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Properties of Boolean dynamics by node
classification using feedback loops in a
network
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Abstract

Background: Biological networks keep their functions robust against perturbations. Many previous studies through
simulations or experiments have shown that feedback loop (FBL) structures play an important role in controlling
the network robustness without fully explaining how they do it. Hence, there is a pressing need to more rigorously
analyze the influence of FBL structures on network robustness.

Results: In this paper, I propose a novel node classification notion based on the FBL structures involved. More
specifically, I classify a node as a no-FBL-in-upstream (NFU) or no-FBL-in-downstream (NFD) node if no feedback loop is
involved with any upstream or downstream path of the node, respectively. Based on those definitions, I first prove that
every NFU node is eventually frozen in Boolean dynamics. Thus, NFU nodes converge to a fixed value determined by
the upstream source nodes. Second, I prove that a network is robust against an arbitrary state perturbation subject to a
non-source NFD node. This implies that a network state eventually sustains the attractor despite a perturbation subject
to a non-source NFD node. Inspired by this result, I further propose a perturbation-sustainable probability that indicates
how likely a perturbation effect is to be sustained through propagations. I show that genes with a high perturbation-
sustainable probability are likely to be essential, disease, and drug-target genes in large human signaling networks.

Conclusion: Taken together, these results will promote understanding of the effects of FBL on network robustness in a
more rigorous manner.
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Background
It is well known that bio-molecular networks can keep
their regulatory functions robust against various types of
external or internal perturbations. For instance, the fate
decision mechanism in a bacteriophage life cycle [1], the
chemotaxis process in Escherichia coli [2], and segmental
polarization in Drosophila melanogaster [3] were shown to
be robust against noisy environments. It is more interesting
that the dynamics of a biological network can be highly
related to its structural characteristics [4]. In particular,
many recent studies have shown that a feedback loop
(FBL), a circular chain of interactions, can play an import-
ant role in controlling the robustness or susceptibility of

networks [5, 6]. For instance, the negative FBL between
MDM2 and p53 maintains an optimal level of p53 and
creates appropriate dynamics of p53 expression level
changes for a given level of DNA damage [7]. The Xenopus
cell cycle is also robustly controlled against a certain level
of perturbation with the help of several FBLs [8]. It was
shown that a high proportion of coherently coupled FBLs
can enhance the robustness of a network against state
perturbations [9]. The number of FBLs involved at a node
was also found to be positively correlated with the node’s
functional importance [10]. Those simulation studies,
however, cannot fully explain how the FBLs influence the
network robustness. Hence, there is a pressing need to
more rigorously analyze the relationship between FBL
structures and network dynamics.Correspondence: kwonyk@ulsan.ac.kr
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To measure network robustness, I herein use a syn-
chronous Boolean network model [9, 11, 12] in which a
node state is represented by a Boolean value, and the states
of all nodes are synchronously updated at every discrete
time step. Every network state moves to another state, and
a series of consecutive transitions are represented by a
network state trajectory that eventually converges to a
fixed-point or cyclic attractor. The attractor can describe
various dynamic behaviors in a biological system, such as
multi-stability and oscillations. If a node state is perturbed,
the trajectory might converge to a different attractor.
Therefore, a network is considered robust if the attractor
does not change against a perturbation. Some tools have
been proposed to quantify the network robustness by
simulating the state transitions after randomly initializing
the node states [13–17]. They have a limitation in network
size for analysis, though, due to the exponential complexity
of attractor computation. Therefore, it is a critical issue to
find analytic results that can identify trivial parts that do
not require further computation of state transitions.
In this paper, I focus on the effects of an FBL on

Boolean converging dynamics. A state of a node is propa-
gated to other nodes along a path in a chain of consecu-
tive interactions. Therefore, the state cannot be fed back
to the original node if it is not involved in an FBL. In other
words, the current state of a node will eventually
disappear unless a downstream path constructs an FBL.
From that idea, I developed an FBL-based notion to
classify nodes in a network. In particular, I defined two
sets of nodes, no-FBL-in-upstream (NFU) and no-FBL-in-
downstream (NFD), according to whether the upstream
and downstream paths, respectively, involve any FBLs and
proved two theorems regarding NFU and NFD nodes.
One is that every NFU node is always frozen irrespective
of the initial states of other nodes. This implies that the
converging values of all NFU nodes are eventually fixed to
a value determined by the upstream source nodes. It also
means that a network is likely to be susceptible to a per-
turbation subject to the source nodes. The other is that a
network is robust against an arbitrary perturbation subject
to a non-source NFD node. In other words, a network
state eventually converges to the same attractor despite a
state perturbation subject to a non-source NFD node.
Inspired by those results, I further developed a
perturbation-sustainable probability which indicates
how likely it is that a perturbation effect will be
sustained through a network state trajectory and
showed that it can adequately identify functionally
important genes, such as essential, disease-associated,
and drug-target genes, in large human signaling
networks. Taken together, all of these results will pro-
mote understanding of the effects of FBLs on Boolean
converging dynamics and reduce the computational
costs of state transition-based simulation tools.

Methods
Structural classification of nodes in a network
In this study, a biological network is represented by a
directed graph G(V, E) where V = {v1, v2,⋯, vN} is a set of
nodes and E = {e1, e2,⋯, eA} is a set of directed edges
(interactions); an edge e ∈ E is an ordered pair of nodes
(vi, vj) where vi, vj ∈V. I use some notions from graph
theory, including FBL and upstream/downstream paths,
to represent the biological networks as follows.

Definition A node u is an input node of v if there exists
an interaction from u to v (i.e., (u, v) ∈ E). In addition, in-
degree of v means the number of input nodes of v.

Definition A node v is a source node if in-degree of v
is zero. It is assumed that the state of a source node is
fixed to its initial value over all the time.

Definition Given a network G(V, E), a path P of a
length L(≥1) is represented by a sequence of ordered
nodes u1u2⋯ uL + 1 with interactions from ui to ui + 1

((ui, ui + 1) ∈ E for∀ i ∈ {1, 2,⋯, L}) with no repeated nodes
except u1 and uL + 1. In addition, P is called a feedback
loop (FBL) if u1 = uL + 1.

Definition Given a network G(V, E), an upstream (resp.,
downstream) path P = u1u2⋯ uL + 1 of a node v ∈V is a
path in which the last (resp., first) node uL + 1 (resp., u1)
is v. Note that if P is a feedback loop, then it is both an
upstream and downstream path of v. In addition, P =
u1u2⋯ uL + 1 is a maximal upstream (resp., downstream)
path if there is no longer path such as wu1u2⋯ uL + 1

(resp., u1u2⋯ uL + 1w) for some w ∈V.
Based on those terms, I define no-FBL-in-upstream

and no-FBL-in-downstream nodes as follows:

Definition Given a network G(V, E), a node v is called a
no-FBL-in-upstream (NFU) (resp., no-FBL-in-downstream;
NFD) node if there is no upstream (resp., downstream) path
P = u1u2⋯ uLv (resp., P = vu1u2⋯ uL) such that for some
i ∈ {1, 2,⋯, L}, ui is involved in any feedback loop.
Figure 1 shows an example of NFU and NFD nodes in a

network. This network contains five NFU nodes v1, v2,
v5, v9, and v11 and four NFD nodes v5, v9, v10 and v11.
Note that v5, v9 and v11 are both NFU and NFD nodes. On
the other hand, it also contains five nodes that are neither
NFU nor NFD nodes because an FBL is both upstream and
downstream of each of them. In particular, note that v6 is
not directly involved in an FBL. In this paper, I will show
that the NFU and NFD nodes can induce interesting
dynamic properties in a perturbation analysis.
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A perturbation analysis in a Boolean network model
To define the robustness or sensitivity of a network, I
use a synchronous Boolean network model used in pre-
vious studies [9, 12, 16]. In a Boolean network G(V, E),
each vi ∈V has a value of 1 (on) or 0 (off ) that represent
the possible states of the corresponding elements. For
example, the values 1 and 0 represent the “turn-on” and
“turn-off” states of a gene, respectively. A directed inter-
action (vi, vj) can represent a positive (activating) or
negative (inhibiting) relationship from vi to vj. The value
of each variable vi at time t + 1 is determined by the
values of ki other variables vi1 ; vi2 ;⋯; viki with an
interaction to vi at time t by a Boolean update
function f i : 0; 1f gki→ 0; 1f g where fi is a constant
value if vi is a source node. All the Boolean variables
are synchronously updated by a set of update
functions F = {f1, f2, ⋯, fN}, and each update rule can
be written as vi t þ 1ð Þ ¼ f i vi1 tð Þ; vi2 tð Þ;⋯; viki tð Þ

� �
.

Many studies have been performed to elucidate the
dynamic behaviors of biological networks. In particular, I
address robustness against perturbations in terms of
Boolean dynamics. In a Boolean network G(V, E) , a
network state at time t is represented by an ordered list
v(t) = [v1(t), v2(t),⋯, vN(t)] ∈ {0, 1}

N. Then, for a subset
U = {u1, u2,⋯, uM}⊆ V, a subset state of U at time t
denoted by vU(t) = [u1(t), u2(t),⋯, uM(t)] ∈ {0, 1}M is an
ordered list consisting of values u1 through uM at
time t. A state trajectory of V starts from an initial
state and eventually converges to either a fixed-point
or limit-cycle attractor. These attractors can represent
diverse biological network behaviors, such as multi-stability
and oscillation [18–20]. This notion of an attractor intro-
duces robustness in terms of the Boolean network dynam-
ics as follows. If a network sustains an attractor against a
perturbation, it is called robust against the perturbation.
This concept has been widely used [5, 21–24]. Here, I
consider an initial-state perturbation. Given an initial state

v(0) = [v1(0), v2(0),⋯, vN(0)] at t = 0, an initial-state perturb-
ation subject to node vx ∈V represents a situation in which
v(0) is mutated to v'(0) = [v1(0), ⋯, 1 − vx(0),⋯, vN(0)], i.e.,
the corresponding initial value is switched to vx 0ð Þ (the
negation of vx(0)). An initial-state perturbation represents
the abnormal (or malfunctioning) status of a protein or
gene caused by a mutation. The attractors to which v(0)
and v' (0) will converge can be compared to each other.
The network is called robust or sensitive against the
perturbation according to whether the attractors are the
same as or different from each other, respectively. Based on
this concept, I define some terms more rigorously with
respect to the Boolean dynamics, as follows.

Definition The sequence of states to which v(0) eventu-
ally converges is called the attractor induced from v,
which is denoted by an ordered list of network states ζ(v)
= [v(τ), v(τ + 1), …, v(τ + p − 1)] where v(t) = v(t + p) for ∀
t ≥ τ (p is a length of the attractor), and v(i) ≠ v(j) for ∀ i ≠
j ∈ {τ, τ + 1,…, τ + p − 1}. In addition, for a subset U⊆V,
ζ(vU) = [vU(τ), vU(τ + 1), …, vU(τ + p − 1)] represents the
states sequence of U in the attractor induced from v.

Definition For U⊆V, ζ(vU) is frozen if there exists a
time step τ such that v(t) = v(t + 1) for ∀ v ∈U and ∀ t ≥.

Definition Given two attractors with a same length,
ζ(v) = [v(τ), v(τ + 1), …, v(τ + p − 1)] and ζ(v') = [v'(τ'), v'(τ'

+ 1), …, v'(τ' + p − 1)], they are equivalent to each other if
there exists a time step offset t ≥ 0 such that v(τ + i) =
v'(τ' + (i + t) mod p) for ∀ i ∈ {0, 1,…, p − 1}.

Definition Consider an arbitrary initial state v(0)
= [v1(0), v2(0),⋯, vN(0)] and its perturbed state at vx ∈V,
v'(0) = [v1(0), ⋯, 1 − vx(0),⋯, vN(0)]. The Boolean network
is called robust against the perturbation subject to vx if ζ(v)
is equivalent to ζ(v'). Otherwise, it is called sensitive or
susceptible.

Datasets of signaling networks and functionally
important genes
In this study, I derive an estimated probability with
which a perturbation effect is sustained in a network. To
show the usefulness of it, I used two large-scale human
signaling networks. One is the signaling network of 1659
genes and 7964 interactions constructed in a previous
study [25] by integrating all the human signaling pathways
in the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database [26] (see Additional file 1: Table S1).
The other signaling network consists of 6306 genes and
62,937 interactions (version 6) downloaded from http://
www.bri.nrc.ca/wang [27] (see Additional file 1: Table S2).
In this work, I call them the KEGG and WANG networks,
respectively. In addition, I considered essential, disease,

v2

v4 v5

v8 v9

v10 v11

v7

v6

v3

v1

NFU but not NFD

NFD but not NFU

NFU & NFD

Neither NFU nor NFD

Fig. 1 An example of NFU and NFD nodes in a network. Every node
is classified into one of four categories: “NFU but not-NFD”, “NFD but
not-NFU”, “NFU and NFD”, and “Neither NFU nor NFD”
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and drug-targeted genes to represent functionally import-
ant genes. By using the DEG (Database of Essential Genes,
version 5.4) database [28], I found 473 and 1519 essential
genes included in the KEGG and WANG networks,
respectively. I also found 403 and 1557 disease genes in
the KEGG and WANG networks, respectively, using the
OMIM (Online Mendelian Inheritance in Man) database
[29]. Finally, I identified 353 and 1116 drug target genes in
the KEGG and WANG networks, respectively, using the
DrugBank database [30].

Results
Dynamic properties of NFU nodes
In this section, I show that NFU nodes are eventually
frozen in Boolean network dynamics. A Boolean network
G(V, E) with a set of update functions F is given.

Lemma 1 Given an initial state v(0) and a node vk ∈V,
let U = {u1, u2,⋯, uM} be the set of input nodes of vk. If
ζ(vU) is frozen, then ζ v vkf g

� �
is also frozen.

Proof For ∀ ui ∈U, there exists a time step τi such
that ui(t) = ui(t + 1) for ∀ t ≥ τi since ζ v uif g

� �
is frozen.

Let τ ¼ maxi∈ 1;2;…;Mf g τið Þ . Then, vk(t + 2) = fk(u1(t + 1),⋯,

uM(t + 1)) = fk(u1(t),⋯, uM(t)) = vk(t + 1) for ∀ t ≥ τ. Thus, ζ
v vkf g
� �

is also frozen ■

Lemma 2 An initial state v(0) and a node v ∈ V are
given. If every maximal upstream path of v includes at
least one node u where ζ(v{u}) is frozen, then ζ(v{v}) is
also frozen.

Proof Let P1, P2,⋯, PM be the list of maximal upstream
paths of v, and let ui ∈ Pi (i = 1, 2,⋯,M) be the node
where ζ v uif g

� �
is frozen. Then consider a sub-path Pi

' of Pi
starting from ui and ending at v. Define W = {w ∈V|w ∈
Pi
' for some i} and let l(w) be the length of the longest path

from w to v. Assuming that L =maxw ∈Wl(w), W can be
divided into L + 1 disjoint subsets W0,W1, ⋯ and WL

where Wk = {w ∈W|l(w) = k}. Then ζ(v{w}) for ∀w ∈W is
frozen by mathematical induction with respect to l(w), as
follows. When k = L, it is obvious that ζ(v{w}) of every w ∈
WL is frozen because w ∈ {u1, u2,…, uM}. Assume that
ζ(v{w}) of every w ∈Wk + 1 is frozen and consider an arbi-
trary element w' ∈Wk. Then every input node of w' is an
element of Wk + 1. By lemma 1, ζ v w0f g

� �
is frozen. Thus,

ζ(v{w}) of every w ∈Wk is also frozen. By mathematical
induction, ζ(v{w}) of every w ∈W is frozen. Therefore,
ζ(v{v}) is also frozen because v ∈W■
Lemma 2 provides a sufficient condition for the

frozenness of a node. This can be extended to the case
of NFU nodes as follows.

Theorem 1 An initial state v(0) is given. If v ∈V is an
NFU node, then ζ(v{v}) is frozen.

Proof By the definition of NFU nodes, every maximal
upstream of v starts with a source node u whose ζ(v{u})
is frozen. By Lemma 2, ζ(v{v}) is also frozen ■
This theorem implies that the states of NFU nodes are

dependent on the states of source nodes, and this might
make the network tend to be susceptible to perturba-
tions subject to source nodes.

Corollary An initial state v(0) is given. If there is no
FBL then ζ(v) is frozen.

Proof Since there are no FBLs, every v ∈ V is an NFU
node. By Theorem 1, it follows that ζ(v) is always frozen
irrespective of the initial states ■
Theorem 1 and its corollary explain the effect of FBLs

on the frozenness of the converging state sequences. More
specifically, every NFU node is frozen to a value
determined by the set of source nodes included in its
upstream paths. I also note that this result is strongly
related to previous studies based on synchronous or
asynchronous Boolean network models [31–33]. In
particular, the corollary corresponds to a previous result
having stated that the Boolean dynamics converges to a
unique fixed point in an acyclic Boolean network [31]. It
is also relevant to the previous results showed that limit-
cycle attractors can be induced by negative feedback loops
[32, 33]. In addition, Theorem 1 can reduce the computa-
tion of attractors in a large scale network by easily
obtaining the converging values of the NFU nodes.

Dynamic properties of NFD nodes
In the lemmas and a theorem of this section, I investi-
gate the effect of FBLs on robustness. I consider an arbi-
trary initial state v(0) = [v1(0), v2(0),⋯, vN(0)] and a
perturbed state at vx ∈V from v(0), v'(0) = [v1(0), ⋯, vx −
1(0), 1 − vx(0), vx + 1(0),⋯, vN(0)] in the following lemmas
3 and 4, and theorem 2. I denote the value of a node
w ∈V at time t in the trajectories starting from v(0) and
v'(0) by v{w}(t) and v{w}

' (t), respectively.

Lemma 3 Let v(0) be an initial state, v'(0) a perturbed state
at vx ∈V from v(0), and w ∈V an arbitrary node. If there is
no path from vx to w then v{w}(t) = v{w}

' (t) for ∀ t ≥ 0.

Proof The state value of node w is updated irrespective
of that of node vx because there is no path from vx to w.
Thus, the lemma holds ■

Lemma 4 Let v(0) be an initial state, v'(0) a perturbed
state at vx ∈V from v(0), w ∈V an arbitrary node. Let Y
= {y ∈V|y is included in some path from vx to w} and l(y)
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the length of a longest path from vx to y ∈ Y. If vx is a
non-source node and no node in Y is involved with any
FBL, then v{w}(t) = v{w}

' (t) for ∀ t ≥ l(w) + 1.

Proof By mathematical induction with respect to l(y), I
show that for every y ∈ Y, v{y}(t) = v{y}

' (t) for ∀ t ≥ l(y) + 1, as
follows. When l(y) = 0, it is obvious that y = vx. Then v vxf g
tð Þ ¼ v vxf g

0
tð Þ for ∀ t ≥ 1 because vx is a non-source node

and involved with no FBL. To prove the inductive step, I
assume that the property holds for l(y) ≤ k − 1. Consider
an arbitrary y ∈ Y such that l(y) = k and let U be the set of
input nodes of y. For every u ∈U, there are two cases to
consider: either u ∈ Y or u ∉ Y. In case of u ∈ Y, it is
obvious that l(u) ≤ k − 1 by the definition of l(⋅). By the
induction hypothesis, v{u}(t) = v{u}

' (t) for ∀ t ≥ l(u) + 1. In
case of u ∉ Y, it means that there is no path from vx to u.
Then v{u}(t) = v{u}

' (t) for ∀ t ≥ 0 by lemma 3. From both
cases, for ∀ u ∈U, v{u}(t) = v{u}

' (t) for ∀ t ≥ k. Then v{y}(t) =
v{y}
' (t) for ∀ t ≥ k + 1, thereby showing the property holds
when l(y) = k. Since w ∈ Y, the lemma holds ■

Theorem 2 Let v(0) be an initial state, v'(0) a perturbed
state at vx ∈V from v(0), and w ∈V an arbitrary node. If
vx is an NFD and non-source node, then the network is
robust against a state perturbation subject to vx.

Proof I show that there exists a constant time T such that
v{w}(t) = v{w}

' (t) for ∀ t ≥T in the following three cases. (i)
Case that = vx : Because w is an NFD and non-source node,
v{w}(t) = v{w}

' (t) for ∀ t ≥ 1. (ii) Case that w is not connected
by any path from vx : By lemma 3, v{w}(t) = v{w}

' (t) for ∀ t ≥ 0.
(iii) Case that w is connected by at least one path from vx :
Let Y = {y ∈V|y is included in some path from vx to w} and
l(w) be a longest length of those paths, respectively. Because
vx is an NFD node, no node included in Y is involved with
any FBL. By lemma 4, v{w}(t) = v{w}

' (t) for ∀ t ≥ l(w) + 1. By
(i),(ii), and (iii), there exists a constant time T such that
v{w}(t) = v{w}

' (t) for ∀ t ≥T and ∀w ∈V. Accordingly, the
attractors starting at v(0) and v'(0) are equivalent to each
other. Therefore, the network is robust against the state
perturbation subject to vx■
Theorem 2 indicates that biological networks might be

robust against perturbations subject to NFD nodes. To
support this result, I compared NFD and non-NFD gene
groups with respect to the proportions of essential
genes, disease genes, and drug targets in two human
signaling networks, the KEGG and WANG networks
(Fig. 2; see Additional file 1: Tables S3 and S4 for
details). As shown in Fig. 2, the proportions of essential
genes, disease genes, and drug targets among NFD genes
were significantly smaller than those among non-NFD
genes in both networks (all p-values<10−10). I assume
that essential genes, disease genes, and drug targets are
likely to be susceptible to mutations, perturbations, or

other external changes. In this regard, the relatively low
proportions of essential genes, disease genes, and drug
targets in the NFD group in the large-scale signaling
networks support Theorem 2. In addition, I further
examined the proportions of essential genes, disease
genes, and drug targets in NFD group in random
networks to examine if the observed result is specific to
the signaling networks (see Additional file 2: Figure S1).
I created each set of 100 random networks by rewiring
the interactions of the KEGG (Additional file 2: Figure
S1(A)) and WANG (Additional file 2: Figure S1(B))
networks so that the in-degree and the out-degree of the
nodes are conserved, and observed that there is little
difference between the NFD and non-NFD groups with
respect to the proportions of essential genes, disease
genes, and drug targets. This implies that the function-
ally important genes in the real signaling networks are
not randomly distributed in terms of NFD classification.

Estimation of sustainability of a perturbation effect
In the previous section, Theorem 2 showed that a net-
work state is robust against a perturbation as long as the
perturbation effect is not sustained by downstream FBLs.
In other words, the existence of downstream FBLs is a
necessary condition to make a network susceptible to a
perturbation. Inspired by that result, I have derived an
estimated probability that a perturbation effect will be
sustained. Given a node vx ∈V subject to a perturbation,
Lemma 3 shows that only downstream paths of vx need
to be considered, and Lemma 4 shows that only those
involved with an FBL need to be considered. I first
estimate the probability with which a perturbation sub-
ject to vx is sustained through a single path involved
with a FBL. Figure 3 shows an example of a downstream
path P = vxu1u2⋯ uL of vx which includes an FBL, and I
consider v(0) and v'(0) which are an initial state and a
perturbed state at vx ∈V from v(0), respectively. It is said
that the effect of a perturbation starting at vx at the ini-
tial time is sustained through propagations in a sequence
of u1, u2, ⋯, uL if v uif g ið Þ≠v uif g

0
ið Þ for ∀ i ∈ {1,⋯, L}.

Herein, it is assumed that a probability with which ui(i)
is differently updated by the flipped value of ui − 1(i − 1),
denoted by Pr v uif g ið Þ≠v uif g

0
ið Þjv ui−1f g i−1ð Þ≠v ui−1f g

0
i−1ð Þ� �

,
is the inverse of the in-degree of ui because of the
following reason (for simplicity of explanation, u0 = vx is
assumed). Let W ¼ w1;w2;⋯;wdi

� �
be the set of input

nodes of ui where di is the in-degree of ui. By assuming
that the input nodes have an even degree of influence on
updating ui, i.e., Pr Y jX1ð Þ ¼ ⋯ ¼ Pr Y jXdið Þ where Y
and Xk(k ∈ {1,⋯, di}) denote two events v uif g ið Þ≠v uif g

0
ið Þ

and v wkf g i−1ð Þ≠v wkf g
0
i−1ð Þ, respectively. It is also assumed

that ui is always differently updated given a perturbation
has occurred at one of the input nodes. Accordingly,
Pr Y jUk∈ 1;⋯;dif gXk
� � ¼ Pr Y jX1ð Þ þ⋯þ Pr Y jXdið Þ ¼ 1 ,
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and thus Pr(Y|Xk) = 1/di (∀ k ∈ {1,⋯, di}). Note that ui
− 1 ∈W because ui − 1 is one of the input nodes of ui.
With this result, the probability with which the
perturbation subject to vx is sustained through a path
P can be derived as follows:

Pr Pð Þ ¼
Y

i¼1

L
1=di; if an FBL is involved;

0; otherwise

(
ð1Þ

Let P1, P2,⋯, PM be the set of all downstream paths of
vx. Then I define the perturbation-sustainable probability
γ(vx), the probability that the perturbation subject to vx
will be sustained through at least one FBL, as follows:

γ vxð Þ ¼ maxi∈ 1;⋯;Mf g Pr Pið Þ: ð2Þ

If a gene with a relatively high γ(vx) value is subject to a
perturbation, the network is likely to induce an abnormal

dynamics due to the well conserved perturbation effect. In
this regard, the perturbation-sustainable probability can
indicate how much a gene is functionally or dynamically
important in a signaling network. To show the usefulness
of this probability, I examined the relationship between
γ(vx) and the proportions of putatively susceptible genes
in human signaling networks (Fig. 4; see Additional file 1:
Tables S3 and S4 for details). Given a threshold value β,
the proportions of essential genes, disease genes, and drug
targets among the set of genes such that {vx|γ(vx) ≥ β} are
plotted against the threshold value in the KEGG (Fig. 4a)
and WANG (Fig. 4b) networks. As shown in the figure,
the genes with a high perturbation-sustainable probability
are more likely to be essential genes, disease genes, and
drug targets in both networks. This implies that the
perturbation-sustainable probability can adequately iden-
tify the functionally important genes in human signaling
networks. In addition, it is notable that the relation of the

0.1

0.15

0.2

0.25

0.3

Essential genes Disease genes Drug targets

Non NFD

NFD

A B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Essential genes Disease genes Drug targets

Non NFD

NFD

P
ro

po
rt

io
n

P
ro

po
rt

io
n

Fig. 2 Comparison between groups of NFD and non-NFD genes in signaling networks. a Result in KEGG network with 975 NFD genes and 684
non-NFD genes. The proportions of essential genes in the NFD and the non-NFD groups were 0.204 and 0.401, respectively. The proportions of disease
genes in the NFD and the non-NFD groups were 0.190 and 0.319, respectively. The proportions of drug-targets in the NFD and the non-NFD groups
were 0.148 and 0.306, respectively. b Result in WANG network with 1706 NFD genes and 4600 non-NFD genes. The proportions of essential genes in
the NFD and the non-NFD groups were 0.157 and 0.272, respectively. The proportions of disease genes in the NFD and the non-NFD groups were
0.235 and 0.251, respectively. The proportions of drug-targets in the NFD and the non-NFD groups were 0.161 and 0.183, respectively. In both
networks, all the proportions for the NFD group were significantly smaller than those for the non-NFD group (all p-values<10−10)

Fig. 3 An example of a downstream path with a feedback loop. A node vx is subject to a state perturbation, and the perturbation effect can be sustained
at u1 with a probability of the inverse of the in-degree of u1. This propagation is continued along the path P= vxu1u2⋯ uL involved with a FBL
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perturbation-sustainable probability to the functionally
important genes was not observed in the random
networks created by rewiring the interactions of the
signaling networks (see Additional file 2: Figure S2). As in
the results of Additional file 2: Figure S1, this also implies
that the functionally important genes in the real signaling
networks are not randomly distributed in terms of NFD
classification. Taken together, it is interesting that such a
simple topological measurement of genes based only on
FBLs can efficiently predict the functionally important
genes in human signaling networks.

Discussion
In this study, I did not address the dynamics of non-
NFU and non-NFD nodes, i.e., nodes that are involved
in FBLs, and the analysis of their dynamics remains an
open problem. In addition, the update-rule perturbation,
another well-known type of perturbations, was not
considered in this study because it influences the net-
work robustness in a different way than the initial-state
perturbation by changing the state transition diagram.
Therefore, a future study should include analyses of
genes that are neither NFU nor NFD nodes, and analysis
of robustness against update-rule perturbations. Finally,
it should be noted that the analyses in this study might
not be effective for other types of biological networks
than the signaling networks. For example, NFU/NFD
classification was not meaningful in the large-scale gene
regulatory networks [34, 35] because most genes were
classified to NFD nodes. This implies that another
method to further classify NFD nodes is required for
analysis of those networks.

Conclusions
It is well known that biological networks can keep their
regulatory functions robust against external or internal
perturbations. More interestingly, the network robustness
is highly related to the network’s structural characteristics,
including FBLs. However, previous results [2, 9, 10] have
been presented mainly through simulation and experi-
ment studies because of the complexity of real biological
networks. That raised a pressing need to develop various
analytical approaches to validate the promising conjec-
tures. In this paper, I used a synchronous Boolean network
model in which a node state is represented by a Boolean
value and updated by a logical rule. A network is consid-
ered robust if the attractor does not change against a state
perturbation. Based on that assumption, I created a novel
concept to characterize the nodes with respect to FBL
structures: no-FBL-in-upstream (NFU) and no-FBL-in-
downstream (NFD). This FBL-based characterization is
different from other FBL-based measures [10, 36] in that
it focuses on involvement with FBLs in the upstream or
downstream paths, not with the node itself. Based on that
notion, I proved two simple but useful theorems. One is
that an NFU node is always frozen irrespective of the
initial states of other nodes. Thus, the converging dynam-
ics of an NFU node can be simply determined. The other
is that a network is robust against an arbitrary perturb-
ation subject to a non-source NFD node. This result
shows that a network state eventually converges to the
same attractor despite a perturbation subject to non-
source NFD nodes. Note that the two theorems hold for
arbitrary update functions as well as initial states. In
addition, the second theorem led me to develop a function
to approximately compute the perturbation-sustainable

Fig. 4 Changes in proportions of functionally important genes over the threshold value of the perturbation-sustainable probability. Given a
threshold value β, the y-axis values indicate the proportions of essential genes, disease genes, and drug targets over the set of candidate genes
whose perturbation-sustainable probability is larger than or equal to β. The larger the value of β, the smaller the number of candidate genes is.
a Results of essential genes, disease genes, and drug targets in the KEGG network. For a reliable comparison, the maximal β was set to 0.0179
which generates 121 candidate genes. b Results of essential genes, disease genes, and drug targets in the WANG network. The maximal β was
set to 1.0000, which results in 546 candidate genes
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probability. I verified its effectiveness by showing that the
higher the probability, the larger the proportion of essen-
tial, disease-associated, and drug-target genes in human
signaling networks. I believe these results will promote
understanding of the effects of FBLs on network dynamics
and reduce the cost of computing robustness in existing
tools which simulate a network state trajectory [13–17].

Additional files

Additional file 1: Table S1. Dataset of KEGG network. It consists of
1659 genes and 7964 interactions constructed by integrating all the
human signaling pathways in the KEGG (Kyoto Encyclopedia of Genes
and Genomes) database. Table S2. Dataset of WANG network. It consists
of 6306 genes and 62,937 interactions downloaded from http://
www.bri.nrc.ca/wang. Table S3. Detailed analysis result of the KEGG
network. It includes information about essential genes, disease genes,
drug targets, NRU/NRD genes, and perturbation-sustainable probabilities
in the KEGG network. Table S4. Detailed analysis result of the WANG
network. It includes information about essential genes, disease genes,
drug targets, NRU/NRD genes, and perturbation-sustainable probabilities
in the WANG network. (ZIP 352 kb)

Additional file 2: Figure S1. Comparison between groups of NFD and
non-NFD genes in random networks with respect to the proportions of
essential genes, disease genes, and drug targets. In each subfigure, a set
of 100 random networks were generated by rewiring the interactions of
the signaling networks such that the in-degree and the out-degree of all
nodes are conserved. (A) Result of random networks shuffled from KEGG
network. The average numbers of NFD and non-NFD genes were 509
and 1150, respectively. The average proportions of essential genes in the
NFD and the non-NFD groups were 0.2849 and 0.2852, respectively. The
proportions of disease genes in the NFD and the non-NFD groups were
0.2417 and 0.2435, respectively. The proportions of drug-targets in the
NFD and the non-NFD groups were 0.2141 and 0.2122, respectively. (B)
Result of random networks shuffled from WANG network. The average
numbers of NFD and non-NFD genes were 1544 and 4761, respectively.
The proportions of essential genes in the NFD and the non-NFD groups
were 0.2390 and 0.2413, respectively. The proportions of disease genes in
the NFD and the non-NFD groups were 0.2455 and 0.2472, respectively.
The proportions of drug-targets in the NFD and the non-NFD groups
were 0.1768 and 0.1769, respectively. Figure S2. Changes in the
proportion of functionally important genes over the threshold value of
the perturbation-sustainable probability in random networks. In each
subfigure, a set of 100 random networks were generated by rewiring the
interactions of the signaling network such that the in-degree and the
out-degree of all nodes are conserved. Given a threshold value β, the
y-axis values indicate the average proportions of essential genes, disease
genes, and drug targets over the set of candidate genes whose
perturbation-sustainable probability is larger than or equal to β in
random networks. (A) Results in random networks shuffled from KEGG
network. For a reliable comparison, the maximal β was set to 0.0266
which generates 131 candidate genes on average. (B) Results in random
networks shuffled from WANG network. The maximal β was set to 0.0908,
which results in 121 candidate genes on average. (ZIP 362 kb)
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