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Abstract

Background: High throughput technologies have been used to profile genes in multiple different dimensions, such
as genetic variation, copy number, gene and protein expression, epigenetics, metabolomics. Computational analyses
often treat these different data types as independent, leading to an explosion in the number of features making studies
under-powered and more importantly do not provide a comprehensive view of the gene’s state. We sought to infer
gene activity by integrating different dimensions using biological knowledge of oncogenes and tumor suppressors.

Results: This paper proposes an integrative model of oncogene and tumor suppressor activity in cells which is used
to identify cancer drivers and compute patient-specific gene activity scores. We have developed a Fuzzy Logic
Modeling (FLM) framework to incorporate biological knowledge with multi-omics data such as somatic mutation,
gene expression and copy number measurements. The advantage of using a fuzzy logic approach is to abstract
meaningful biological rules from low-level numerical data. Biological knowledge is often qualitative, thus combining it
with quantitative numerical measurements may leverage new biological insights about a gene’s state. We show that
the oncogenic and altered tumor suppressing state of a gene can be better characterized by integrating different
molecular measurements with biological knowledge than by each data type alone. We validate the gene activity
score using data from the Cancer Cell Line Encyclopedia and drug sensitivity data for five compounds: BYL719 (PIK3CA
inhibitor), PLX4720 (BRAF inhibitor), AZD6244 (MEK inhibitor), Erlotinib (EGFR inhibitor), and Nutlin-3 (MDM2 inhibitor).
The integrative score improves prediction of drug sensitivity for the known drug targets of these compounds
compared to each data type alone. The gene activity scores are also used to cluster colorectal cancer cell lines. Two
subtypes of CRCs were found and potential cancer drivers and therapeutic targets for each of the subtypes were
identified.

Conclusions: We propose a fuzzy logic based approach to infer gene activity in cancer by integrating numerical data
with descriptive biological knowledge. We compute general patient-specific gene-level scores useful to determine
the oncogenic or tumor suppressor status of cancer gene drivers and to cluster or classify patients.
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cancer subtypes
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Background
Cancer is a complex genetic and genomic disease driven
by many different molecular mechanisms. Cancer stud-
ies have employed high throughput technologies to profile
genes in multiple different dimensions. Genetic variation,
copy number, gene and protein expression, epigenetics,
andmetabolomics are the most commonly studiedmolec-
ular types of data. Computational analyses commonly
evaluate multiple data types as a set of independent fea-
tures [1]. This leads to a multi-fold increase in the number
of features. The statistical limitations in high-dimensional
data, where the number of samples is considerably smaller
than the number of measurements for each sample, is
discussed in [2]. Moreover, each data type represents an
incomplete snapshot of a biological process and does not
provide a comprehensive view of a gene state. In this
paper, we propose an integrative approach of multiple
data types to model the activity of oncogenes and tumor
suppressors and characterize cancer gene drivers.
An oncogene is a gene that has the potential to cause

cancer and it is often mutated in tumor cells. A tumor
suppressor is a gene that protects a cell from cancer.
Oncogenes present gain of function alterations (GoF),
while inactivated tumor suppressor genes present loss
of function (LoF) alterations. A cancer driver gene con-
tains driver gene mutations, but may also contain pas-
senger gene mutations with no effect in cancer. Driver
mutations are identified based on their pattern of muta-
tions across samples [3]. Well studied oncogenes are
recurrently mutated at the same amino acid positions,
while tumor suppressors are mutated through protein-
truncating alterations throughout their length [3].
We will refer, throughout the paper, to a gene’s poten-

tial to cause cancer as a gain of function (GoF)/loss of
function (LoF) gene activity.
Large studies like the The Cancer Genome Atlas

(TCGA) [4], International network of cancer genome
projects (ICGC) [5], Cancer Cell Line Encyclopedia
(CCLE) [6] have profiled thousands of tumors for many
different data types (exome sequencing, copy number,
expression, methylations, etc.). Data portals, such as cBio-
Portal [7], which contain data from these large cancer
studies, and which are widely used by the community, dis-
play an integrative view of all data types for a given gene.
These plots are very powerful as they show a comprehen-
sive view of different mechanisms by which genes can be
aberrant in cancer. Our aim in this paper is to develop a
computational framework to provide an integrative activ-
ity score of a gene.
Other studies have shown that incorporating biologi-

cal knowledge into model building improves prediction of
breast cancer survival [8] and glioblastoma subtypes [9].
Using probabilistic inference, the method proposed in [9]
predicts the degree to which the activity of a pathway is

altered in a patient. A gene is modeled as a set of inter-
connected variables which encode for expression, copy
number and protein levels.
Other studies have shown that integration of multiple

molecular data types may better characterize the disease.
TCGA studies [10] and [11] evaluate multiple data types
independently to characterize lung cancer. An integrative
approach for predicting the tumor suppressor functional
status of a gene is presented in [12]. Using CCLE dataset,
the authors show that bi-allelic inactivation of tumor sup-
pressors may occur through genetic mechanisms (loss
of function mutation, copy number loss, or loss of het-
erozygosity) or epigenetic mechanisms (promoter methy-
lation or histone modification) or a combination of the
two.
Integrative approaches through network based anal-

ysis have been previously developed to predict driver
genes. An example is OncoIMPACT framework which
nominates patient-specific driver genes based on their
phenotypic impact [13]. This approach uses gene inter-
action networks to associate mutations with changes in
cell state, such as transcriptome, proteome, epigenome
or metabolome. Another example is the analysis pipeline
proposed in [14] which integrates genomic and transcrip-
tomic alterations from whole-exome and RNA sequence
data and functional data from protein function predic-
tion and gene interaction networks. This method pre-
dicts functional implications of mutated potential driver
genes found within and across patients with breast
cancer.
In this paper we present a novel approach based on

Fuzzy Logic Modeling (FLM) to infer patient-specific
GoF/LoF gene activity by integrating multiple molecular
data types in a single gene-level score. We use matched
gene expression, copy number and mutation data from
CCLE and integrate them using biological knowledge
about oncogenes and tumor suppressors. Other exist-
ing approaches identify cancer drivers by assessing only
one data type such as mutation frequency [3], or by
correlating mutations with other data types or pheno-
types. However, the two-dimensional correlation models
the relationship of two variables across patients, while
the proposed methodology allows integrating any num-
ber of data types at the patient level. Moreover, the FLM
score is general and independent of a particular group
of patients or phenotype in the dataset. Other methods
[9, 15] use probabilistic inference to integrate different
types of molecular data with pathway-level information
in a patient-specific activity score. These methods depend
on prior information about the curated pathway and the
gene interactions, assuming a local pathway context for a
given gene. The method in [15] models the interaction of
a mutated gene with the abundance levels of the upstream
and downstream genes, while our method captures the
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global change of a gene based on its own mutation sta-
tus and abundance level. Differently from the existing
approaches, we use descriptive and intuitive knowledge
about cancer drivers to combine multiple data types at
the gene-level in a unified patient-specific score. The FLM
scores are computed for every gene, therefore these could
further be integrated at a pathway-level using graphical
models, similarly to [9, 15]. The proposed scores can be
used to (i) determine the oncogenic or tumor suppres-
sor status of a gene by assessing the sign of the score;
(ii) determine the activity level of an oncogene or tumor
suppressor by assessing the magnitude of the score; (iii)
classify samples to predict a specific phenotype; (iv) clus-
ter samples to identify subtype specific gene drivers; (v)
reduce the feature space by 3-fold to increase the sta-
tistical power of sample stratification. Our approach is
general, and can be extended by adding other data types
and descriptive rules about known biological processes.
We validate the proposed methodology by computing
gene activity scores to predict drug sensitivity. In addition
we classify genes into oncogenes and tumor suppressors
and validate the status of known cancer genes.We also use
the activity scores to cluster colorectal cancer (CRC) cell
lines.
We show that gene activity can be better described

by integrating different molecular measurements than by
analyzing each data type alone. To the authors’ knowl-
edge, this is the first study in CCLE data showing that
the GoF activity of a gene is characterized by a combina-
tion of mutation status, expression level and copy number
changes. Moreover, by integrating three measurements in
a single score, we are able to reduce the feature space by 3-
fold, and therefore increase the statistical power of sample
stratification. In addition, the proposed gene activity score
can be used to highlight potential cancer gene drivers to
improve therapeutic strategies.

Method
Fuzzy logic modeling
Fuzzy logic is an artificial intelligence paradigm inspired
by how people intuitively measure variables such as
temperature, noise, taste. For example, people generally
tend to think of temperature in terms of cold/warm/hot
categories instead of in degrees. The categories are
loosely defined (fuzzy) and subjective, but still mean-
ingful. Among few applications of fuzzy logic are image
stabilization, the control of robots and automations, med-
ical decision support systems, etc. Previous studies have
shown that fuzzy logic can be used to build robust gene
classifiers [16], to eliminate redundant information from
microarray data [17] and to detect gene regulatory net-
works from microarray data [18]. General concepts and
applications about fuzzy logic in Bioinformatics can also
be found in [19].

In this paper we present a novel approach using
fuzzy logic to integrate multiple types of molecular data
with expert curated biological rules. We integrate muta-
tion, gene expression and copy number data to generate
sample-specific gene activity scores (Fig. 1a). We chose
fuzzy logic as a modeling framework due to its flexibil-
ity of incorporating biological knowledge described by
high-level rules with data measurements.
A fuzzy logic system is a rule-based model in which

categories are defined within a numeric range. These cat-
egories do not have to be disjoint. Each numeric value is
assigned a degree of belief to each category. Categories are
defined as functions modeling the degree of uncertainty.
These functions are calledmembership functions and esti-
mate the degree to which numeric values belong to each
category. The fuzzy system computes the output by eval-
uating a set of rules defined on the categories. Once the
rules are evaluated, the result is then defuzzified (con-
verted back to a numeric value) by averaging across the
output of the rules. In this paper we will use the cen-
troid method for defuzzification. Figure 1b illustrates the
categories, membership functions and workflow of the
proposed fuzzy logic model.
For example, gene expression data can be divided into

categories such as low, medium and high, which enables
us to abstract away from the numeric data and define
inference rules based on the categories (Fig. 1b). The
framework is flexible and allows adding any number of
data types or rules. The inference rules can easily be
extended or modified without changing the meaning of
the categories and their numeric range.
The output of the proposed system is a per sample con-

tinuous score [–1, 1]. Positive values indicate that the gene
presents a gain of function (GoF) with a level of activity
between 0 (lowest) and 1 (highest), while negative values
indicate that the gene presents a loss of function (LoF)
with a level of inactivation between 0 (lowest) and –1
(highest) in a given sample.
We tested our approach on publicly available data that

was downloaded from the Cancer Cell Line Encyclope-
dia (CCLE) [6]. We included in our analysis 675 cell lines
and a number of 1547 protein-coding genes with matched
somaticmutation, copy number and gene expressionmea-
surements. We used somatic mutation data which was
generated via hybrid capture exome sequencing by [6].
About 1600 protein-coding genes were sequenced based
on their known or potential involvement in tumor biology,
as described in [6]. We also used copy number (genome-
wide human Affymetrix SNP Array 6.0) and gene expres-
sion (Affymetrix Human Genome U133 Plus 2.0 arrays)
normalized data from [6]. More details about generating
and normalizing the CCLE data can be found in [6].
JFuzzy, an open source Java-based software, was used to

implement and test the proposed fuzzy logic system.

http://www.broadinstitute.org/ccle/data/browseData?conversationPropagation=begin
http://jfuzzylogic.sourceforge.net/html/index.html
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a

b
Fig. 1 Inferring gene activity by integrating different data types and biological knowledge. a Example showing how mutation, copy number and
expression data are important for inferring the activity of PIK3CA (oncogene), and PTEN (tumor suppressor). b Schematic for Fuzzy Logic Modeling
(FLM)

Defining rules based on biological knowledge of
oncogenes and tumor suppressors
Rules for oncogenic or gain of function (GoF) activity
and tumor suppressor-like or loss of function (LoF) activ-
ity are defined. We consider the GoF and LoF types of
mutations presented in [3]: a recurrent missense or in-
frame indel may indicate a GoF, while a nonsense, non-
stop, frame-shift indel or splice site mutation may indi-
cate a LoF. We hypothesize that a gene with a recurrent
GoF mutation which also has a higher expression and/or
copy number will be more active in cancer compared to
lower expression or deletions. For example mutations, as
well as amplifications and over-expression of EGFR gene
are known to be implicated in many epithelial cancers,
such as lung cancer, glioblastoma, colorectal cancer, etc.
[20, 21]. Similarly, a gene with a LoF mutation and low
expression and/or copy number will be a more active
cancer driver than a highly expressed LoF mutant (the
non-mutated allele may be expressed in enough amount
to perform the gene’s function). An example is TP53
gene which can loose its tumor supressor function either
by LoF mutations or by deletions or under-expression
[12, 22, 23].
For those genes that have no or silent mutations, we

consider that loss in expression or copy number may indi-
cate LoF, while a gain in expression or copy number levels

may indicate a GoF activity. However expression and copy
number do not contribute symmetrically to LoF and GoF
scores because low expression or deletions are more likely
to produce a deactivated tumor suppressor, compared to
the symmetric situation with high expression or amplifi-
cation for activated oncogenes. We take this into account
in our rules.
The following shows the two extreme rules in our FLM

system. We have 28 more rules that define the spectrum
between these two extremes (Table 1).

• GoF rule (rule 1): If a variant is activating (missense,
in-frame indel) and is recurrent (same position) and
the expression is high and the copy number is
amplified then the gene is a very activating GoF.

• LoF rule (rule 27): If a variant is inactivating
(nonsense, nonstop, frame-shift indels, splice site)
and the expression is low and copy number is deleted
then the gene is a very inactivating LoF.

In the case of TP53 variants, missense mutations (gen-
erally GoF mutations) drive the gene’s LoF [3, 12, 23–25].
We have added special rules for TP53 to take this into
account.
The proposed inference rules are shown in Table 1 and

are also available in Additional file 1.
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Table 1 Fuzzy rules

RULE 1: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS high) and (CN IS amplified) THEN Gene_activity IS high_GoF;

RULE 2: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS high) and (CN IS neutral) THEN Gene_activity IS high_GoF;

RULE 3: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS high) and (CN IS deleted) THEN Gene_activity IS GoF;

RULE 4: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS medium) and (CN IS amplified) THEN Gene_activity IS high_GoF;

RULE 5: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS medium) and (CN IS neutral) THEN Gene_activity IS GoF;

RULE 6: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS medium) and (CN IS deleted) THEN Gene_activity IS low_GoF;

RULE 7: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS low) and (CN IS amplified) THEN Gene_activity IS high_GoF;

RULE 8: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS low) and (CN IS neutral) THEN Gene_activity IS GoF;

RULE 9: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS recurrent) and (Expression
IS low) and (CN IS deleted) THEN Gene_activity IS no_effect;

RULE 10: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS high) and (CN IS amplified) THEN Gene_activity IS GoF;

RULE 11: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS high) and (CN IS neutral) THEN Gene_activity IS low_GoF;

RULE 12: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS high) and (CN IS deleted) THEN Gene_activity IS low_GoF;

RULE 13: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS medium) and (CN IS amplified) THEN Gene_activity IS low_GoF;

RULE 14: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS medium) and (CN IS neutral) THEN Gene_activity IS low_GoF;

RULE 15: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS medium) and (CN IS deleted) THEN Gene_activity IS no_effect;

RULE 16: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS low) and (CN IS amplified) THEN Gene_activity IS low_GoF;

RULE 17: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS low) and (CN IS neutral) THEN Gene_activity IS no_effect;

RULE 18: IF ((Mutation IS Missense_Mutation) or (Mutation IS In_Frame_Del) or (Mutation IS In_Frame_Ins)) and (Recurrence IS non_recurrent) and
(Expression IS low) and (CN IS deleted) THEN Gene_activity IS no_effect;

RULE 19: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS high) and (CN IS amplified) THEN Gene_activity IS low_LoF;

RULE 20: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS high) and (CN IS neutral) THEN Gene_activity IS LoF;

RULE 21: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS high) and (CN IS deleted) THEN Gene_activity IS high_LoF;

RULE 22: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS medium) and (CN IS amplified) THEN Gene_activity IS LoF;

RULE 23: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS medium) and (CN IS neutral) THEN Gene_activity IS LoF;

RULE 24: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS medium) and (CN IS deleted) THEN Gene_activity IS high_LoF;

RULE 25: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS low) and (CN IS amplified) THEN Gene_activity IS high_LoF;

RULE 26: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS low) and (CN IS neutral) THEN Gene_activity IS high_LoF;

RULE 27: IF ((Mutation IS Frame_Shift_Ins) or (Mutation IS Frame_Shift_Del) or (Mutation IS Nonsense_Mutation) or (Mutation IS Nonstop_Mutation) or
(Mutation IS Splice_Site)) and (Expression IS low) and (CN IS deleted) THEN Gene_activity IS high_LoF;

RULE 28: IF ((Mutation IS No_Mutation) and ((Expression IS low) or (CN IS deleted))) THEN Gene_activity IS LoF;

RULE 29: IF ((Mutation IS No_Mutation) and ((Expression IS high) or (CN IS amplified))) THEN Gene_activity IS low_GoF;

RULE 30: IF ((Mutation IS No_Mutation) and (Expression IS medium) and (CN IS neutral)) THEN Gene_activity IS no_effect;
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Defining fuzzy categories for data types
For gene expression, we defined three fuzzy categories
by dividing the expression values into three quantiles
and computing mean and standard deviation (std) of
each group. The medium level is defined by a Gaussian
membership function. The low and high levels are sig-
moid functions with the inflection points equal to the
quantile’s mean. The slopes of the sigmoid functions
were approximated with the slope of a Gaussian shape:
slopesigmoid =

√
8·ln(2)

stdgaussian . For copy number, we defined iden-
tical shapes of membership functions for every gene (tri-
angle for neutral level and trapezoid for amplified and
deleted levels). Eight types of mutations are considered
(missense, in-frame insertion, in-frame deletion, non-
sense, nonstop, frame-shift insertion, frame-shift deletion,
splice site). A variant is recurrent if it is present in more
than 1% of the samples at the same position. Additional
file 1 is an example of a FCL (Fuzzy Control Language) file
which contains the definitions of membership functions
and fuzzy rules.

Computing activity score for each variant
The activity score is computed for each variant by apply-
ing the set of defined rules. The activity score is modeled
by seven membership functions (Table 1 and Additional
file 1), corresponding to the following activity categories:
high GoF (Sigmoid membership function), GoF, low GoF,
no effect, low LoF, LoF (Gaussian membership functions)
and high LoF (Sigmoid membership function). The mem-
bership assignments of the rules are then aggregated by
union. The integrated membership assignment is then
converted back into a numeric value (deffuzified) using
the centroid method. A score in [–1,1] interval is gener-
ated; 1 means maximum GoF, while –1, maximum LoF.

Computing gene-level activity scores and labeling of genes
as GoF/LoF
A gene usually presents multiple variants. FLM scores are
computed for each variant. To summarize the scores at the
gene-level we compute two different scores for each gene
and each sample: GoF score (maximum across all GoF
variants), LoF score (minimum across all LoF variants).
Finally, the gene is labeled as GoF/LoF using the following
algorithm: if the majority of the mutated samples (> 50%)
haveGoF > |LoF|, then the gene is labeled as GoF and the
GoF percentage is selected as the gene-level score; simi-
larly, if the majority of the mutated samples (> 50%) have
|LoF| > GoF , then the gene is labeled as LoF and the LoF
percentage is selected as the gene-level score. To restrict
the classification to genes that are more likely to be drivers
in CCLE, we considered to classify those genes that are
mutated in more than 1% of the samples (a total number
of 1288 genes).

Results and discussion
Computing the FLM gene activity scores on the Cancer Cell
Line Encyclopedia
We used 675 cell lines with matched gene expression
(Affymetrix U133 Plus 2.0), copy number (Affymetrix
SNP6.0 arrays) and somatic mutation (hybrid capture
exome sequencing) data from the Cancer Cell Line Ency-
clopedia (CCLE) [6].
We propose a set of inference rules based on biolog-

ical knowledge that integrate information about muta-
tion type, mutation frequency, level of expression and
copy number amplifications or deletions (Table 1 and
Additional file 1).
The distribution of the GoF and LoF scores across all

analyzed genes and samples is presented in (Fig. 2a). This
distribution is trimodal with peaks at high LoF, no activity
and high GoF scores.
A number of 1288 genes are assigned GoF and LoF

gene scores based on the GoF and LoF percentages in
mutated samples, as described in “Computing gene-level
activity scores and labeling of genes as GoF/LoF”. The gene
score > 50% selects the final gene status (Fig. 2b). The
GoF and LoF gene scores are available in Additional file 2.

FLM identifies known oncogenes and tumor suppressors
Next, we compared the proposed GoF/LoF classifica-
tion with oncogene/tumor suppressor status proposed in
[3]. The known oncogenes and tumor suppressors were
restricted to those that were found to be mutated in
CCLE at > 1% frequency. Figures 2c and d show that
our approach correctly classified well known oncogenes
and tumor suppressors that were also correctly classified
by the method proposed in [3]. The accuracy for GoF
clasification was 90% (19/21), and 86% (18/21) for LoF,
respectively. We conclude that the FLM-based approach
of classifying GoF/LoF is consistent with [3]. The method
proposed by [3] computes a gene-level score across vari-
ants. In addition, FLM approach provides a per sample
gene activity score that can further be used for sample
stratification.

Gene activity scores improve drug sensitivity predictions
The proposed fuzzy rules and the computed gene activity
scores were validated by predicting drug sensitivity of cell
lines in the CCLE. CCLE provides drug perturbation data
which allows us to assess gene activity of specific targeted
compounds. Although several compounds were tested in
CCLE [6], the mechanisms of action and gene targets are
unknown for most of them. To validate our approach,
we considered those compounds which directly target a
driver gene, known to mutate in cancer, or a gene that
directly interacts with a mutant driver gene. We selected
one target-compound from each family by excluding those
with multiple targets and those which do not interact with

http://jfuzzylogic.sourceforge.net/html/manual.html#fcl
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Fig. 2 Gene activity scores and inferred GoF/LoF status using Fuzzy Logic Modeling. a Distribution of GoF and LoF activity scores across all genes and
all samples. b For each gene that presents mutations in CCLE (more than 1% of the samples), two scores are computed (GoF and LoF gene score).
GoF gene score is computed as the percentage of mutated samples with GoF > |LOF|. LoF gene score is computed as the percentage of mutated
samples with |LoF| > GoF. A gene is classified as GoF (oncogene) if the GoF gene score is > 50 % or as LoF (tumor suppressor) if the LoF gene score
is > 50%. c Known oncogenes [3] were correctly predicted by our method with an accuracy of 90% (19/21). d Known oncogenes [3] were correctly
predicted by our method with an accuracy of 86% (18/21). Note that the known oncogenes and tumor suppressors were restricted to those that
were found to be mutated in the CCLE at > 1% frequency

a specific mutant gene, since their effect may not directly
reflect the activity of the driver gene used as a predictor
of sensitivity. Therefore, we used in our analysis tar-
geted compounds profiled in [6], such as PLX4720 (BRAF
inhibitor), AZD6244 (MEK inhibitor), Erlotinib (EGFR
inhibitor), and Nutlin-3 (MDM2 inhibitor). In addition,
we analyzed the drug sensitivity data for BYL719 (PIK3CA
inhibitor) from [26]. We tested the prediction perfor-
mance of drug sensitivity for these compounds using their
known driver gene targets.
Drug sensitivity of cell lines can be measured by dif-

ferent metrics, such as the area under the dose response
curve (Activity Area or ActArea), high-concentration
effect level (Amax), the transitional concentration (EC50),
the concentration at which the drug response reached
an absolute inhibition of 50% (IC50) or a combination
of these metrics [6, 26]. Although these metrics are

theoretically equivalent and correlated with the response
of the cells to the drug, it has been shown that some
of them work better for certain compounds [6]. More-
over, the thresholds which separate the three classes of
cell lines, sensitives, intermediates and resistants, are esti-
mated from the response curve and usually differ from
one compound to another. Sensitivity calls have already
been validated for BYL719 and Nutlin-3 by other pub-
lished studies. BYL719 sensitive/resistant classes have
been defined using a combination of thresholds for
Amax and EC50 metrics in [26], while Nutlin-3 sensi-
tive/resistant classes have been defined using thresholds
for IC50 metric in [12]. For the other compounds we
estimated the sensitivity calls by applying a GaussianMix-
ture Model on ActArea variable, as recommended in [6].
The thresholds that define the two populations of sen-
sitive/resistant cell lines, were computed based on the
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means (μ1,μ2), standard deviations (σ1, σ2) and the inter-
section point of the two Gaussian distributions (X). Resis-
tant cell lines were defined as those with ActArea <

min(X,μ1 + σ1), while the sensitives, as those with
ActArea > max(X,μ2 + σ2).
Table 2 shows the list of compounds, the genes they tar-

get, their sensitivity predictor genes, and the thresholds
used to define their sensitivity calls. The genes that are
able to predict drug sensitivity could be direct targets of a
drug or its off-target effects. For example, Nutlin-3 com-
pound inhibits MDM2 gene which is an inhibitor of TP53
[22, 27, 28]. A cell line may be sensitive to Nutlin-3 if TP53
is not mutated (it normally functions as a TSG) and it
is expressed in enough amount (TP53 expression is not
suppressed by interactions other than MDM2). Figure 4c
shows higher LoF level in the sensitive cell lines.

Evaluating the AUC on FLM activity scores for each sensitivity
predictor gene
We computed the Area Under the Receiver Operating
Characteristic Curve (AUC) to evaluate the prediction
performance of drug sensitivity for each gene predictor
and each data type. For each gene, we computed the AUC
metric on each data type separately, as well as on the
sample-specific FLM scores. We chose AUC as a valid
comparison metric of the prediction performance for the
different data types because it can be measured on both
binary (such as mutation) and continuous (such as gene
expression, copy number and FLM activity scores) values.
Then, bootstrap test [29] available in pROCR package [30]
was applied in order to compare the AUCs. For all the five
compounds, the performance of FLM activity scores was
improved compared to each of the data types (expression,
copy number and mutation) as shown in Figs. 3 and 4. We
tested the sensitivity predictor gene of each compound
(Table 2). The FLM scores significantly improved predic-
tion compared to all feature types for BYL719 (PIK3CA
gene): p < 0.05, PLX4720 (BRAF gene): p < 0.00002
and Nutlin-3 (TP53 gene): p < 0.06. For AZD6244 (BRAF
gene) the improvement of FLM score was significant with
respect to expression and copy number data (p < 0.01),
while the increase in performance was not significant

compared to mutation data (p = 0.22). For Erlotinib
(EGFR gene) the improvement of FLM score was signif-
icant with respect to mutation and copy number data
(p < 0.04), while the increase in performance was not sig-
nificant compared to expression data (p = 0.13). In Figs. 3
and 4, the significance level of 0.05 was denoted by *.

Comparing the FLM scores with numeric integration of
mutation, gene expression and copy number data
Next, we tested whether the FLM scores outperform the
numeric integration of the three data types by comparing
the performance of the FLM scores with the performance
of the three data types used as a set of classification fea-
tures. Logistic regression is a commonly used technique
for classification of samples based on a set of features
[31–33]. This algorithm aggregates the numerical values
of the three data types, regardless of the biological knowl-
edge captured by the fuzzy rules, and learns from the
training data to distinguish sensitives from resistants. The
logistic regression model (glmnet) was ran within k-fold
cross-validation (k = 5). Similarly to the cross-validation
procedure described in [34], each sample was assigned to
a test fold exactly once. Then, we used the test predic-
tion scores of all samples to compute the overall test AUC.
We compared the AUC of the glmnet classifier with a sin-
gle FLM feature to the AUC of the glmnet classifier with
three features of different data types by using bootstrap
test [29, 30]. The integrative FLM feature performed sig-
nificantly better compared to the numeric integration of
the three features, for AZD6244 (BRAF gene): p = 0.02,
PLX4720 (BRAF gene): p = 0.02 and Erlotinib (EGFR
gene): p = 0.04. For BYL719 (PIK3CA gene) and Nutlin-3
(TP53 gene) respectively, the difference in AUCs was not
statistically significant.

Buildingmultiple genes classifiers on FLM activity scores
A combined predictor for BYL719 involving PIK3CA and
PTEN genes was proposed in [26]. Cell lines with PTEN
LoF are less likely to respond to the drug. Therefore,
to further evaluate the power of FLM activity scores,
we test the prediction performance of the two genes on
FLM activity scores, mutation, gene expression and copy

Table 2 Gene targets and the predictors of sensitivity for the compounds

Compounds Direct gene targets Known sensitivity predictors Sensitivity threshold Resistance threshold

PLX4720 BRAF BRAF mutation ActArea ≥2.05 ActArea ≤0.47

AZD6244 MEK BRAF mutation ActArea ≥3.02 ActArea ≤0.69

Erlotinib EGFR EGFR mutation ActArea ≥1.74 ActArea ≤0.42

Nutlin-3 MDM2 TP53 mutation IC50 ≤4.26 IC50 ≥6.94

TP53 expression

BYL719 PIK3CA PIK3CA mutation EC50 ≤3.04 EC50 >3.04

Amax ≤–30 Amax >–30
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a b

c

Fig. 3 FLM gene activity scores improve prediction of BYL719 drug sensitivity compared to using expression, mutation and copy number data
separately. a Boxplot for PIK3CA FLM scores vs. BYL719 (PIK3CA inhibitor) sensitivity. BYL719 sensitive group has higher activity scores compared to
the resistant group (t-test p < 10−4). Even within the PIK3CA missense mutants (colored in red), we see that FLM GoF scores are higher in sensitive
compared to resistant group (t-test p < 0.0008). b Using PIK3CA FLM GoF scores to predict sensitivity, the AUC significantly improved compared to
expression, mutation and copy number data separately, p < 0.05. We denote by * the significance level of 0.05. c Heatmap showing the FLM activity
scores for PIK3CA, PTEN and the individual data types. All values are scaled between [–1, 1]. Note that our algorithm correctly labeled PIK3CA as a
GoF gene, and PTEN as a LoF gene, consistent with their classification in the literature. The color bar on top indicates the sensitivity groups for the
samples (green = sensitive, black = resistant). The combined predictor of PIK3CA GoF scores and PTEN LoF scores significantly improves performance
compared to combinations of individual data types, p < 0.009

number data. A logistic regression model (glmnet) was
ran within k-fold cross-validation (k = 5) to test the AUC
of the 2-genes predictors. Similarly to the cross-validation
procedure described in [34], each sample was assigned to
a test fold exactly once. Then, we used the test prediction
scores of all samples to compute the overall test AUC. The
AUC of each data type was then compared to the AUC
of the FLM scores by using bootstrap test [29, 30]. The
PIK3CA-PTEN predictor increased in performance and
FLM scores were significantly better than using each of
the individual data types, p < 0.009.
Next, we performed a similar analysis for Erlotinib,

using EGFR and KRAS combined predictors. The predic-
tion was significantly improved by FLM activity scores
compared to the other data types, p < 0.01 (Fig. 4h).
KRAS is situated downstream of EGFR [35] and cell-lines
with KRASmutation are less likely to respond to Erlotinib.
The EGFR-KRAS predictor increased in performance and

FLM scores were significantly better than using each of
the individual data types.
Therefore, we have shown that FLM is a robust gene-

level score which can be used to build better predic-
tors of drug sensitivity compared to those developed
on each data type alone. In addition, FLM scores
are biologically meaningful and more importantly, the
knowledge based information enriches the numeric data
measurements.

Using the FLM activity scores to cluster colorectal cancers
In this section we present the utility of FLM activity scores
for clustering cancers. FLM integrates multiple data types
(somatic mutation, gene expression and copy number) to
compute gain/loss of function scores for each gene. The
feature space is reduced by 3-fold, therefore clustering cell
lines using the FLM scores may enable a more accurate
stratification of cancers compared to using each data type
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Fig. 4 FLM gene activity scores differentiate the sensitive vs. resistant groups better than the relevant mutations (colored red) in each compound:
a PLX4720, c Nutlin-3, e AZD6244, g Erlotinib. FLM scores improve prediction of drug sensitivity compared to gene expression, somatic mutation
and copy number data separately: b PLX4720, p < 0.00002, d Nutlin-3, p < 0.06, f AZD6244, p < 0.22, h Erlotinib using EGFR-KRAS predictor,
p < 0.01. We denote by * the significance level of 0.05
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separately. Additionally, this also enables us to directly
identify cancer drivers of each subtype.
Colorectal cancer is a heterogeneous and genetically

complex disease with tumors bearing a high mutation
load. To date, no gene expression signature was proven to
be reliable for stratification in clinical practice. A recent
study of 1100 colorectal cancer patients reported three
main molecularly distinct subtypes (CCS1, CCS2 and
CCS3) using gene expression data [36]. CCS1 was asso-
ciated with MSI (micro-satellite instable), CIMP (CpG
island methylator phenotype), CCS2 was associated with

CIN (chromosomal instability) and KRAS/TP53 muta-
tions, while CCS3 was a novel finding with poor prognosis
and was associated with serrated adenomas.
We used FLM scores of the 1547 genes to stratify the

colorectal cancer cell lines into clusters based on their
activity scores. We ran consensus clustering [37, 38] on 42
colorectal cancer cell lines from the CCLE and identified
2 clusters (Fig. 5a, b). We compared the FLM clusters with
the previously obtained CCS clusters [36]. The heatmap
(Fig. 5c) shows the posterior probability of association
with each of the CCS clusters. We can notice a clear
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Fig. 5 Identifying unsupervized clusters in colorectal cancer and finding differential gene activity within each cluster. a Consensus matrix for
K = 2, 3, 4, 5, using k-means clustering on colorectal cell lines. The consensus matrices show that there are two distinct subtypes which are stable
even when K is increased. b Principal component analysis (PCA) plot of the FLM gene activity scores for 42 colorectal cancer cell lines. Colors indicate
the two subtypes found using consensus clustering. c Subtypes found by FLM in CCLE are validated by comparing with subtypes in TCGA [36]. CCS2
is correlated with cluster 2 (green), while cluster 1 is split between CCS1 and CCS3. d Heatmap of the significantly differential gene activity scores
(Student’s t-test, FDR < 0.05) which differentiate the two FLM subtypes
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overlap between the FLM cluster 2 (green) vs. CCS2.Most
likely we do not see a difference between clusters 1 and
3 because of reduced sample size. Another reason may
be that FLM identifies oncogenes and tumor suppressors
which are active across multiple subtypes. Also, by using
activity scores instead of gene expression data we may
detect a lineage effect that drives CCS3.
Then, by using the gene activity scores, we iden-

tified statistically significantly differential active genes
(Student’s t-test, FDR < 0.05) which differentiated the two
clusters (Fig. 5d). We can directly identify cancer drivers
from these results. Cluster 1 (red) has suppressed apopto-
sis (ACVR2A [39], ABL2 [40], PLK2 [41]), while Cluster
2 (green) has activated oncogenes like MDM2 [22] and
FGFR3 [42]. We show that using FLM scores we can val-
idate subtypes found in larger studies as well as identify
cancer drivers in each of the subtypes.

Conclusions
We propose and validate a novel approach for integrating
molecular data to infer patient-specific activity of onco-
genes and tumor suppressor genes using fuzzy logic mod-
eling. We show that gain of function or loss of function of
a gene can be better characterized by integrating different
molecular measurements with biological knowledge than
by analyzing each data type separately.
The main advantage of the fuzzy logic framework is

that the data level is separated from the inference level,
therefore expert knowledge can be incorporated into the
system, regardless of the data representation. Another
important advantage is the generality of the FLM scores
which is computed for each patient and each gene.
Therefore, the FLM score can be used to classify genes
into oncogenes and tumor suppressors, determine the
level of activity for each oncogene and tumor suppressor,
and moreover classify or cluster the patients.
FLM is a flexible method to incorporate measurements

obtained from different platforms using knowledge based
rules. Noise from each individual data type is reduced
by categorizing the data, and by integrating multiple data
types together. Samples can be stratified using an inte-
grated activity score which better captures the state of
each gene. Moreover, reducing the feature space by a fac-
tor of three enhances the statistical power of the sample
stratification studies, which is especially helpful in data
sets of limited sample size.
The novel FLM activity scores improves the predic-

tion of drug response for five different compounds,
compared to mutation status, gene expression and copy
number data. In addition, we are also able to signif-
icantly improve prediction of BYL719 drug sensitivity
using a combined predictor of PIK3CA GoF score and
PTEN LoF score and for Erlotinib using a combined pre-
dictor of EGFR and KRAS GoF scores. Moreover, the

performance of FLM scores for clasifying drug responders
outperforms the numeric integration of the three different
data types for AZD6244, PLX4720 and Erlotinib. There-
fore, we conclude that the proposed integrative approach
is biologically meaningful and more importantly, the
knowledge based information enriches the numeric data
measurements.
Another interesting observation revealed by our

method is that oncogenic activity of a gene is charac-
terized by both mutation status and its gene expression
levels.
We also validate the status of known oncogenes and

tumor suppressor genes. Our method highlights addi-
tional potential oncogenes and tumor suppressors, which
will further be explored. The inference rules can be eas-
ily adapted to capture particular gene behaviors that are
exceptions to the proposed general set of rules, as we have
shown for TP53 case. We plan to further extend the rules
and incorporate more expert knowledge, especially for the
case of exceptions.
Moreover, we present an application of the FLM scores

for sample stratification and subtype discovery. We use
the FLM gene scores as clustering features of the colorec-
tal cell lines. We are able to identify colorectal subtypes
which were previously obtained in a larger sample size
study. We also highlight potential gene drivers associated
with each subtype.
The proposed activity scores can be utilized for the pre-

diction of cells’ response to different perturbations such
as drugs or shRNAs and may help in identifying can-
cer driver genes. The patient-specific gene-level scores
can also be used for subtype discovery and stratification
of the samples, as we have shown with the clustering of
colon cancers. The FLM scores can generally be utilized
to classify or cluster samples, enhancing the statistical
power of such studies by reducing the feature space. Acti-
vated oncogenes and inactivated tumor suppressors can
be identified within each group.
The proposed framework is flexible and can further be

extended to incorporate other data measurements which
may provide additional information about the gene’s
state, such as the methylation status, the expression of
microRNA regulators or transcription factors. In future
work we also plan to further explore the FLM scores
by studying other CCLE compounds with more complex
mechanisms of action, such as multiple downstream or
unknown gene targets. In addition, exploring different
sensitivity levels and correlating them with FLM scores
will be considered. Furthermore, we plan to extend this
approach to predict the activity of molecular pathways.
For example, the proposed FLM activity scores can be
used as the nodes of a gene network. Similar approaches
of pathway level integration were proposed in [9] and
[15]. We aim to integrate the gene activity scores with
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pathway-level information to model gene interactions and
evaluate the impact of the FLM scores on the activity of
molecular pathways.
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