP3, HSD17B4, ESR1 and BCL2 The inverse correlations were found between their hypermethylation [70]
and ER expression

ESR1, TGFBR2, PTGS2 and CDH13 They were associated with PR expression [70]

FAM124B, STEGALNACT, NAVT and PERT The methylation status were quite different between ER+/PR+ and [71]
ER—/PR— BC

RASSF1A, CCND2, TWIST, HINT Low levels of methylation were detected in normal control samples [74]

CCND2, RASSFIA, APC and HINT Able to distinguish between invasive carcinomas, fibroadenomas, and [66]
normal tissue

[TIH5, DKK3, and RASSFI1A Early detection of BC [74]

APC, BINT, BMP6, BRCA1, CST6, ESR-b, GSTP1, P16, Able to distinguish between cancerous and normal tissues [67]

P21 and TIMP3

CST6 Differentially methylated between BC and control plasma samples [75]
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The principle is based on evidence that solid malignant
tumors release significant amounts of cell-free DNA into
the bloodstream through cellular necrosis or apoptosis [73].

The analysis of the methylation patterns of cell-free
DNA by a blood-based test could become a screening
tool. In particular, DNA methylation in circulating free
DNA from blood of BC was investigated. ITIH5, DKK3,
and RASSF1A promoter methylation from serum were
identified as candidate biomarkers for the early detection
of BC [74].

CST6 has been identified by two independent dataset
as being differentially methylated between BC and con-
trol plasma samples [75].

SOX17 promoter is highly methylated in primary BCs,
in circulating tumor cells isolated from patients with
BC, and in corresponding cell-free DNA samples [76].

Similar studies on plasma identified hypermethylation
status of KIF1A [77], and HYLA2 locus [78] in BC sug-
gesting methylation level in blood having a power to dis-
tinguish very early BC cases from controls.

Non-invasive technique such as blood-test screening is
a more suitable and cost-efficient methodology compared
to mammography and magnetic resonance imaging.

Actually, in clinical use no specific methylation bio-
marker has been yet validated, due to the reduced num-
ber of matched normal DNA samples in cohorts.

Characterizing more than 880 human BC, Elsheikh et al.
have demonstrated that histone acetylation and methylation
patterns represent an early sign of BC [79]. Low levels of
acethylated lysine and methylated lysine and arginine were
described to have prognostic value, ie. of triple-negative
carcinomas and HER2-positive BC subtype [79, 80].

Experimental methods

In recent years three major technologies have been
employed in DNA methylation analysis: chemical treat-
ment with bisulphite (BS), methylation-specific enzyme
digestion, and affinity enrichment [81, 82].

The first category includes an assay to characterize
methyl cytosine by treatment of genomic DNA with BS.
BS treatment converts unmethylated cytosine residues to
uracil, without recognizing methyl cytosine residues,
which are protected against this treatment.

Methylated and unmethylated DNA can be distin-
guished by the employment of sequence analysis (e.g.
NGS, microarray). PCR amplicons created after BS con-
version can be hybridized to microarrays containing
methylation-specific oligonucleotides (MSO; 19-23 nucle-
otides) to query DNA methylation status [83]. BS-based
methods cannot distinguish between methylcitosine and
other variants (e.g. hydroxymethylcytosine) [84].

The second category includes methylation-sensitive
restriction endonucleases, which distinguish sequences
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based on methylation status; furthermore methylcytosine
could be identified by immunoprecipitation with antibodies
or by affinity purification on methyl-binding protein beads.

Restriction endonucleases and microarray are also
combined for high-throughput examination of the
methylation status [85, 86]. A limitation in utilizing
restriction endonucleases is that enzymes identify only a
limited fraction of genome CpG sites [81, 82]. A meth-
odology [87] with multiple enzyme-mediated restrictions
was proposed, leads to a better coverage of all CpG
dinucleotides in mammalian genomes.

A third category, enrichment techniques, include
methylated DNA immunoprecipitation (MeDIP). Gen-
omic DNA is immunoprecipitated with a monoclonal
antibody that specifically identifies 5-methylcytidine.
The immunoprecipitated fraction can be detected by
PCR in order to identify the methylation state of individ-
ual regions [88].

A combination approach of MeDIP and methylation-
sensitive restriction endonucleases was developed, prom-
ising to quickly compare methylomes at lower cost [89].
Alternatively, MeDIP can be combined with large-scale
analysis (e.g. microarrays) [88].

Many of the techniques proposed for DNA methylation
profiling can be combined with NGS technologies [90].

Computational methods

Bioinformatics research has been focused on the predic-
tion of DNA methylation information with a dual
purpose: i) accurate DNA methylation predictions could
replace experimental data, and ii) DNA methylation pre-
diction algorithms from training data can give additional
information of an epigenetic mechanism.

A large number of computational predictive models
have been developed to identify CpG dinucleotides
methylated or unmethylated [91, 92], CpG islands (or
CpG-rich regions) methylated or unmethylated [93, 94],
and CpG islands (or CpG-rich regions) differentially
methylated in different tissue/cell types or phenotypes
[95]. Most of them use DNA sequence characteristics
combined with a machine-learning algorithm.

Combination approaches of computational and experi-
mental methods can speed up genome-wide DNA
methylation profiling and detect crucial factors or path-
ways driving DNA methylation patterns. However DNA
methylation prediction shows some difficulties: i) DNA
methylation of the sampled cells need to be averages
across cells, ii) there are differences across tissues, iii)
DNA methylation can have unstable position, and iv)
can be not well located in a genomic locus [96, 97].

A key step for accurate computational predictive
models is a correct features selection.

The features can be grouped into two categories:
genetic and epigenetic features. Given a region of
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interest (a CpG island or a genomic region around a
particular CpG dinucleotide), the genetic features
include: i) general features of the region of interest
(e.g., length, and distribution of the CpG dinucleo-
tides in the region), ii) DNA sequence composition of
the region of interest, iii) patterns of conserved tran-
scription factor binding sites or conserved elements
within or near the region of interest, iv) structural
and physicochemical properties of the region of interest,
v) functional annotations of nearby genes, vi) single
nucleotide polymorphisms of the region of interest, and
vii) the conservation of the region of interest among
species [98].

Epigenetic features are also crucial in order to fully
characterize DNA methylation status.

DNA methylation, as an epigenetic phenomenon, is
affected by some other epigenetic factors, such as his-
tone methylation and histone acetylation.

Statistical methods related to differential DNA methyla-
tion data analysis cover a number of different approaches.
In particular, these methods are accessible to the user by
Bioconductor/R. Table 3 shows some methods and pack-
ages currently available for methylation differential ana-
lysis, such as Wilcoxon rank sum test (implemented in
methyAnalysis package) [99], ¢-test (implemented in
methyAnalysis, CpGAssoc, RnBeads, and IMA package
[99-102]), Kolmogorov-Smirnov Tests ([100]), permutation
test (implemented in CpGAssoc package [101]), empirical
Bayes method (implemented in RnBeads, IMA and minfi
package [101-103]), and bump hunting method (imple-
mented in bumphunter and minfi package [104, 105]).

Wilcoxon rank sum test detect statistically significant
sites according to the absolute difference between the
average methylation levels of the analysed groups [106,
107]. This method can have a limitation in case of low
or unbalance number of samples groups [107].

t-test is statistically inefficient in the presence of het-
erogeneity of methylation variability and shows many
false positives, particularly for studies with smaller sam-
ple sizes [108, 109].

Kolmogorov-Smirnov test is another commonly used
test that quantifies distributional differences. However,

Table 3 Packages and methods for methylation differential

analysis

Package Method References
methyAnalysis Wilcoxon rank sum test [100]
methyAnalysis, CpGAssoc,  t-test [100-102]
RnBeads, and IMA

- Kolmogorov-Smirmnov test  [104]
CpGAssoc permutation test [101]
RnBeads, IMA and minfi empirical Bayes [102, 103, 105]
bumphunter and minfi bump hunting [105, 106]
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the Kolmogorov-Smirnov test considers each CpG
marker as a sampling unit and its naive application is
not valid [110, 111].

Permutation test is a resampling-based nonparametric
test which permutes data following the null hypothesis
of equal data distributions between groups [112].

Different number of empirical Bayes models were pro-
posed for differential methylation analysis, with different
statistical distribution assumptions [113]. Teng et al.
[113] constructed five empirical Bayes models based on
either a gamma distribution or a log-normal distribution,
for the detection of differential methylated loci. They
observed that log-normal, rather than gamma, could be
a more accurate and precise method.

Bump hunting method used in bumphunter and minfi
packages based the correlations of methylation levels
between nearby CpG locus, and, for each locus, a linear
model was used to estimate the coefficient of difference
in methylation levels between the cancer group and the
normal groups [105, 107].

A comparison study among these six statistical ap-
proaches was proposed [114]. Finally, different ap-
proaches were recommended for different applications:
the bump hunting method is better for small sample
size; the empirical Bayes methods are suggested when
DNA methylation levels are independent across CpG
loci, while only the bump hunting method is suggested
when DNA methylation levels are correlated across CpG
loci. All methods are found suitable for medium or large
sample sizes [114].

Therapeutic approach
Cancer was the first group of diseases to be associated
with DNA methylation. Numerous genes have been
identified as being differentially methylated in BC, with
a crucial roles in DNA repair, apoptosis, hormone
receptor, and cell cycle. These TSGs may be good
therapeutic targets through regulation of methylation
activity by DNA methyltransferase inhibitors. Human
DNA methylation is catalysed by enzymes of the DNA
cytosine methyltransferases family including DNMTT1,
DNMT3A, DNMT3B and DNMT3L [115]. A lower
DNA methyltransferase activity increases expression of
silenced genes such as TSGs reactivating expression of
key genes.

Previous studies [116, 117] were reported in BC focusing
on action of DNA methyltransferase compound inhibitors.

Key targets for potential DNA demethylation agents
are DNA methyltransferase inhibitor 5-aza-2’-deoxycyti-
dine (decitabine), zebularine, and SGI-110 [117]. The
mechanism of action of these pro-drugs is similar since
they need to be incorporated into DNA to act as inhibi-
tors of DNMTs [115].
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Decitabine shows activity against hematologic malig-
nancy and low-dose correlates with changes in GE
induced by a reduction in DNA methylation.

A phase I clinical and pharmacodynamic trial was pro-
posed in order to assess the feasibility of delivering a
dose of decitabine combined with carboplatin [116].
Decitabine showed some limitations for treatment of
advanced solid tumors (e.g. BC): i) weak stability, ii) lack
of specificity for cancer cells, and iii) rapid inactivation
by the action of cytidine deaminase [117].

Zebularine and SGI-110 are more selective for can-
cer cells and have higher resistance to deamination. In
particular, Zebularine [118] showed an antitumor
effect in a mouse model. In zebularine-treated mices,
the oral treatment with zebularine showed a signifi-
cant delay in tumor growth [118]. In combination with
decitabine, zebularine has proven a significant inhibi-
tory effect on cell proliferation and colony formation
in MDA-MB-231 BC cell line through induction of ER
alpha and PR mRNA expression [119]. Unfortunately,
toxicity remain its main limitation [118].

SGI-110 [120], a 5'-AzapG-3’ dinucleotide, induces
expression of the p16 tumor suppressor gene, and inhibit
tumor cell growth. This short oligonucleotide is resistant
to cytidine deaminase deamination which may potentially
increase its resistance, enhance bioavailability, and make
the drug more efficacious.

DNA methyltransferase inhibitors can have side effects
as the concomitant activation of both TSGs and OGs. The
combination of chemotherapeutic agents and of DNA
methyltransferase inhibitors could be efficacious [115].

Although the benefits of DNA methyltransferase
inhibitors were demonstrated, toxicity, lack of specifi-
city and low stability are issues to be solved in order
to improve BC treatment [121].

Histone acetylation process is controlled by the bal-
anced activity of histone acetyltransferases and his-
tone deacetylases (HDACs). The HDAC family is
divided into zinc-dependent enzymes (classes I, Ila,
IIb, and IV, of which there are 11 subtype enzymes)
and zinc-independent enzymes (class III, also called
sirtuins), requiring NAD" for their catalytic activity.
Over the past decade, a number of HDAC inhibitors
have been designed and synthesized, based on HDAC
chemical structures. Some of these HDAC inhibitors
are able to modify the chromatin structure, causing
re-expression of aberrantly silenced genes, which in
turn is associated with growth inhibition and apop-
tosis in cancer cells [122]. In ER-negative BC, the
treatment with specific HDAC inhibitors reactivates
ERa and progesterone receptor (PR) gene expression,
which are known to be aberrantly silenced in BC.
Preclinical studies of HDAC inhibitors combined with
DNMT inhibitors or with anti-tumoral treatment (i.e.,
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tamoxifen) have demonstrated a higher safety, toler-
ability and clinical effectiveness than single treatment
[123, 124].

microRNA deregulation in BC
Biological insights
miRNAs are small noncoding RNAs (20-22 nucleo-
tides long) that are excised from longer (60-110 nucle-
otides) RNA precursor [105, 106] and act in different
biological functions including development, prolifera-
tion, differentiation and cell death [125, 126]. miRNAs
are major regulators of GE. Many evidences indicate
that their deregulation is associated to several steps of
cancer initiation and progression. In comparison with
other approaches targeting single genes, they are cer-
tainly more stable thanks to their small size [127], and
are able to discriminate different BC subtypes.

Blenkiron et al. found deregulated miRNAs between
basal and luminal BC [128]. Iorio et al. [129], Lowery et
al. [130] and Mattie et al. [131] identified miRNAs that
were able to classify ER, PR and HER2/neu receptor sta-
tus, respectively. Gregory et al. [132] found miR-200 as-
sociated with the BC luminal subtype. Reduced
expression of miR-145 and miR-205 was found to play a
role in basal like triple negative tumours (ER-/PR-/
HER2-) while are normally expressed in normal myoe-
pithelial cells [133].

miRNAs can be also prognostic and predictive bio-
markers. Zhou et al. [134] found mir-125b as useful
indicator for poorly response to taxol-based treatments
in vivo. The overexpression of miR-181a has been corre-
lated with lymph node metastasis [135]. miR-106b-25
expression was proven significantly predictor of good
relapse time [136], while miR-375 was found negatively
regulate ER expression [137].

miRNAs with a role in metastasis in BC include miR-7
[138, 139], miR-17/20 [140, 141], miR-22 [142-144],
miR-30 [145, 146], miR-31 [147-149], miR-126 [150],
miR-145 [151], miR-146 [152], miR-193b [153], miR-205
[154], miR-206 [155], miR-335 [156], miR-448 [157],
miR-661 [158] and let-7 [159].

miRNAs can be easily extracted and detected from
blood [160], circulating exomes [161], saliva [162, 163],
and even sputum [164, 165]. Several studies demon-
strated that circulating miRNAs reflect the pattern
observed in the tumour tissues (e.g. [167]), thus opening
the possibility to use circulating miRNAs as biomarkers
for diagnosis and prognosis. Lodes et al. [166] provided
an evidence on using serum miRNAs as biomarkers to
discriminate between normal and patients in many can-
cer diseases including breast, prostate, colon, ovarian,
and lung cancer. They showed that it is sufficient 1 mL
of serum to detect miRNA expression patterns, without
the need of amplification techniques. Recently, an
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analysis of circulating miRNAs have led to identify mir-
21, miR-92a [167, 168], miR-10b, miR-125b, miR-15S5,
miR-191, miR-382 [169] and miR-30a [170] as candidate
biomarkers for early detection of BC. Circulating miR-
NAs have also been associated with disease prognosis
and response to treatment. Madhavan et al. [171] found
circulating miRNAs as marker of disease free survival
and overall survival. Plasma miR-10b and miR-373 were
found associated with the development of metastases
[172] while miR-125b [173] and miR-155 [174] have
been found correlated to chemotherapy response.

Table 4 reports a synthesis of the considered miRNAs
deregulated in BC, with their principal biological effects.

Experimental methods

Many technologies for detecting miRNAs have been de-
veloped, including RT-PCR, in situ hybridization,
microarray, and NGS [7].

RT-PCR is a sensitive and precise technology but it is
also an expensive and low-throughput method [7].

In situ hybridization is based on labelled complemen-
tary strands for the sequences of interest (e.g. miRNA)
in a portion or section of tissue [175]. The small size of
the mature miRNA presents problems for conventional
in situ hybridization methods and it is semi-quantitative.

Microarrays have several limitations as those due to
background or cross-hybridization problems. Moreover,
microarrays and other techniques can provide analyses
only on known miRNAs [7].

Contrarily, sequence-based methods allow the identifi-
cation of unknown miRNAs and early overcome other
methods. Stark et al. [176], by using deep sequencing,

Table 4 miRNAs deregulated in BC

MiRNAs Biological effect References
miR-200 It associated with the luminal Gregory et al.
subtype [132]
miR-145 and It associated with basal like triple Sempere et al.
miR-205 negative tumours [133]
miR-125b It can predict poor response to Zhou et al.
taxol-based treatment in vivo [134]
miR-181a It correlated with lymph node Taylor et al.
metastasis [135]
miR-106b-25 It can significantly predict a good Smith et al.
relapse time [136]
miR-31 It controls metastasis and increases  Valastyan et al.
the survival of patients [147]
let-7 It suppressed metastasis Yu et al. [159]
miR-375 It negatively regulate ER expression de Souza et al.
[137]
miR-10b, miR-155 They correlate with metastasis Mar-Aguilar et
al. [169]
miR-21 It associated with cell migration Si et al. [168]

and invasion
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discovered and quantified new miRNAs. Similarly, Farazi
et al. [177], generated a miRNA signature able to differ-
entiate ductal breast carcinoma in situ, invasive ductal
breast carcinoma and normal tissue.

Also deep sequencing may be a powerful method to
study circulating miRNAs. Several studies investigated
correlations among miRNAs in the serum of BC with
clinicopathological indices [178] and found miRNAs
associations with overall survival [179].

Despite the high potential and promising results of
these methods in clinical applications, there are still
some problems that need to be addressed, e.g. the lack
of inconsistency for some results between different stud-
ies. Standardization of procedures for sample conserva-
tion, preparation and/or processing [180], and the use of
different quality controls for data normalization [181]
could be effective in reducing these limitations.

Computational methods
There are two different approaches to examine both
miRNA and mRNA expression profiles.

A first approach considers either a miRNA or an
mRNA first, and then applies ad-hoc strategies, such as
computational or experimental methods, in order to
obtain miRNA-mRNA pair information [182, 183].

A second approach examines miRNA and mRNA
regulatory pairs together [184—187].

Computational methods play important roles in the
identification of new miRNAs. These methods can be
divided into three major categories: 1) sequence or
structure conservation-based, 2) machine learning-based
method, 3) and non-comparative methods.

Sequence or structure conservation-based methods are
based on sequence/structure conservation as techniques
to find miRNAs. The principle is the nature of conserva-
tion across different species for most of the known miR-
NAs. Comparative genomics filter out sequence/structure
conservation that are not evolutionarily conserved in
related species [188]. Examples of such computational
methods, focusing on the secondary structure of RNA and
looking for conserved hairpin structures between related
species, are Srnaloop [189], MiRscan [190], and miRseeker
[191]. One of the first study related to these methods was
by Lee and Ambros [192]. The authors, using bioinformat-
ics techniques, searched for sequences conserved between
the C. elegans and C. briggsae genomes. They focused on
premiRNA sequences and secondary structures with simi-
lar characteristics to lin-4 and let-7, the first two miRNAs
found on that time.

Several web based software tools have been developed to
find new miRNA genes, based on sequence and secondary
structure similarities with known miRNAs [189-191, 193].
However, the limit of these approaches was demonstrated
by Bentwich et al, showing the possibility that large
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quantity of nonconserved miRNAs could be missed by the
use of this tool [194].

Free energy (or Gibbs free energy) can be used as fea-
ture for miRNA target prediction. It shows how strong
the binding of a miRNA with its target is by predict-
ing how the miRNA and its candidate target will
hybridize. The free energy of miRNA-mRNA binding
is normally assigned by the RNAfold program-Vienna
RNA Package [195].

Machine learning-based methods do not necessarily
depend on sequence conservation. A classifier is con-
structed on a training dataset, that contains a set of
known miRNA sequences (positive training dataset), and
on a set consisting of mRNAs, tRNAs and rRNAs (nega-
tive training dataset). The information given to the clas-
sifier can be, for instance, the position of the mature
sequence or the folding energy. The classifier, by
describing a candidate miRNA with this set of features,
is able to predict true and false miRNA sequences [196].
The limit of this approach is the choice of negative set.
As example, we do not know a priori if a particular
sequence can generate functional miRNAs [197]. Several
studies have tried to overcome this kind of problems
with the use of only positive models [198, 199]. How-
ever, the results were poorer than those found by
approaches that consider both positive and negative
training sets [199].

Different classification methods are currently avail-
able based on machine learning, e.g. SVM, neural net-
works, HMM, and Naive Bayes (NB), and several tools
based on machine learning have been developed and
released to the research community, e.g. RNAmicro
[200], MiRFinder [201], ProMir [202], MiRRim [203],
SSCprofiler [204], HHMMIiR [205] and BayesMiRNAFind
[206].

Non-comparative methods use intrinsic structural fea-
tures of miRNA, and include algorithms like PalGrade
[207], Triplet-SVM [208], miPred [209], miR-abela [210],
and HHMMIR [211]. These methods are able of detecting
a large number of miRNAs that seem to be unique to
primates.

Bentwich et al. [207] developed PalGrade by integrating
bioinformatics predictions with microarray analysis and
sequence-directed cloning. This approach allowed the
detection of 89 human miRNAs, 53 of them being not con-
served beyond primates.

Xue et al. [208] proposed an ab initio classification
of real pre-miRNA from other hairpin sequences with
similar stem-loop features. SVM was applied on these
features to classify real vs pseudo pre-miRNAs achiev-
ing 90 % of accuracy.

Ng et al. [209] employed a Gaussian Radial Basis Func-
tion kernel (RBF) as a similarity measure for 29 global
and intrinsic hairpin folding attributes. They tested the
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model on 123 human pre-miRs and 246 pseudo hairpins,
reporting 84.55 %, 97.97 %, and 93.50 % in sensitivity,
specificity and accuracy, respectively.

Sewer et al. [210] developed miR-abela to detect
human miRNAs. They focused on particular properties
of some genomic regions around already known miR-
NAs, and were able to predict between 50-100 novel
pre-miRNAs, 30 % of them already found as new in
other studies.

Therapeutic approach

miRNAs may have a crucial role in guiding treatment
decisions. miRNAs can be therapeutic agents in cancer
for two major characteristics: (1) their expression is
deregulated in cancer compared to normal tissues, and
(2) cancer phenotype can be changed by targeting
miRNA expression [196].

Compared to gene profiles, miRNA-based therapeutics
have several advantages, as for example their ability to
target multiple genes, frequently in the context of a net-
work. miRNAs regulating the network of genes and cel-
lular pathways play a crucial role in BC pathogenesis
and therapy.

There are two strategies for developing miRNA-based
therapies: i) by the introduction of miRNA-mimic oligonu-
cleotides, which mimic miRNA expression, up-regulating
miRNA, and ii) by the introduction of miRNA inhibitor ol-
igonucleotides to inhibit the expression of the miRNA of
interest. However, some major obstacles for the use of
miRNA therapeutics exist, including the tissue-specific de-
livery [211, 212], and the fact that erroneous targeting of
miRNAs may cause toxic phenotypes [213].

For an effective drug-design of miRNA-targeted ther-
apies in BC, it could be useful to understand the inter-
play between miRNAs and mRNAs leading to BC, thus
studying the networks of gene controlled by each
miRNA of interest. miRNA and their targets can form
complex regulatory networks, and the comprehension of
miRNA-target relation will help the development of per-
sonalized and tailored therapies [213].

Gene expression deregulation in BC
Biological insights
GE profiling in BC has been widely demonstrated to
generate different prognostic and diagnostic gene signa-
tures. However, molecular tests have a potential not only
for diagnosis but also for tailoring treatment plans, in
particular with the aim of reducing resistance, non-
response and toxicity [214]. Most of the tests either
focus on gene expression microarrays or quantitative
reverse transcription (QRT)-PCR analyses.

van't Veer et al. [215] obtained one of the prognostic
signature for BC currently available on the market:
MammaPrint. Microarray analysis of 78 BC patients
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with no systemic therapy led to the identification of a list
of 70 genes able to predict the prognosis of the disease.
The test was independently validated in a cohort of 295
early stage invasive BC, and results proved that the sig-
nature was an independent prognostic marker in BC
[216]. A second independent validation study was per-
formed by the TRANSBIG Consortium [217] in a cohort
of 302 adjuvantly untreated patients, and was followed
by additional validation studies [218—220]. MammaPrint
was developed by Agendia, a laboratory in Amsterdam,
approved in 2007 by the U.S. Food and Drug Adminis-
tration (FDA) and then released commercially. This is a
microarray-based test assessing the risk that a BC can
metastasize to other parts of the body.

Paik et al. [221] developed Oncotype DX, a qRT PCR-
based signature which measures the expression level of
21 genes (16 target + 5 reference genes). The test is able
to predict chemotherapy benefits and the likelihood of
distant BC recurrence. This is the first genomic bio-
marker assay which is commercially available for BC
treatment as support of chemotherapy. Three separate
studies containing 447 BC patients allowed to identify
the 21-gene profile, which were divided into 16 target
and 5 reference genes. The test was then validated using
668 node negative, ER positive, tamoxifen treated pa-
tients from NSABP B-14. An Oncotype DX Recurrence
Score (ODRS) was defined and measured, as expression
of a risk percentage for the development of distant me-
tastases [222]. Oncotype DX was subsequently evaluated
in the NSA BP-B20 trial, a study that explored the bene-
fit of chemotherapy plus tamoxifen, and proved the ac-
curacy of the biomarker. Currently, the Oncotype DX
assay is performed in the licensed Genomic Health la-
boratory, which is the laboratory where the assay was
developed.

Prediction Analysis of Microarray (PAM50), by using
qRT-PCR assay, measures the expression of 55 (50 target
and 5 reference genes) to identify the intrinsic subtypes
of BC: luminal A, luminal B, HER2-enriched, and basal-
like [223]. The gene signature was developed by analys-
ing 189 BC samples, and was then validated on 761 BCs
for prognosis and on 133 BCs for prediction of response
to a taxane and anthracycline regimen [223]. Nano-
String’s Prosigna™ received a CE-mark designation for
selling BC PAM50 in 2012, and received FDA clearance
in 2013.

Genomic Grade Index (GGI) [4] is a 97 gene which
measures the histological tumour grade. This test is
based on the assumption that histological grade is a
strong prognostic factor in ER positive BC. Sotiriou et
al. [4] found that GGI gene signature is able to classify
BC as histological grades I and III. They used 64 samples
of ER-positive BC tumours to select genes that were dif-
ferentially expressed (DE) between histologic grade I and
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III tumours, and to generate the gene signature. Data
from 597 independent tumours were then used to evalu-
ate GGI and to also demonstrate that GGI can separate
histological grade 2 BC into low or high categories with
different clinical outcomes. The results of the BIG-1-98
study (55 endocrine-treated patients) [224] demon-
strated that the GGI is also a potential predictor of
relapse for endocrine-treated BC patients. Ipsogen
launched the MapQuant Dx (TM) genomic grade test by
incorporating GGI. The test is currently used, in particu-
lar when tumor grade information can be decisive for
prescribing a chemotherapy.

Immunohistochemical (IHC) assay Mammostrat [225]
uses 5 immunohistochemical markers (SLC7A5, HTFIC,
P53, NDRG1, and CEACAMS5) to stratify patients on
tamoxifen therapy into different risk groups, in order to
inform treatment decisions. In the validation study, an
analysis was performed on two independent data sets of
299 and 344 BC samples [226]. Clarient launched on the
market the Insight” Dx Mammostrat® Breast Cancer Re-
currence test in 2010.

Table 5 reports the considered commercially available
tests, with their principal characteristics (e.g. number of
genes, validation data sets).

Experimental methods

Understanding GE and how it changes under normal
and pathological conditions is necessary to provide in-
formation about the expressed genes. Large scale GE
data provide the activity of thousands of genes at once.

Several techniques exist for studying and quantifying
GE.

Traditional methods focus on measuring the expres-
sion of one gene at a time, as, for example, the Northern
Blotting and the Real-Time Quantitative Reverse Tran-
scription PCR (RT-PCR).

Northern blotting (called also RNA blot) was the first
tool used to measure RNA levels, and, until the end of
the 1990s, it was used extensively. It allows to quantify
levels of mRNA by electrophoresis, which is able to sep-
arate RNA samples by size. The RNA of interest is
revealed by a hybridization probe complementary to it.
The first step of RNA blot is to denature the RNA into
single strands. Hence, gel electrophoresis separates the
RNA molecules according to their size. Subsequently,
the RNA is transferred from the gel onto a blotting
membrane, containing RNA bands originally on the gel.
A probe complementary to the RNA of interest binds to
a particular RNA sequence in the sample [227]. The
RNA-probe complexes can thus be detected using a var-
iety of different chemistries or radionuclide labelling.

RT-PCR is a major development of PCR technology,
overcoming Northern blot as the method for RNA
detection and quantification [228]. It enables to monitor
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Table 5 Current commercially available genetic test for BC and their principal characteristics

Author N. genes Samples used to generate Independent validation study Laboratory
BC signature
MammaPrint ~ van't Veer 70 — 78 BC patients — 295 early stage invasive BC. Agendia
etal. 215] — 302 who had received loco-regional therapy but no
systemic adjuvant therapy
Oncotype DX  Paik etal. 21 — 447 BC patients — 668 node negative ER positive tamoxifen treated cases Genomic
[221] Health

— 651 BC samples: 227 had been randomly assigned to tamoxifen

adjuvant therapy and 424 to tamoxifen plus chemotherapy

PAMS50 Parker et 50 — 189 BC patients — 761 patients (no systemic therapy), 133 (neocadjuvant NanoString's
al. [223] chemotherapy) Prosigna™
Genomic Sotiriou et 97 — 64 BC patients - 597 BC Ipsogen
Grade Index al. [4] 55 endocrine-treated patient
(GGI) — 55 endocrine-treated patients.
Mammostrat  Bartlett 5 — 466 BC patients — 299 BC, 344 BC Clarient
et al. [225]

and measure a targeted DNA molecule generated dur-
ing each cycle of PCR process. In RT-PCR, the mRNA
must be converted to a double-stranded molecule by
using the enzyme reverse transcriptase. This phase is
followed by quantitative PCR (qPCR) on the cDNA
with the detection and quantification of amplified prod-
ucts [229]. The quantity of each specific target is
obtained by measuring the increase in fluorescence signal
from DNA-binding dyes or probes, during successive
rounds of enzyme-mediated amplification. The limitation
of this technique is the quantification of few genes at a
time [229].

Several technologies such as microarray, Serial Ana-
lysis of Gene (SAGE), Cap Analysis of Gene Expression
(CAGE) and Massively Parallel Signature Sequencing
(MPSS) allow the mRNA expression data for hundreds
of genes to be obtained in one single experiment [230].

The most commonly used technology to profile the
expression of thousands of transcripts simultaneously is
microarray. DNA microarray is an array of oligonucleo-
tide probes bound to a chip surface [231, 232]. Labelled
c¢DNA from a sample is hybridized to complementary
probe sequences on the chip, and strongly associated
complexes are identified by detection of fluorophore-,
silver-, or chemiluminescence-labelled targets [231, 232].

Many variables influence the outcome of the experi-
ments in microarray analysis, thus contributing to
experimental errors and biological variations (for more
details see [233]).

In contrast to microarray methods, sequence-based
approaches directly determine the cDNA sequence
[234]. SAGE [235], CAGE [236], and MPSS [237], all
tag-based sequencing approaches, are based on Sanger
sequencing technology.

The development of novel high-throughput DNA
sequencing methods, such as RNA-Seq (RNA sequen-
cing), has provided new approaches for both mapping

and quantifying transcriptomes. It has clear advantage
over existing approaches: RNA-Seq is not limited to the
detection of transcripts that correspond to existing gen-
omic sequence, and it is suitable to discovery genomic
sequences that are still unknown [234].

In RNA-Seq analysis, RNA is converted to a library of
¢DNA fragments with adaptors attached to one or both
ends. Each molecule is then sequenced in a high-
throughput way in order to obtain short sequences
(reads 30—400 bp). Following sequencing, the resulting
reads are mapped to the genome in order to produce a
genome-scale transcription map consisting of both the
transcriptional structure and the level of expression for
each gene [234]. Although RNA-Seq has many advan-
tages with respect to the other methods, other issues
must be overcome to achieve best practices in the meas-
urement of gene expression, for instance, the lack of
accurate methods able to identify and track the expres-
sion changes of rare RNA isoforms from all genes [234].

Table 6 reports a synthesis of the considered experi-
mental methods for studying and quantifying GE, with
their principal advantages and limitations.

Computational methods

Microarray or RNA-sequencing technologies, as above
reported, produce an overall design of all the transcrip-
tional activity in a biological sample. However, these
methods necessarily produce a large amount of data to
be visualized, evaluated for their quality, normalized, fil-
tered and interpreted.

Hence, the data originated by platforms (such as
microarrays or RNA-seq) must be pre-processed. Pre-
processing step is crucial to normalize the data and to
clean biological signal values from experimental noise
[238, 239].

Data must be also reduced prior to be used in advanced
analysis, and this can be accomplished in two different
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Table 6 Principal experimental methods for GE quantification

Method Pros Cons
Northern -Inexpensive -low throughput
Blotting ) o ) .
-detecting transcript size -semiquantitative
-RNAase contamination
RT-PCR -high sensitivity -high variability
-high sequence specific -normalizaton methods
Microarray -measurement of the -high cost
activity of thousands of
genes at once
-rapid -analysis of Big data
-don't require large-scale -high Background noise
DNA sequencing
Sanger -low Background noise -only a portion of the
sequencing transcript
technology )
-isoforms are generally
indistinguishable from
each other
-Low throughput
RNA-seq -measurement of the -High cost

activity of thousands of
genes at once

-require low amount of -Analysis of Big data

RNA
-high reproducibility

-Low Background noise

ways: 1) by dimensionality reduction methods, that do not
modify the original representation of data, and 2) by
dimensionality reduction techniques which involve modi-
fication or loss of information from the original data.
Among this second category, there are those methods
based on projection (e.g. principal component analysis) or
compression (e.g. using information theory) [240].

One of the most validated method of the first cat-
egory is feature selection technique. It is often used to
identify key genes able to separate the samples into dif-
ferent classes (e.g. cancerous and normal cells), and to
remove irrelevant genes. Golub et al. [241] showed
indeed that most genes are not significant in a problem
of samples classification. However, feature selection is
also important in order to obtain faster and efficient
classification models, and to avoid over fitting.

Three categories of feature selection methods can be
used: filters, wrappers, and embedded methods [242, 243].

Filter methods find subset of genes dependent on the
class label, and do not consider the relevance of genes in
combination with other genes [243]. Usually they are
simple and fast.

Filter methods include correlation-based feature selec-
tion (CES) [244], t-test [243, 245], information gain [243,
245], mutual information [246], entropy-based methods
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[247], Euclidian distance [245], signal to noise ratio
[245], and significant analysis of microarrays [248].

Wrapper methods try to achieve the best combination
of genes that may offer high classification accuracy. They
include hybrid genetic algorithms [249], particle swarm
optimization [250], successive feature selection (SFS)
[251] and GA-KDE-Bayes [252]. However, this approach
is less used, in particular in microarray analysis, due to
its high computational costs [243].

Filter approach does not interact with the classifier,
contrarily to wrapper and embedded techniques, usually
resulting in lower performance.

An intermediate approach between the lowest results
of the filter methods and the high computational cost of
the wrapper methods is represented by the embedded
method. With this method, the feature selection proced-
ure is inbuilt to a classifier. Classification trees like ID3,
random forest, and Support Vector Machine (SVM)
based on Recursive Feature Elimination (RFE) are all
examples of embedded methods [243, 245].

The principle of the feature selection and validation
techniques is shown in Fig. 3. A pre-processing step is
performed: i) the quality of data is evaluated, ii) outliers
are removed, and iii) data are normalized. Feature selec-
tion is performed. Usually, original data are divided into
two data sets: a training set, subjected to the feature
selection, and a testing set, used to evaluate the feature
selection of the model with different validation tech-
niques. Feature selection finds a subset of genes of inter-
est, (e.g. a gene signature), and the validation of genes is
performed. The most used validation techniques are
cross-validation or leave one out validation [243], even if
several studies suggested the use of a 10-fold cross valid-
ation because they give a more biased but less variable
estimate than the leave-one-out error (e.g. [253]). When
the feature selection of the model satisfies the required
validation performance, the genes are defined and can
be interpreted.

Therapeutic approach

Drug compounds that facilitate and control tightly
therapeutic GE are a promising target. Transcriptional
gene regulatory system has been encoded within several
viral vectors (eg. Tetracycline-based systems can regulate
GE of particular targets with the use of cell-type-specific
promoters) [254].

The regulation of GE systems is an attractive target for
gene therapy development, and potential applications
have been assessed in a wide variety of preclinical
laboratory models of disease. The first study was per-
formed by Hallahan et al. [255], which described how
TNEF-a expression, under the control of the Egr-1 pro-
moter, could be increased in response to ionizing X-ray
radiation. This increase of TNF-a expression was
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associated with an improved control of tumour growth
in comparison with X-ray radiation alone [255]. Advan-
tages from induction of GE by ionizing radiation include
reduction of damage to adjacent healthy tissues [254].

Kan et al. [256] have constructed a novel retroviral
vector (MetXia-P450) encoding CYP2B6. This vector
was used to transfect the human tumour cell lines HT29
and T47D. CYP2B6 metabolizes the prodrug cyclophos-
phamide (CPA) to produce phosphoramide mustard that
cross-links DNA, thus leading to cell death. In order to
evaluate safety and clinical response, MetXia-P450
entered Phase I clinical trials for nine BC patients and
three melanoma patients with cutaneous tumours, with
encouraging results.

Although viral vectors are very efficient for gene trans-
fer, their uses are still limited by safety concerns [257].
As an alternative, non-viral BC gene therapy (e.g. naked
DNA) is growing due to its safety profile, easy prepar-
ation procedures, and moderate costs. -galactosidase
(LacZ) expressing plasmid DNA has been successfully
delivered in three patients by a needle-free jet injection
to skin metastases from primary BC, and also to melan-
oma lesions in 14 patients. No side effects were ob-
served. The transgene was detectable at messenger RNA
(mRNA) and at protein levels in all patients.

Copy number alterations and gene expression in BC
Biological insights
Several studies demonstrated that changes in DNA CN
are translated into corresponding changes in GE [258,
259]. Although it is possible that changes in specific
DNA sequences (i.e. centromeres or telomeres) can have
directly negative consequences [260], the main respon-
sible for the malignant phenotype has been proven to be
the gene dosage hypothesis: alterations of gene copies
change the expression levels of the involved gene [261].
Figure 4 shows the principle consequences of an
altered gene dosage. Specifically, figure 4.1) shows: i)
WT condition where a correct number and expression
of A and B gives a correct production of C; ii) how the
amplification/over expression of gene copies (e.g. B) can
cause an increased dosage of a single gene (e.g. C), and
iii) how a deletion/under expression of gene copies (e.g.
B) can cause a decreased dosage of a single gene (e.g. C)
[261]. Figure 4.2) shows how altered gene dosage can
influence stoichiometry of protein complex DE that pro-
duces F. An amplification/over expression of protein D
can inhibit the formation of protein complex DE, thus
altering the pathway activity and the correct production
of F. A deletion/under expression of protein D do not
produce protein complex DE [262].
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While useful information has been revealed by analys-
ing GE profiles alone or CNA data alone, integrative
analysis of CNA and GE data are necessary in order to
have more information in gene characterization. Specif-
ically, RNA data give information on genes that are up/
down-regulated, but do not consider primary changes
driving cancer from secondary modifications, such as
proliferation and differentiation state. On the other
hand, DNA data give information on amplifications and
deletions that are drivers of cancer. Therefore, integrat-
ing DNA and RNA data can clarify genetic regulatory
relationships in cancer cells [262]. It is interesting that
transcriptional changes for 10-63 % of genes occur in
amplified regions, and, for 14—62 % of genes, in regions
of loss [263].

Several studies showed that gains (or losses) in DNA
genomics have consequences in the expression levels of
genes in the implicated regions, which are increases or
decreased, respectively [264—-266]. If we consider indi-
vidual genes, the situation is more complicated. For
instances, 14 % of down-regulated genes can appear
within regions of DNA gain, while 9 % of up-regulated
genes can occur in regions of DNA loss [266]. These
findings suggest to take a particular attention in the inte-
gration of CNA and GE.

The Cancer Genome Atlas project [267] is generating
multidimensional platforms including gene expression
and CNA data for the same set of patients [263]. Although
it is possible to perform analysis with unpaired data [263,
268, 269], the analysis is much more accurate when both
types of data are available from the same patient. In this

condition, the paired data analysis allows better statistical
power and a reduction of false positives [270, 271].

Some studies have shown that integrating CNA infor-
mation with GE data can often provide a powerful tool
for identifying functionally relevant genes in cancer [e.g.
275-282]. Chen et al. [272] found a list of eighteen
genes for which a strong correlation between CNA and
GE exists, using signal-to-noise ratio (SNR). They found
one particular gene, RUNX3, which is involved in the con-
trol of the in vitro invasive potential of MDA-MB-231.

Zhang et al. [273] identified an 81-gene prognostic CN
signature that was found highly correlated with GE levels
(Cox regression P < 0.05). This signature identified a sub-
group of patients with increased probability of distant me-
tastasis in an independent validation set of 113 patients.

Andre et al. [274] reported the level of mRNA expres-
sion, significantly correlated to the CAN, for VEGE
EGFR, and PTEN, using Algorithm Array CGH Expres-
sion integration tool (ACE-it). These genes could be tar-
geted in triple-negative BC in clinical trials, and one of
them, E2F3, can have a major role in a subset of triple-
negative BC.

Hyman et al. [275] studied CNAs in 14 BC cell lines,
and identified 270 differently expressed genes using
signal-to-noise statistics (a value <0.05). 91 of the 270
genes represented hypothetical proteins or genes with
no functional annotation, whereas 179 genes had avail-
able functional information.

Orsetti et al. [276] presented a study on CNA on
chromosome 1, the prevalent target of genetic anomalies
in BC, and the CNA consequences at the RNA expression
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level in BC. They identified 30 genes showing significant
over-expression. A discriminating score was applied by
comparing the expression levels of the subgroup of sam-
ples presenting amplification and the expression levels of
the subgroup of samples without amplification.

Chin et al. [277] associated CNA and GE profiles of
genes linked to poor treatment response. They identified
66 genes in these regions whose expression levels were
correlated with CN, using Pearson's correlation (FDR <
0.01, Wilcoxon rank-sum test). Gene Ontology analyses
of these genes showed that they are involved in nucleic
acid metabolism, protein modification, signalling, and in
the cell cycle and/or protein transport.

Chin SF et al. [278] evaluated genome-wide correla-
tions between GE and CN by following an approach
based on the Wilcoxon test. They showed strong statis-
tical associations between either CN gain and over-
expression (196 genes) or CN loss and under-expression
(63 genes). Many well-known and potentially novel
oncogenes and tumour suppressors were included in
their analysis.

Table 7 reports a synthesis of the considered genes
based on the integration of CNA and GE.

Computational methods
No experimental methods actually exist giving, in one sin-
gle analysis, results about the integration of CNA and GE.

Computational integrative methodologies between
CNA and GE include a two-step approach, and joint
analysis. Figure 5a) shows a two-step approach, combin-
ing the results from individual analysis of GE and CNA.
Figure 5b shows a joint analysis obtaining directly the
final result from the integration of GE and CNA.

There are different statistical measures to assess the
CNA and GE relationship in order to quantify gene dos-
age effect. They include, in two-steps approaches, both
regression and correlation-based analysis.

Regression approaches model the dependence of
RNA levels from DNA CN, and consider RNA levels as
responses and DNA CN as predictors [279]. These
methods can be divided into: 1) univariate linear

Table 7 Gene signatures obtained by the Integration of CNA
and GE

Number of genes (gene signatures) References

1 Chen et al. [272]
81 Zhang et al. [273]
4 Andre et al. [274]
270 Hyman et al. [275]
30 Orsetti et al. [276]
66 Chin et al. [277]
259 Chin SF et al. [278]
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regression models, proposed to model the associations
between individual CN and GE probes [280], 2) multi-
variate linear regression models, integrating statistical
power across multiple probes targeting adjacent genes
or chromosomal positions [281], and 3) nonlinear
regression models.

Most studies use linear regression models but regulatory
mechanisms, contributing to gene expression changes
(e.g. CNA, miRNA, DNA methylation), can give non lin-
earity [282]. Non linear relationship between CNA and
GE have been investigated by Solvang et al. [282], which
focused on the identification of nonlinear relationships to
explain the regulatory mechanisms of alteration of mRNA
expressions in the cancer process.

Correlation-based approaches have been used to study
the relationship between CNAs and GE. For each pair of
co-measured data, a correlation matrix was estimated
reflecting the strength of association [283]. Several stud-
ies have shown correlations between CNA and GE gene
across samples e.g. [277]. Other studies, like Tsafrir et al.
[284], identified a correlation along the genome by using
filtered CNA and filtered GE. DR-Correlate [285], a
modified version of the Ortiz-Estevez algorithm, [286]
was used in a correlation-based analysis to examine the
genome and to detect genes with high associations
between CNA and GE. In order to improved correlation
results, Schifer et al. [287] replaced the sample means
with the reference medians in the correlation test, while
Lipson et al. [288] used a quantile-based analysis to
obtain improved correlation coefficients.

Table 8 reports a synthesis of the considered two-step
analyses and types.

Joint analysis uses CNA and GE data as paired data
entries and not as separate structures. The discrepancy
between the sample size and the number of genes is a
problem that can cause high noise. Techniques such as
Singular value decomposition (SVD) or Principal Com-
ponent Analysis (PCA) are the most popular ones for re-
ducing the dimension of gene data [289, 290]. However,
GE and CNA data are separately analysed using these
methods.

The generalized singular value decomposition (GSVD)
is a popular regression framework used in joint analysis.
With the purpose to identify variation patterns between
two biological inputs, Berger et al. [291] applied an itera-
tive procedure based on the GSVD, projecting CNA/
GSE data into different decomposition directions. GSVD
was used in two BC cell lines and tumour datasets, thus
obtaining gene subsets that were biologically validated.

Soneson et al. [292] applied PCA to reduce dimen-
sions, and Canonical Correlation Analysis (CCA) to
identify highly correlated CNA/GE pairs. Gonzalez et al.
[293] implemented the regularized CCA to identify the
correlation between paired datasets. iCluster is a method
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able to generate a single integrated cluster assignment
based on a simultaneous inference analysis from mul-
tiple data types [294]. In BC, iCluster has been used to
align concordant DNA CNA and gene GE changes,
showing encouraging results [294].

Table 9 reports some software for the CNA and GE
analysis and their method of integration type.

Integrating genetics and epigenetics in BC

The development of BC is mediated by the cooperation,
directly or indirectly, between genetic and epigenetic al-
terations of the cell [300, 301].

Sarkar et al. suggested that the epigenetic changes act
as the initiating signal in the development of cancer pro-
genitor cells and a combination of all genetic changes
which are differentially expressed in the various cancer
subtypes, could act on the cell vulnerable to epigenetic
alterations [301].

Table 8 Two step approaches to quantify gene dosage effect

Analysis Type References
- regression - univariate linear [279-282]
- multivariate linear
« nonlinear
- correlation « signal-to-noise ratio [283-288]

- Pearson's correlation

« Algorithm Array CGH Expression
integration tool (ACE-it)

- discriminating score

Epigenetic mechanisms are tightly linked to one
another and make the overall gene regulation system.
The miR-29 family, for example, including miR-29a,
miR-29b, and miR-29¢, is a miRNA that collaborates
with other epigenetic mechanisms. The expression of
miR-29b is regulated by both histone modification [302]
and DNA methylation [303]. miR-7/miR-218 can regu-
late DNA methylation and histone modification status
by decreasing homeobox B3 (HOXB3) expression [304].

However, while classical epigenetic mechanisms, such
as histone modification and DNA methylation, regulate
expression at the transcriptional level, miRNAs act at
the posttranscriptional level.

Elucidating the basic mechanisms of post-transcriptional
regulation of GE is essential to gain a full understanding of
how GE is regulated at different levels, of the interplay

Table 9 Software for CNA and GE analysis

Software Integration type References
Ace-it two-step approaches [295]
Magellan two-step approaches [296]
SODEGIR two-step approaches [297]
Edira two-step approaches [287]
CNAmet two-step approaches [298]
iCLUSTER joint analysis [294]
CONNEXIC joint analysis [299]
Remap joint analysis [281]
DR-Integrator joint analysis [285]
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between these mechanisms, and of the extensive contribu-
tion of post-transcriptional dysfunction in cancer.

An impressive number of papers have been published
on miRNAs increasing the number of scientific challenges,
and we focused on the studies and methods applied to the
combination miRNAs-mRNA, CNAs-miRNAs, and GE-
genetic alterations-miRNAs.

Integrated analysis of mRNA and miRNA in BC

Biological insights

The miRNA profile is more accurately associated with
cell differentiation and cancer progression when com-
pared with GE expression profile.

The aberrant expression of miRNAs in cancer can lead
to the altered expression of target mRNAs. miRNAs can
also modulate multiple genes regulating entire networks.
The interaction of a miRNA with its target mRNAs can
lead to the repression or incentive of GE.

In general, integration study of miRNA and mRNA
may allow the identification of both biomarkers and net-
works involved in the development of cancer [305, 306].

Biomarkers Combination of miRNA and mRNA has
still to be deeply explored in diagnostic and prognostic
studies. Cascione et al. [307] proposed a large-scale
analysis of miRNA and cancer-focused mRNA expres-
sion in normal, triple negative tumour, and associated
metastatic tissues in BC. Two miRNA signatures were
identified, predictive of overall survival (P =0.05) and
distant-disease free survival (P=0.009), respectively.
Volinia et al. [308] found 30 mRNAs and 7 miRNAs
associated with overall survival, across different clinical
and molecular subclasses of BCs. In addition, expres-
sion profiles from 8 BC datasets, different from those
used for the miRNA extraction, were used for valid-
ation. Buffa et al. [309] matched mRNA and miRNA
global expression profiling, and four miRNAs were
found independently associated with DRFS in ER-
positive BC (3 novel and 1 known miRNA- miR-128a)
and six miRNAs in ER-negative BC (5 novel and 1
known miRNA; miR-210). Van der Auwera et al. [310]
identified a set of 13 miRNAs whose expression differed
between inflammatory BC (IBC) and non-IBC. Enerly
et al. [311] demonstrated, from the joint analysis of
miRNA and mRNA data, a central role for miRNAs in
regulating particular pathways. Hannafon et al. [312]
identified putative miRNAs by mRNA functional inter-
actions in ductal carcinoma in situ: the three miRNAs
miR-125b, miR-182 and miR-183, and six of their puta-
tive target genes, MEMOI, NRIP1, CBX7, DOK4,
NMT2, and EGRI.

Luo et al. [313] performed an integrated analysis of
miRNAs and mRNA expression profiles in 12 BC cell
lines, identifying 35 functional target genes of three
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significantly down-regulated miRNAs in invasive cell
lines (miR-200c, miR-205, and miR-375).

Several studies demonstrated the greater accuracy of
miRNA expression levels compared with those of gene
signatures. miRNA expression levels should directly rep-
resent the functional activity of the genes, while genes
have to be translated to proteins to show their biological
effects [314].

For a more detail review on the role of miRNAs and
mRNA, see [315].

Table 10 reports a synthesis of the considered miRNAs
biomarkers in BC as obtained by the integration of
miRNA and mRNA.

Networks Each miRNA can potentially regulate the ex-
pression of hundreds of genes, and a single gene can be
targeted by multiple miRNAs [316].

Specific miRNAs has been identified as regulator of
metastatic progression through miRNA regulatory net-
works. Yan et al. [317] found miR-21 as the most signifi-
cantly up-regulated miRNA in BC when compared with
normal adjacent tumour tissues (NAT). Its target predic-
tion revealed the putative target genes by creating a
small miRNA regulatory networks.

Figure 6 shows mTOR and STAT3 signalling acting on
miR-21 up-regulation in cancer [318] and miR-21 promot-
ing cancer cell invasion and metastasis through suppres-
sion of BCL-2, PTEN, PDCD4,TPM1, maspin [319]. The
introduction of anti-miR-21 to MCF-7 BC cells and in
mouse model resulted in decreased cell growth (via in-
creased apoptosis) and in reduced cell proliferation [319].

miR-10b was found highly expressed in BC metastatic
cancer cells. In vivo studies demonstrated that miR-10b
promotes cell migration and invasion [320, 321] and ini-
tiates tumour metastasis [320, 321]. miR-10b is induced
by the transcription factor Twist. In turn, miR-10b
inhibits HOXD10 and, through a cascade of cellular
alterations, inhibits the expression of the prometastatic
gene RHOC [320, 321].

let-7 has been found poorly expressed or deleted in
many cancers. Known oncogenic targets of let-7 are H-
RAS, HMGA2, and BACHI. These genes result down-
regulated by let-7 over-expression [322]. HMGA2, and
BACHI promote the transcription of pro-invasive
genes, suppress cell invasion and metastasis to the bone
[323]. let-7 is regulated by LIN-28, MEK signalling, and
RKIP [323].

miR-200 family is important in maintaining the
tumour epithelial phenotype and in inhibiting the
epithelial-to-mesenchymal transition (EMT). miR-200
family was found to inhibit cell migration by acting on
the transcription factors ZEB1 and ZEB2, which sup-
press E-cadherin [324]. Furthermore, miR-200 was found
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Biomarker Biological effect References

miR-16, 155, 125b, 374a predictive of overall survival (P=0.05) [307]

miR-16, 125b, 374a, 374b, 421, 655, 497 predictive of distant-disease free survival (P=0.009) [307]

miR-1307, 103, 328, 83, 874, 484, 148b associated with overall survival across different clinical and [308]
molecular subclasses

miR-767-3p, 128a, 769-3, 135a, and miR-27b, 144, 210, 42, 150, 30c associated with DRFS in estrogen receptor [309]

miR-335, 337-5p, 451, 486-3p, 520a-5p, 548d-5p, 15a, 24, 29a, 30b, 320,  associated with inflammatory breast cancer [310]

342-5p, 342-3p
miR-150, 155, 142

have strong positive correlation to the immune response module  [311]

miR-130b, 19a, 449a, 299, 154, 145 association with proliferation [311]
miR-29c associated with cell adhesion/extra cellular matrix [311]
miR-125b, miR-182 and miR-183 highly overexpressed in ductal carcinoma in situ [312]
miR-200c, miR-205, and miR-375 down-regulated miRNAs in invasive cell lines [313]

silencing Sec-23a and promoting metastases by inhibit-
ing TINAGLI and IGFBP4 [325].

Table 11 reports a synthesis of the considered mRNA-
miRNA networks.

Experimental methods

The most used experimental technique for determining
miRNA targets is the transfection of mimic miRNAs or
of miRNA inhibitors [329]. The consequences of the
modulation of miRNAs on the expression levels are
measured by using different tools, including RT-PCR or
microarrays. The most important disadvantage of these
techniques is that they are not able to discriminate
between indirect and direct interactions [329]. Labelled
miRNA pull-down (LAMP) assay system or luciferase

miR-21

|

Migration /Invasion / Metastasis

Fig. 6 Example of miRNA regulatory networks

report assays add reporters or labels to miRNAs on the
3'-UTR of transcripts of interest, allowing the identifica-
tion and the analysis of direct interaction regions among
miRNA and its target gene [7]. The disadvantage of
reporter assays is that they are laborious, sensitive upon
the region chosen for cloning, and that they require hard
and complex work for trasfection [330].

Computational methods

There are different approaches to examine both miRNA
and mRNA expression profiles. In this paragraph we
examine miRNA and mRNA regulatory pairs together
[183, 185, 187, 188]. Several studies showed that the
miRNA-mRNA interactions varies with the develop-
ment of disease [331, 332].

Recently, in silico studies used expression profiles to
decrease the number of false positives and to enhance
the number of biologically relevant targets [333, 334].

The integrative methods employ a three-step proced-
ure: 1) Identification of DE miRNAs and mRNAs in the
biological condition of interest. It can be done as re-
ported in section 2 c); 2) Selection of putative miRNA-
mRNA pairs (for instance, a prediction algorithm can
be used to obtain the DE miRNA from DE mRNA. It
can be done as reported in section 3 c); and 3) Identifi-
cation of statistically significant miRNA-mRNA pairs.
This last step needs the selection of an appropriate
association measure, and the determination of its sig-
nificance. The common assumption is based on the
idea that regulatory relationship between any miRNA
and its target mRNAs is an inverse correlation [335].

The mathematic tools consider simple correlation ana-
lyses (Pearson, Spearman) [336, 337], mutual informa-
tion [337], linear regression [338—340], regularized least
squares [341, 342] and bayesian inference [343, 344].
These methods give a score for each interaction mRNA-
miRNA.
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Table 11 Example of network between miRNA and their targets in BC

miRNA Targets Phenotype Ref.
miR-21 BCL-2,PTEN, PDCD4,TPM1, maspin Migration, invasion [318, 319]
miR-335 SOX4, Tenascin-C Migration, invasion [326-328]
miR-10b HOXD10, RhoC Migration, invasion [320, 321]
let-7 H-RAS, HMGA?2, LIN28, PEBP1 Proliferation, differentiation [322,323]
miR-200 BMI2, ZEB1, ZEB2, Sec-23a Migration [324]

van Iterson et al. [305] used the global test [345] to as-
sociate each miRNA with the expression levels of a set
of predicted mRNA targets. They suggest global tests to
be better suited for integrated analysis of miRNA and
mRNA expression data, compared with either Pearson
correlation or lasso-based approaches.

Pearson Correlation is a measure of linear-dependency,
widely used to show miRNA-mRNA showing a statisti-
cally significant correlation [346]. There are several web-
tools that employ Pearson correlation for miRNA-mRNA
target research (e.g. [349-353]).

Non-parametric (Spearman) correlation coefficient can
be used as alternative measure of correlation. Usually it
is chosen in case of outliers or with small number of
measures. Contrary to Spearman correlations, Pearson
coefficients require that both variables derive from a bi-
variate normal distribution [348].

Mutual information is analogous to the Pearson Cor-
relation but it is sensitive not just to linear dependen-
cies, and can define whether two given variables are
independent [348].

Multiple linear regression can evaluate the interactions
between a set of miRNAs and a target mRNA, contrary
to correlation measures which focuses on particular
pairs interaction.

R-squared statistics is used for measuring the goodness
of the fit of the data . When the number of samples with
GE profiles is smaller than the number of covariates
(e.g. miRNA), partial least squares can be applied [351].
This model gives those miRNAs explaining the max-
imum variance in GE profiles by ensuring a good fit of
the model.

Lasso-based approaches are used to deal with undeter-
mined linear system [342].

Bayesian inference use a priori information to estimate
parameters and predict values in a probability frame-
work. Several studies use this method for scoring puta-
tive miRNA-mRNA targets based on miRNA and
mRNA expression data [352—354].

Table 12 reports a synthesis of methods considered for
the integration analysis mRNA-miRNA.

Therapeutic approach
In the context of a network, miRNAs are able to regu-
late distinct biological cell processes like apoptosis,

proliferation or receptor driven pathways, thus suggest-
ing their possible use also as therapeutic targets or tools
[147]. The most important advantage, with respect to
other approaches targeting single genes, is their ability
to target multiple molecules.

There are two main approaches to target miRNA
expression in cancer. Direct approaches involve the use
of oligonucleotides or virus-based vectors to either block
the expression of an oncogenic miRNA or to reintroduce
a TS miRNA lost in cancer. Indirect approaches involve
the use of drugs to modulate miRNA expression by
targeting their transcription and their processing.

We think that the miRNAs described in the following
sections could be interesting for the development of
possible therapies in BC.

e Ma et al. [321] found miR-10b up-regulated in BC
and explored a possible therapeutic application in an
animal model of BC-bearing mice. The silencing of
miR-10b with antagomiRs reduces miR-10b levels
and increases miR-10b target, HOXDI0. The therapy
decreases metastases and was well tolerated by mice.

e Multiple studies have also shown a significant
association between miR-206 and ER in BC (e.g. [157]).
In mouse models, the overexpression of miR-206 was
found significantly decreasing metastatic activity for 2
BC cell lines: BOM1 (highly metastatic to bone) and
LM2 (highly metastatic to lung) [355].

e miR-125 was found to be significantly down regulated
in BC patients [356]. Experimentally, over-expression
of miR-125 reduces ERBB2 and ERBB3 cell motility,

Table 12 Methods for mRNA-miRNAs analysis

Method Ref.
global test [243, 282]
Pearson correlation [346-350]
Spearman correlation [348]
lasso-based approaches [342]
Mutual information [348]
Multiple linear regression [338-340]
Partial least squares [351]
Bayesian inference [352-354]
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and also reduces invasiveness of other numerous
cancers [357, 358]

e miR-34 is down regulated in BC cell lines and
tissues, compared with normal cell lines and
adjacent non-tumor tissues [359]. Expression of
miR-34 was found correlated with p53 status. In fact,
silencing of p53 in human tumour cell lines decreases
in miR-34 level [360]. Moreover, as reported by
Weidhaas et al. [361] miR-34 levels change levels
significantly after irradiation. A potential use for
miR-34 as radiosensitizing agent could be envisaged.

e miR-155 is also linked to key cancer pathways as the
gene is up-regulated by mutant p53 in BC, thus
facilitating tumour cell invasion [362]. miR-155 has
also attracted considerable interest as a putative
therapeutic target [363].

Table 13 reports a synthesis of the considered miR-
NAs, their potential target and function.

Integrated analysis of CNA and miRNA in BC

Biological insights

Many miRNAs are frequently located at fragile sites of the
genome, which are usually either amplified or deleted in
human cancer [364]. The aberrant miRNA expression in
BC, in part, is due to these genomic alternations.

Zhang and colleagues studied 283 known human miR-
NAs in BC and showed that 72.8 % of miRNAs are lo-
cated in regions that reveal CNAs [365]. In a recent
study, miRNAs were shown to be up-regulated in gain
regions compared to copy-neutral regions in BC, al-
though the effect on miRNA expression was not incisive
[366]. Iorio et al. [129] compared BC CGH data with in-
dependent miRNA expression by miRNA microarrays,
and demonstrated that 81.8 % of miRNAs increased ex-
pression level and showed high DNA CN, and that 60 %
of miRNAs exhibit decreased expression level with loss
of DNA CN.

Several miRNAs have been associated with cancers
due to CNA, suggesting that miRNAs can act either as
oncomiRs or oncosuppressor miRNA [213]. Figure 7
shows amplification of chromosomal regions of miRNAs
encoding oncomiRs and leading to their up-regulation.
OncomiRs can act silencing TSG thus making possible
the development of cancer.

Table 13 Potential therapeutic miRNAs
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Biomarkers The first miRNA found to act as a mamma-
lian oncogene is polycistron miR-17-92, also known as
OncomiR-1 because it was the first identified oncomiR
[367]. It is located in chromosome 13 and has been
found amplified in human BC [368]. It acts as an anti-
apoptotic miR cluster by targeting intrinsic apoptotic
protein Bim in B-cell lymphoma subtypes [369].

Other oncomiRs have been described since the first
discovery. miR-21 is located in 3'UTR of VMP1 (vacuole
membrane protein 1) gene at chromosome 17q23.2, a
region amplified in BC and also in neuroblastomas,
colon and lung cancers [370]. miR-151a-5p is located on
8q24.3, a genomic site frequently associated with gain in
BC [371]. High expression of miR-151a-5p has been as-
sociated with gain, and functional experiments showed
that over-expression induce cell proliferation and also
increase the levels of p-AKT [372].

As for oncomiRs, also several miRNAs with oncosup-
pressor functions have been described. Figure 8 shows
deletion of chromosome region of oncosuppressor miR-
NAs leading to their down-regulation. Down-regulation
of oncosuppressor miRNAs results in up-expression of
target oncogenes.

Chromosome 11 is frequently altered in BC and mirR-
125D, that is located at 11q23-24, results one of the most
frequently deleted regions [373]. In a study of Muller et al.
[374], mir-320 has been found to be located in regions
with DNA CN loss in BC. The predicted target of miR-
320 is MECP2 which is up-regulated in BC and serves as
an oncogene promoting cell proliferation. Genetic deletion
could contribute to miR-100 down-regulation [375] indu-
cing epithelial-mesenchymal transition.

In several cancer types, including BC, genomic dele-
tion or loss of heterozygosis of the region of the miR-
34a have been described [376]. miR-34a is highly
expressed in normal tissues. Its expression level is under
the control of the TS gene product p53 and it acts as a
TS inducing cell cycle arrest in G1-phase, senescence
and apoptosis [377].

Wang et al. [378] showed that CN deletion is an im-
portant mechanism leading to the down-regulation of
expression of specific let-7 family members in BC. Also
miR-33 expression was found to be strongly associated
with the genomic alteration [128]. Furthermore, the ex-
pression of the cluster miR-145/miR-143 family, miRNA

miRNA Potential Target Function References
miR-10b RHOC Invasion and metastasis [321]
miR-206 ER Metastasis [155]
miR-125 ERBB2, ERBB3 Coordinate suppression [356-358]
miR-34 p53, CCND1, CDK4 and CDKe, cell cycle [359-361]
miR-155 p53 cell cycle [362, 363]
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Fig. 7 Amplifications of chromosomal regions of oncomiR lead to their up-regulation. These oncomiRs would then silence the TSG leading to the
development of cancer
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located on a region involved in several types of translo-
cations and deletions, has been found reduced or absent
in various types of cancers, including BC [152, 368].

Table 14 shows the principal oncomiRs and oncogenes
with their alterations considered in this section.

Networks miRNAs that are silenced or amplified from
CNA can have a cascade effect on the expression of dif-
ferent genes regulating entire pathways.

In the following paragraph, we give examples of im-
portant miRNAs that are altered in BC and of the
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Fig. 8 Deletions of chromosomal regions of oncosuppressor miRNAs lead to their down-regulation. Down-regulation of oncosuppressor miRNAs
results in up-regulation of oncogenes and thus proliferation of cancer cells
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Table 14 miRNAs altered obtained by the integration miRNA

and CNA

miRNA Genetic alterations Ref.
miR-125b Deletions [373]
mir-320d Deletions [374]
let-7 g Deletions [378]
miR-34a Deletions [376]
miR-100 Deletions [375]
miR-145 Deletions [112]
miR-143 Deletions [112]
OncomiR-1 Amplifications [367]
miR-21 Amplifications [369]
miR-155 Amplifications [368]
miR-15T1a-5p Amplifications [370, 371]

consequences of their downregulation in the functional
pathway.

Figure 9a shows miR-335 that suppresses BC metasta-
sis by targeting SOX4 and Tenascin-C which promote
cancer cell migration, invasion and ultimately metasta-
sis [326-328]. miR-335 is silenced through CN dele-
tions [328].

mir-320 is found to be located in regions with CN loss
in BC. The predicted target of miR-320 is methyl CpG-
binding protein 2 (MECP2), which is up-regulated in BC
and is an oncogene promoting cell proliferation [374].
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In a study of Volinia et al. [368] miR-21 was found as
the only miRNA up-regulated in all six types of solid
cancers (BC, colon, lung, prostate, stomach carcinomas
and pancreas exocrine tumours). Figure 9b shows miR-
21 network: it modulates gemcitabine-induced apoptosis
by PTEN-dependent activation of PI 3-kinase and by
activation of AKT/mTOR signalling [379]. Inhibition of
this miRNA should result in cell death [370].

Computational methods
Several studies showed that miRNA levels are influenced
by CNAs.

No-experimental methods are usually used for their
integration. Individual studies from miRNA and CNA
are combined with statistically and/or computational
analysis.

de rinaldis et al. [380] analysed association between
miRNA expression and CNAs in a large triple-negative
BC data set. This association was evaluated using Spear-
man correlation. In addition, for each miRNA-encoding
DNA locus identified as altered in any of the samples, a
separate non-parametric Wilcoxon rank sum test was
applied to measure differences in expression between
samples with deletions and amplifications, compared to
samples with no CNAs. 64 miRNAs were found with
statistically significant miRNA-CNA correlation, show-
ing an overall influence of genetic alterations (amplifica-
tions and deletions) on the expression of the miRNAs.

CN
deletions

J

miR-335

| |
Y

Migration /Invasion / Metastasis

A

CN
Amplifica
tions

4

miR-21

PTEN down-
regulation
Y

Increased survival and growth of
cancercells

B

Fig. 9 Examples of CNAs regulatory network. a) Deletions of miR-335 produces effect that appear as promoting migration, invasion, and
metastasis. In particular, it has been shown to be an important negative regulator of SOX4, and TENASCIN-C b) Amplifications of miR-33 produce
effects that appear as dyseregulation of PTEN pathway
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Aure et al. [372] investigated individual and combined ef-
fects of CN and methylation on miRNA expression in BC.
They identified 70 miRNAs whose expression was associ-
ated with CNAs or methylation, or with both conditions.
24 miRNAs were associated mainly with CNAs, 22 miR-
NAs with methylation aberrations and 24 miRNAs with a
combination of CN and methylation aberrations. In order
to identify miRNAs associated with hypomethylation or
amplification, each miRNA in each patient was allocated to
one of the two groups ‘altered’ or ‘non-altered’ based on
CNA and DNA methylation. A Wilcoxon rank-sum test
was used for each miRNA to underlie whether the miRNA
expression was significantly different in the two groups.

Srivastava et al. [381] showed that H2AX was negatively
correlated with miR-24-2 and not in accordance with the
CNA status, both in cell lines and in sporadic BC tissues.
The authors tried to explain the possible mechanisms of
such non concordant relationship between expression and
number of gene copies based on specific miR regulation
of expression. They discussed a role of miR-24-2 in guid-
ing H2AFX GE in the background of the differential status
of CNA.

Combination of gene expression, genetic alterations and
miRNAs in BC

Fearon and Vogelstein [382] proposed that accumula-
tion of genetic alterations could determine a malignant
phenotype and accompany cancer progression. However,
this theory does not explain the great heterogeneity of
observed genetic alterations, even within homogeneous
histological groups [12].

Normal cells evolve progressively to a neoplastic state,
based on a multistep process to acquire the traits that
enable them to become tumorigenic and ultimately
malignant. Tumors are not only masses of proliferating
cancer cells, but complex tissues composed of multiple
distinct molecular types that participate in an interaction
with one another [383, 384].

The transitions in the malignant cancer progression are
dynamic and reversible steps between multiple phenotypic
states (e.g. epithelial and mesenchymal phenotype) [385].
These reversible transitions are based on complex epigen-
etic regulatory mechanisms (e.g. the induction of changes
in the modifications of chromatin-associated histones)
during epithelial-mesenchymal transitions [385, 386].

Sarkar et al. [387] reported a review based on the role of
epigenetic regulation in the steps from normal cell to
cancer progenitor cells that, after growing, undergo an
epithelial-mesenchymal transition. Epigenetic drugs could
potentiate traditional therapeutics by inhibiting both the
formation and growth of cancer progenitor cells [387].

We argue that tumour heterogeneity is due not only to
a simple accumulation of genetic alterations but can be
the cause of the combined effect of genetic and epigenetic
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alterations. Furthermore, Alfred Knudson [388] hypothe-
sized that hereditary retinoblastoma involves two muta-
tions, the first one in the germ line. Thus, non-hereditary
retinoblastoma should be due to two somatic mutations,
an hypothesis known as Knudson “two-hit” hypothesis.
The two-hit hypothesis proposes that loss of a single func-
tional allele, which may potentially results in expression of
a truncated or mutated product, is insufficient to involve
cellular functions.

Several studies support the validity of the "two hit
theory” in BC. Meric-Bernstam et al. [389] applied this
hypothesis in BC, and suggested that the second hit
does not need to be a point of mutation or somatic
loss, but it may be the epigenetic silencing of a gene.

Konishi et al. [390] showed that cell lines carrying one
mutant and one normal copy of BRCAI have a normal
cell phenotype, and they are normal until the second allele
is lost through somatic mutation or epigenetic silencing.

Genetic and epigenetic events are two complemen-
tary mechanisms that are involved in carcinogenesis.
It is not clear at all how these mechanisms influence
GE during tumorigenesis.

In BC, integration analysis of GE, genomic changes and
miRNA expression was adopted in a limited number
of studies (e.g. [397-399]). Eo et al. [391] proposed a
pathway-based classification of BC which integrates data
on DE genes, CNA and miRNA. Pathway information was
incorporated in a condition-specific manner. A 215-gene
signature was found from 327 tumours. By using an inde-
pendent data set, this gene signature was validated.

Cancer Genome Atlas Network [392] analysed BC by
genomic DNA CN arrays, DNA methylation, exome se-
quencing, messenger RNA arrays, microRNA sequencing
and reverse-phase protein arrays. They found biomarkers
for gene expression subtypes and the presence of four
main BC classes.

Kristensen et al. [393] used an integrated approach to
identify and classify BC according to the most deregu-
lated pathways that provide the best predictive value
with respect to prognosis, and identified key molecular
and stromal signatures.

In a combined analysis of miRNA and mRNA expres-
sion data, Blenkiron et al. [128] found a number of miR-
NAs DE among molecular tumour subtypes. Furthermore,
they found that changes in miRNA expression correlate
with genomic loss or gain.

PARADIGM was tested using CN and mRNA expres-
sion data [394], as well as with the addition of methylation
and miRNA expression data [393].

Cava et al. [5] assessed the potential of a new triple ap-
proach by integrating mRNA expression profile, CNAs,
and miRNA expression levels to select a limited number
of genomic BC biomarkers and to obtain a more accur-
ate classification of BC grade.



Cava et al. BMC Systems Biology (2015) 9:62

CNAs have been demonstrated to be able also to identify
genes DE between drug-sensitive and -resistant BC cells
when integrated to GE and microRNA expression profiles.

Yamamoto et al. [395] focused on miRNAs and genes
located on the genome-amplified and -deleted regions.
These genes showed also an altered expression in GE
profiles. The authors analysed MCF7 and a parental BC
cell line drug-resistance MCF7-ADR. miR-505 was iden-
tified as a tumour suppressor, whose genomic region
was found to be deleted in doxorubicin-resistant cells.
Furthermore, miR-505 seems to be regulated by its pre-
dicted target Akt3 (an anti-apoptotic gene), by mRNA
profiling coupled with downstream validation studies.

Discussion

Despite promising initial results about the possible clin-
ical implications of GE profiling, a more recent source
of concern has been that gene signatures derived from
the various studies show little overlap and poor reprodu-
cibility. This can be explained, from one side, by the
complexity of the human genome which provides that
different genes can be indices of the same message with
identical outcomes. From the other side, one explanation
can be the use of different types of arrays (of different
sample quality) and the different parameters considered
for the data analysis. However, GE analysis measures
mRNA expression, which, by the central dogma of mo-
lecular biology, results from the transcription of DNA.
Specifically, GE analysis give information on DE genes
among different conditions, but do not consider primary
alterations of DNA from secondary effects of disease,
such as, in the case of cancer, proliferation and differen-
tiation state. On the other hand, studies of DNA CNA
allow important indices to be derived as drivers of can-
cer. Therefore, integrating DNA and RNA data has been
proposed to clarify genetic some regulatory relationships
in cancer cells.

Since 2001, a new term "microRNA" was introduced
into the scientific literature, challenging the central
dogma of molecular biology. miRNAs are segments of
RNA that are transcribed from DNA in a way similar to
mRNA but they are not translated into proteins. In
short, instead of producing a protein, miRNA can block
mRNA directly. Evidences demonstrated that their de-
regulation is associated to several steps of cancer initi-
ation and progression. However, we think that the
association of miRNAs and their mRNA targets is a
more favourable approach to study cell differentiation
and cancer progression when compared with GE expres-
sion or miRNA profile alone. It is therefore of great
concern for researchers to investigate how miRNA ex-
pression is linked to known BC markers. Several advan-
tages can be envisaged by miRNA analysis: i) miRNAs
are certainly more stable due to their small size when
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compared to long mRNAs [127], ii) miRNA expression
levels can characterize the functional activity of the tar-
get gene while genes have to be translated to proteins to
be biologically functional iii) miRNA-based therapeutics
have the ability to target multiple genes.

Misregulation of genes with consequence disruption of
the gene function is often induced by epigenetic and
genetics events. The epigenetic silencing of one allele
may act in concert with an inactivating genetic alteration
in the opposite allele, thus resulting in a total allelic loss
of the gene [7, 8]. From this viewpoint a gene subjected
to a different possible alterations (such as CNAs and
target of miRNAs) and that presents DE levels between
two conditions is a "weak" point of DNA and could be a
key element for cancer development. In our opinion
each cancer should have a signature with the description
of a specific set of alterations. Based on these observa-
tions, targeting specifically and simultaneously multiple
pathways subjected to different alterations may confer a
greater therapeutic efficacy.

We argue that useful information has been revealed by
analysing GE profiles alone, CNA data alone but or miR-
NAs, however, in order to have complimentary informa-
tion in gene characterization, an integrative analysis of
CNA and GE data and miRNA is necessary.

However, integrative analyses have some limitations: the
most fundamental challenge is dimensionally, considering
that more levels in the analysis increase the computational
time and the dimension of unknown parameters [396]. In
addition, at every step, there are problems of compatibility
of the data, such as normalization to the same scale, batch
effects, and use of different platforms.

Large-scale integration is possible only for few projects
worldwide, given the high cost for all analyses to be car-
ried out simultaneously and on the entire data set.

In referring to current studies of genetic changes asso-
ciated with BC, we focused in particular on the pro-
cesses controlled by CNA. However, DNA changes
include other genomic rearrangements, such as somatic
point mutations.

The analysis of the genomes of 100 tumours revealed
more than 7400 somatic point mutations in 21416
protein-coding genes [397]. These mutations affect many
of the well-established cancer related genes, such as
BRCA1, RB1, TP53, PTEN, AKT1, CDHI1, GATAS3,
PI3KCA. These genes control apoptosis, proliferation
and cell cycle, and transcription. Other somatic muta-
tions affect genes involved in signal transduction (APC,
KRAS, MAPK2K4, SMAD4, CASP8, CDKN1B...). Som-
atic mutation in three main genes (TP53, PI3KCA, and
GATA3) shows more than 10 % incidence across all BC
[397]. One of the most commonly mutated TSG in BC
is P53 [398]. It is localized to chromosome 17p13 and its
inactivation is important also in other cancer diseases.
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Several studies have investigated the predictive power of
P53 for response to treatments and outcome of BC patients
[399-401]. Bertheau et al. [401] reported that P53 base-pair
substitutions are highly linked to specific BC molecular
subtypes, being found in 26 % of luminal tumours (17 % of
luminal A, 41 % of luminal B), in 50 % of HER2 amplified
tumours, and in 88 % of basal-like carcinomas. The type of
mutations changes according to the tumour subtype. Basal-
like tumours present higher frequency of deletions. Further-
more, the authors found that non inflammatory locally
advanced BC with mutated P53 has a higher rate of
response to dose-dense doxorubicin—cyclophosphamide
chemotherapy than 7P53-WT tumours. As recently re-
ported [402], P53 is at the centre of the hallmarks of cancer,
supporting genomic stability, exerting anti-angiogenic ef-
fects, controlling tumour inflammation and immune re-
sponse, and repressing metastases. In BC, mutations in
BRCA1 and BRCA2 result in protein truncations as
consequence of small insertions, deletions or nonsense
mutations. Although BRCAI and BCRA2 mutations are
hereditary, these genes would also be involved in the devel-
opment of sporadic BC. Compared with normal breast epi-
thelium, many BCs have shown low levels of the BRCAI
mRNA [403, 404], while BRCA2 has been found the target
of frequent loss of heterozygosity (LOH) in BC [405, 406].

Other omics data could be further integrated for a more
inclusive analysis. Considering that proteins translate ef-
fects of CNAs into the biological functions of the cell, fur-
ther studies could integrate protein-protein interactions
networks with gene-gene co-expression networks. For ex-
ample, by dissecting the protein-protein interaction net-
work into disjoint sub networks, van den Akkerb et al.
[407] found sub-population of genes by using pair wise
GE correlation measures. The obtained genes were con-
sistently found across different studies.

Also the DNA methylation could be integrated in a
pathway analysis and could be combined with other bio-
logical data. Andrews et al. [408] integrated results from
CNAs, GE profiling and methylation to identify differen-
tially regulated pathways between a highly metastatic BC
cell line and low metastatic parental cell line. Validation
experiments confirmed that hypermethylated genes corre-
lated with decreased expression in the metastatic, com-
pared to the parental cell line.

Results generated from whole-genome analyses have
been submitted in The Cancer Genome Atlas (TCGA)
database, which includes CNAs, DNA methylation and
GE profiles [409, 410]. These data might be used for
integrative analyses of results generated from a single
technology platform [411].

Conclusions
Integrating genetics and epigenetics in BC may offer a
powerful approach for the identification of biomarkers
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with diagnostic, prognostic and therapeutic potential.
The experimental and computational methods presented
in this review can be used to guide researchers for these
integration studies.
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