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Abstract

Background: The mode of action of a drug on its targets can often be classified as being positive (activator,
potentiator, agonist, etc.) or negative (inhibitor, blocker, antagonist, etc.). The signed edges of a drug-target network
can be used to investigate the combinedmechanisms of action of multiple drugs on the ensemble of common targets.

Results: In this paper it is shown that for the signed human drug-target network the majority of drug pairs tend to
have synergistic effects on the common targets, i.e., drug pairs tend to have modes of action with the same sign on
most of the shared targets, especially for the principal pharmacological targets of a drug. Methods are proposed to
compute this synergism, as well as to estimate the influence of the drugs on the side effect of another drug.

Conclusions: Enriching a drug-target network with information of functional nature like the sign of the interactions
allows to explore in a systematic way a series of network properties of key importance in the context of computational
drug combinatorics.

Background
In drug discovery research, moving beyond the “magic
bullet” (one-drug, one-target) paradigm is a trend that has
become quite popular in recent times, motivated by the
discovery of the value of polypharmacology in treating
complex diseases [1–3], and by the promises of network
pharmacology [4–8], as a “system” way to understand the
effects (and side effects) of drugs on an organism. A net-
work viewpoint can help in understanding the effect of a
drug on system properties such as robustness, resilience
and redundancy, and can be used for system-driven drug
discovery [9]. The approach is particularly meaningful to
deal with the multifactor nature of many complex dis-
eases, like cancer, asthma, diabetes, neurodegenerative
disorders and cardiovascular diseases.
Network representations of drug-target interactions

have already been used for several tasks, like to extrap-
olate information of functional nature on the action of
the drugs, to predict novel putative drug-target inter-
actions, and to provide strategies for an efficient use
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of multidrug therapies, see [10, 11] for an overview.
For instance the topological structure and organization
of a drug-target network obtained from FDA-approved
drugs is investigated in [12], as well as the cluster-
ing of its drugs according to the functional categories
of the Anatomical Therapeutic Chemical classification.
Chemical and genomic information is used in [13] to
build a drug-target network for various classes of human
targets, like enzymes, ion channels and receptors, using
supervised learning. Systematic attempts to identify new
drug-target interactions are very frequent in the literature,
based on sequence [14], structure [15], pathway-pathway
interactions [16], but also on chemical and phenotypical
similarity among drugs and sets of ligands [17, 18], often
leading to a large number of low-affinity interactions of
limited significance.Methods for predicting new potential
drug-target interactions for known drugs, using drug-
based, target-based and network-based similarity scores
are investigated in [19], inspired by algorithms used in
the field of recommendation systems, or by random walk-
ing the network itself [20]. Drug repositioning is also one
of those problems that can be investigated through drug-
target networks. Machine learning techniques aimed at
extending the target space of already approved drugs are
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reviewed in [21], while in [22] it is shown how to use con-
straint based computational methods for metabolic drug
repurposing. Another line of research deals with predict-
ing drug combinatorics via gene profiling and gene net-
work reconstruction [23]. As surveyed in [10], the number
of datasets and tools specifically dedicated to the analy-
sis of drug-target networks has grown rapidly in the last
years.
When investigating a given drug-target network (for

instance reconstructed from a database such as DrugBank
[24], which is also our database of choice), most com-
putational methods rely principally on the topological
information that can be obtained from the bipartite drug-
target graph and on the ontology of its constituent com-
ponents. In this work we aim to add another element
of functional nature in the network-based investigation
of drug-target interactions, namely the information on
the mode of action of the interactions. When browsing
DrugBank, many are the possible mechanisms of action of
a drug on its targets: it can activate or inhibit the target,
it can act as an agonist or an antagonist, as a potentia-
tor or as a blocker, as an inducer or as a suppressor, and
so on. Although qualitatively different and applicable to
different categories of targets (proteins, macromolecules,
nucleic acids, small molecules, etc.), these modes of action
can be reasonably classified as positive or negative. If these
and a few more modes of action admit such a signed
classification, several more, such as for instance “modu-
lators”, “binder”, “cleavage” (a complete list of categories
will be given below) are instead impossible to classify with
a sign, and hence cannot be included in the analysis we
are proposing in this paper. On the drug-target network,
characterizing the modes of action as positive or nega-
tive corresponds to associating a sign to the edges of the
bipartite graph. Signed graphs have been frequently used
in Systems Biology [25–28], and we can draw inspira-
tion from this literature to formulate and solve problems
which are meaningful and insightful also for our signed
drug-target network.
One such problem, important in the context of mul-

ticomponent therapies, is to understand the joint effect
of two or more drugs acting on the same targets [29].
To illustrate the point, let us look at two drugs hav-
ing a common target: if their modes of action have the
same sign then it is likely that the combined effect of
the two drugs on the target is reinforced. On the con-
trary, if the modes of action have opposite signs then it is
more plausible to assume that the two drugs tend to com-
pensate each other’s action, and hence the overall effect
on the target tends to be mitigated. In this paper two
actions that have a common sign on a target (regardless
of what that sign is) are called coherent. They are called
incoherent when they have opposite signs. Understanding
to what extent drug pairs act coherently or incoherently

on common targets is an important aspect for instance
of drug combinatorics. It is shown in the paper that
coherent drug pairs are much more frequent than inco-
herent, and that the same observation is true when we
count drug pairs acting simultaneously on pairs of targets
(i.e., we look at length-4 undirected cycles). These basic
examples of coherent/incoherent motif counting hint at
the signed human drug-target network having a topolog-
ical and functional (for what can be deduced from the
edge signs) organization which is far from random. Such
an organization can be investigated in a more system-
atic way if, rather than common actions on one or two
targets, we consider the combined action of drug pairs
on the ensemble of common targets. We show in the
paper that the distribution of drug pairs acting simulta-
neously on multiple targets is significantly skewed both
towards actions that are coherent on many targets but
also towards actions that are incoherent on multiple tar-
gets. Neither of these two tails is present in null mod-
els. Their meaning is that current drugs tend to interact
largely on overlapping targets, often exerting a similar
action on all of them (hence leading to coherent drug
pairs on multiple targets) but sometimes also exerting
antithetical actions on all of them (hence leading to inco-
herent drug pairs on multiple targets). This is related
to the observation that most drugs have a “monochro-
matic” mode of action (i.e. with same sign) on multiple
targets.
By attaching signs to the mechanisms of action, we are

also able to quantify the amount of synergism (i.e., when
coherence prevails over incoherence) in a drug pair, and
to classify all drug pairs accordingly. In the paper we
do this systematically for all drug-target interactions that
are classified as pharmacological in DrugBank, which we
take as principal actions (on-target actions) of a drug.
The vast majority of drug pairs has a beneficial syn-
ergistic action on their common pharmacological drug
targets.
Failure of a drug to act properly in clinical trials is

often due to unexpected side effects, in the form of drug
activity on targets other than the principal targets for
which the pharmacological action is intended. Methods
to predict in a systematic way such off-target interactions
have attracted a considerable attention in recent years
[17, 30–33]. In some of these works the side effect is
defined phenotypically, in some others based on the off-
targets of a drug. If we consider as off-targets of a drug the
DrugBank interactions that are not classifiable as phar-
macological, then exploiting the signs of the interactions
we can try to quantify the action of a drug on the off-
targets of a second drug, and in particular seek for drug
pairs likely to have a mutualistic benefit on each other’s
side effect, for instance drug pairs behaving synergistically
on their common principal (pharmacological) targets but
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having incoherent actions on their common off-targets.
An exhaustive classification of all these pairs is carried out
for our signed drug-target network.

Results
Consider the human drug-target network reconstructed
from the DrugBank database (see Methods and Table 1),
and associate to its edges a sign according to the proce-
dure described in Methods and in Table 2. Table 3 reports
the resulting sign distribution. The fraction of edges which
cannot be assigned a sign is around 63 %. The fraction
decreases drastically if we restrict to actions which can be
classified as pharmacological (as defined in the Methods),
to less than 11 %.
Looking at the drug degree distribution of Fig. 1a, one

can see that the drugs that lack most edge signs are
those with higher connectivity, while the situation is much
improved for drugs with lower connectivity. Comparing
the drug and target connectivity analysis of Fig. 1, the
latter has a significant difference in the fact that also tar-
gets with high connectivity tend to have a certain fraction
(even higher that 50 %) of edges having a known sign. In
the drug connectivity histogram, on the other hand, when
a drug has signed edges, then they are almost all of the
same sign, see inset of Fig. 1a.
Additional file 1: Figure S2 shows the equivalent drug

and target connectivity analysis restricted to edges repre-
senting pharmacological actions. In both cases the con-
nectivity decreases considerably when we compare it with
Fig. 1, and the already mentioned fact that most pharma-
cological actions have a known sign (see Table 3) allows us
to have a sharper picture of the sign distributions. For both
drugs and targets, in fact, the sign distribution tends to be
“monochromatic”, i.e., most edges adjacent to a drug or to
a target tend to be positive or negative but rarely both, see
inset plots in Additional file 1: Figure S2.
When restricting the drug-target network to signed

edges, we obtain a bipartite signed graph involving 1315
drugs and 820 targets, containing 1417 positive and 2711
negative edges, see Table 3. The drug-target network
described in Table 3 has one very large connected compo-
nent involving 81 % of the drugs and 71 % of the targets,
plus a number of other smaller connected components,
see Additional file 1: Figure S1.

Table 1 Human drug-target network

Total Human Pharmacological actions

n. of drugs 6699 4905 1342

n. of targets 4139 2337 695

total number of edges 16386 11133 2916

n. of signed edges 4624 4128 2599

n. of edges without sign 11762 7005 317

Table 2 Drug modes of action and edge signs

Sign DrugBank actions

Positive agonist; partial agonist; activator; stimulator; inducer;
positive allosteric modulator; potentiator; positive
modulator

Negative inhibitor; inhibitory allosteric modulator; inhibitor,
competitive; antagonist; partial antagonist; negative
modulator; inverse agonist; blocker; suppressor; desen-
sitize the target; neutralizer; reducer

Not classifiable antibody; cofactor; modulator; binder; chaperone;
cleavage; metabolizer; ligand; product of; compo-
nent of; chelator; cross-linking/alkylation; intercalation;
adduct; acetylation; allosteric modulator.

Combinatorics of signed drugs. The classification of
drug actions into positive and negative modes of action
allows us to characterize the effect of multiple drugs act-
ing on the same target. Two drugs sharing the same target
tend to reinforce their effect on the target if their modes
of action have the same sign, while they tend to mitigate
the overall effect if the signs are different. The 3 possi-
ble sign combinations of a drug pair on a common target,
(+, +), (−, −), and (+, −). are shown in Fig. 2a. The
two combinations (+, +) and (−, −) will be referred to
as coherent, as the action of a drug is reinforced by the
presence of a second drug. In the remaining combination
(+, −), instead, the presence of a second drug tends to
counteract (and hence in general reduce) the action of the
first drug. We will call this configuration incoherent.
Some statistics on pairs of drugs sharing at least a com-

mon target are shown in Fig. 2b. Summing up the data
of the top left subpanel of Fig. 2b, the total number of
drug pairs incident to at least a common target is 25461.
The number of drug pairs having exactly 1 target in com-
mon is 15947 (highest bar in top left subpanel of Fig. 2b).
The statistics for the three pairs of edge sign combinations
(+, +), (−, −) and (+, −) are reported in the remaining
3 subpanels of Fig. 2b. As can be seen in Fig. 2b, inco-
herent drug actions are not rare in the human drug-target
network. The total number of drug pairs acting incoher-
ently on at least one target is 6431. These drug pairs act
incoherently on a total of 10594 targets (sum of all bars in
the bottom right subpanel of Fig. 2b). The corresponding
numbers for coherent actions are however much higher:
20017 drug pairs act coherently on at least one target, for
a total number of coherent actions of 37439.

Table 3 Signed human drug-target network

All Pharmacological actions

n. of drugs 1315 1178

n. of targets 820 578

n. of positive edges 1417 1093

n. of negative edges 2711 1506
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Fig. 1 Drug and target connectivity analysis on the human network. Panel a The main plot shows the number of human targets associated to each
drug. In blue the total number of targets is shown, while in red and green are respectively the number of targets for which the mode of action can
be classified as positive (red) and negative (green). The inset shows the same quantities but only for the 50 drugs having the highest total number of
targets in DrugBank. Panel b The main plot shows the number of drugs associated to each human target. In violet the total number of drugs is
shown, while in red and cyan are respectively the number of drugs with positive (red) and negative (cyan) modes of action. The inset shows the
same quantities but only for the 100 targets having the highest total number of drugs in DrugBank
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Fig. 2 Coherent/incoherent actions of drug pairs. Panel a when two drugs act simultaneously on the same target, their action can be coherent (i.e.,
the second drug tends to reinforce the action of the first) or incoherent (i.e., the second drug tends to counteract the action of the first). Panel b
drug pairs with common targets, and their sign patterns. All 4 histograms show a count of the number of drug pairs having one or more targets in
common (the number of common targets is on the horizontal axis). Only signed edges are considered. Top left subpanel: all pairs of drugs having
one or more common targets, and considered regardless of sign. Top right subpanel: only positive/positive actions. Bottom left subpanel: only
negative/negative actions. Bottom right subpanel: positive/negative actions. The totals refer to the cumulative sums of all pairs
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The shortcoming of the analysis carried out so far is
that even after restricting to signed actions, 57 % of the
1315 drugs have 2 or more targets, hence when we look
at multiple drugs applied simultaneously it is necessary
to investigate their effect on all of their common targets.
As can be seen in Fig. 2b (top left subpanel), around 5000
drug pairs share 2 targets, and more than 2000 have 3 tar-
gets in common, while other 2400 pairs have more than
3 targets in common. The simplest possible approach to
tackle this more complex problem consists in looking at
all cycles of length 4 formed by two drugs having at least 2
targets in common. Cycles are here obviously intended as
undirected, i.e., arrows on the edges are dropped. Three
qualitatively different classes of length-4 cycles can be
identified, which we call (fully) coherent, mixed and (fully)
incoherent. They are shown in Fig. 3. Coherent cycles are
those for which both drugs act with the same sign on
each of the targets, hence reinforcing each other’s action
on both targets. In incoherent cycles, instead, the signs of
the drug actions are conflicting on both targets, leading
to mitigation of the effect on both targets. Mixed cycles
occur when the action of a drug pair has the same sign
on one of the targets but conflicting signs on the other
target (i.e., coherent on one target but incoherent on the
other). As can be seen on Table 4, the fraction of coherent
length-4 cycles is around 81 % of the total, while that of
incoherent length-4 cycles is 13.5 %. Mixed cycles are the
most rare (around 5.5 %). Notice how fully coherent and
fully incoherent length-4 cycles are positive, i.e., they have

Table 4 Coherent and incoherent length-4 cycles

Type of length-4 cycle n.

coherent, (+, + / +, +) 25158

coherent, (+, + / −, −) 3042

coherent, (−, − / −, −) 28166

mixed, (+, + / +, −) 1138

mixed, (+, − / −, −) 2658

incoherent, (+, − / +, −) 9375

Signs are as in Fig. 3

an even number of negative edges, while mixed cycles are
negative (odd number of negative edges). Hence, overall,
the fraction of positive length-4 cycles is around 94.5 % of
the total, see Table 4.

Connectivity analysis of drug pairs: distribution of
coherent/incoherent actions. With a total of 48033 tar-
gets being acted upon by at least two drugs, a natural
question to ask is if such pairwise connectivity is high or
low with respect to a null model having the same drug
edge distribution. Comparing with a null model, obtained
maintaining the same edge distribution (sign included) at
the drug side, but reassigning randomly the edges to the
targets, then the drug-target topological properties one
obtains are drastically different. On a null model, the num-
ber of drug pairs sharing at least a target reduces from
25461 to 10126.6 (average over 100 realizations of the null

Fig. 3 Coherent/mixed/incoherent length-4 cycles. Two drugs having two targets in common in a signed graph. In panel a all 3 cases lead to an
(undirected) positive cycle, and the drug actions are coherent at each target. In panel b instead, the length-4 (undirected) cycle is negative, and the
action of the drugs is incoherent on one of the two targets but coherent on the other. In panel c the action of the drugs is incoherent on each
target, but the cycle is positive
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model) and so does the total number of drug pairs incident
to a common target, from 48033 to 10388.7. We deduce
that the signed drug-target network is highly organized,
and in particular highly redundant in its coverage of the
targets. For instance, the original target connectivity is
such that only near half (416) of the 820 targets are hit
by more than one drug, while in a null model this num-
ber is around 95 %. However, the target edge distribution
for the null model completely lacks the highly connected
nodes which can instead be seen in panel (b) of Fig. 1.
As can be seen in Fig. 4, the consequence is that in null
models a pair of drugs very seldom exceeds a total of
3 common targets, counting both coherent and incoher-
ent actions (green bars). In the true drug-target network,
instead, edges tend to concentrate on fewer targets, lead-
ing to abundance of targets shared bymore than two drugs
(in Fig. 4 green bars for the null model should be com-
pare to all the other bars taken together, representing the
original network).
Also the sign distribution in the true drug-target net-

work is highly non-random. If 77.9 % of the drug pairs
hitting a common target have a coherent action, such
number is drastically less in our null models, around
54.8 %, meaning that in the real drug-target network not
only known drugs tend to hit always the same targets,
but they tend to do so with the same sign, leading to an
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Fig. 4 Distribution of coherent/incoherent edge pairs. The
red/grey/blue bars of the histogram represent counts of the coherent
and incoherent actions of the drug pairs on common targets. The
histogram is significantly skewed, meaning that many drug pairs tend
to have an abundance of coherent actions or of incoherent actions,
rather than of both simultaneously. When the overabundance is
statistically significant (binomial cumulative distribution test, p-value
of 0.05, see Methods), then the bars are coloured: red for
overabundance of coherent actions, blue for incoherent actions. The
green bars overlaying to the other bars represent the distribution of
the coherent/incoherent actions for the null model. For nearly all
drug pairs, nonzero green bars reach at most 4 targets in common,
counting together coherent and incoherent actions, i.e., the two tails
are absent in a null model

overabundance of coherent joint actions. In spite of the
limited frequency, also the fraction of incoherent drug
pair actions is far from being negligible. As can be seen on
Fig. 4, the histogram with counts of coherent and incoher-
ent actions of drug pairs is highly skewed and has two tails:
just like many drug pairs act coherently on many targets,
there exists a considerable number of drug pairs having an
incoherent action simultaneously on multiple targets, for
instance pairs of drugs in which one of the two activates
all its targets while the other inhibit them. The blue bars in
Fig. 4 correspond to pairs whose incoherent action is sta-
tistically significant, given the total amount of pairs and its
coherent/incoherent partition (cumulative binomial test,
see “Methods”). Since the number of coherent action pairs
is much higher, statistical significance for them requires a
pair to hit coherently a larger number of targets (red bars).

Synergistic/compensatory pharmacological effect of
drug pairs. Most drugs are designed to produce a spe-
cific action on selected targets, here denoted pharmaco-
logical targets. Other targets of the same drug (here called
off-targets, see Methods) are often present but they are
normally undesired. We refer to these off-targets as the
side effect of the drug.
Let ti be the number of targets associated to the i-th

drug for which the sign of the action is available and pi,
pi ≤ ti, the number of signed pharmacological targets of
drug i. Let further be cij the number of common (signed)
targets of the drug pair (i, j), and pij, pij ≤ cij, the num-
ber of (signed) pharmacological targets shared by (i, j).
Denote si = ti − pi the number of (signed) off-targets
of drug i and sij = cij − pij the number of (signed) off-
targets in common between i-th and j-th drugs. To specify
the sign of the action we will use upper indices: p++

ij , p−−
ij

and p+−
ij (respectively s++

ij , s−−
ij and s+−

ij ). In this paper
we are assuming that the coherent pairs p++

ij and p−−
ij

enhance the action of each single drug on the common
pharmacological targets (i.e., act synergistically), while in
an incoherent pair p+−

ij the actions of the two drugs tend
to counteract each other (i.e., the action is compensatory).
Consider the case pij > 0 and sij = 0, i.e., the two drugs
share only common pharmacological targets. Additional
file 1: Figure S4 tells us that for pharmacological actions
the distribution of coherent/incoherent interaction pairs
has a longer tail towards the coherent end, but does not
tell us what fraction of pharmacological targets of a drug
i receives a benefit from the presence of a second drug j
sharing a certain number of pharmacological targets with
it. In order to quantify this, we use the synergistic score
coefficient ai(j) defined in Methods. This coefficient is by
construction between −1 and 1. ai(j) > 0 means that
more coherent than incoherent actions are established on
the pharmacological targets of drug i by the presence of a
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second drug j. Since ai(j) > 0 if and only if aj(i) > 0, this
synergistic effect is always mutual, although ai(j) �= aj(i)
when the two drugs have a different number of pharmaco-
logical targets. Negative synergistic score means that for a
drug pair the incoherent actions are more numerous than
the coherent ones. Clearly ai(j) < 0 if and only if aj(i) < 0.
Of the 14380 drug pairs with common pharmacological

targets, 10611 have pij > 0 and sij = 0, hence for them
we can compute ai(j). The synergistic score coefficient is
positive in 81.6 % of the cases. In 45.2 % of the cases it is
ai(j) ≥ 0.5 and aj(i) ≥ 0.5, i.e., a significant mutual syn-
ergistic score is produced, see Additional file 2, while in
29.8 % of the cases ai(j) ≥ 0.5 but not aj(i), see Additional
file 3. The 70 cases in which ai(j) = aj(i) = 0 are listed
in the Additional file 4, and the 1882 cases in which both
ai(j) and aj(i) are < 0 are in the Additional file 5. The
histogram of the synergistic score coefficients is shown in
Fig. 5.

Side effect improvement/aggravation through drug
combinations. When two drugs share pharmacological
targets but also off-targets, it becomes interesting to
understand if it is possible to combine drugs so as to
reduce their side effect. The principle that we follow is
to look for drug pairs having a positive synergism on com-
mon pharmacological targets and incoherent actions on
common off-targets. As incoherent actions correspond to
opposite edge signs, they tend to compensate each other,
hence the side effect tends to be mitigated.
Let us consider drug pairs such that pij > 0 and

sij > 0, i.e., having some pharmacological target and
some off-target in common. In particular, we look for drug
combinations in which

Fig. 5 Synergistic scores for drug pairs and pharmacological targets.
The histogram shows the distribution of synergistic score coefficients
for drug pairs sharing one or more pharmacological targets and no
off-targets. When ai(j) > 0 and aj(i) > 0, the two drugs induce a
benefit on each other’s pharmacological targets, i.e., the number of
coherent action pairs is bigger than the number of incoherent ones
(81.6 % of the cases)

1. the actions on the pharmacological targets are
predominantly coherent: p++

ij + p−−
ij > p+−

ij ;
2. the actions on off-targets tend to cancel each other:

s+−
ij > s++

ij + s−−
ij .

To quantify the benefit of adding a second drug j on the
side effect of drug i, we consider the side effect score coeffi-
cient bi(j) (see Methods). By construction −1 ≤ bi(j) ≤ 1,
with bi(j) < 0 meaning an aggravating effect of the drug j
on the side effect of i, bi(j) = 0 meaning neutral effect in
the side effect (s+−

ij = s++
ij +s−−

ij , see Fig. 6a), and bi(j) > 0
meaning an improvement of the side effect of drug i due to
drug j, see Fig. 6b. In particular, bi(j) = 1 means that the
drug j hits all off-targets of drug i with an action which is
opposite in sign to that of drug i. Notice that by construc-
tion bi(j) and bj(i) must have the same sign, meaning that
for drug pairs with a positive side effect score the bene-
fits are always mutualistic. Screening the 14380 drug pairs
having pharmacological targets in common, we obtain
325 pairs. Among these, 205 pairs are beneficial i.e., have
bi(j) > 0 and bj(i) > 0; 39 are neutral, i.e., have bi(j) =
bj(i) = 0 and 81 are aggravating, i.e., bi(j) < 0 and
bj(i) < 0. The distribution of their side effect score coef-
ficients bi(j) is shown in Fig. 6c. For a significant fraction
of drug pairs (56 out of 205), both coefficients bi(j) and
bj(i) are ≥ 0.5, meaning that the drugs i and j have a sig-
nificant reciprocal beneficial effect on each other’s side
effect. These cases are reported in the Additional file 6.
Several more cases (81) are obtained in which bi(j) ≥ 0.5
for one of the 2 drugs, although not for both. These cases
with “unilateral” side effect improvement are listed in the
Additional file 7. They often correspond to cases in which
one drug has a large side effect (in terms of number of off-
targets) and the other drug a small side effect, see Fig. 6b.
Hence when the latter drug is added to the former it can
only improve on a few of its many off-targets. The drug
pairs giving bi(j) = bj(i) = 0 and those aggravating the
side effect are reported in Additional files 8 and 9.

Discussion
A drug-target network contains valuable information for
researchers interested in network pharmacology and drug
combinatorics. This has to do not only with the biochem-
ical classification of the drug compounds and with the
ontological/therapeutical classification of the molecular
targets, but also with the functional classification of the
modes of action of the drugs. In order to explore system-
atically this aspect, we have to introduce a coarse-grained
classification of the mechanisms of action. Such a “binary”
classification covers a significant fraction of the known
categories for drug-target modes of action.
The fact that many human drug-target interactions can-

not be classified in terms of action signs is certainly
a limitation of the present study and of the approach
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Fig. 6 Side effect quantification for drug pairs. Panels a and b The target in green is a common pharmacological target. The action of the two drugs
on it (thick red arrows) is coherent and reinforces the effect. All other targets are off-targets and constitute a side effect for the two drugs. Panel a
The two drugs share 2 off-targets. In one of them the simultaneous presence of the two drugs tends to mitigate the effect, while in the other the
two drugs act with the same sign, hence the side effect on it is aggravated. Overall the drug 1 experiences a side effect improvement on 50 % of its
off-targets but an aggravation on the remaining 50 %, while for drug 2 the beneficial/aggravating effect is only on 33 % of the off-targets. For both
however, the side effect score is equal to 0: b1(2) = b2(1) = 0. Panel b The side effect on the off-target in common is reduced by the combination
of drugs. For drug 1, b1(2) = 0.5, while for drug 2 it is b2(1) = 0.25, because of the higher number of off-targets. Panel c The histogram shows the
side effect score coefficient for all drug pairs having a positive synergistic score on the common pharmacological targets. For 63 % of the resulting
pairs the side effect score is positive, while it is negative for 25 % of pairs and neutral in the remaining cases (bar in the origin, representing cases in
which s+−

ij = s++
ij + s−−

ij ). For a significant fraction of pairs (17 %) the mutual benefit is at least 50 % (i.e., bi(j) ≥ 0.5 and bj(i) ≥ 0.5). The number
increases if we look at pairs in which at least one of the two drugs has a 50 % improvement (42 % of pairs)

in general. The fact that the number of such unsigned
edges decreases so drastically when we zoom on phar-
macological targets (passing from 63 to 11 %) suggests
that our results should give reliable predictions on the
coherence/incoherence of drug pairs on the “primary”
pharmacological targets (and hence on their potential syn-
ergies), but could have a limited predictability power on
the effective side effect score, when many other unsigned
interactions are shared by a pair of drugs alongside the
coherent/incoherent off-targets we consider here.
Having so few unsigned pharmacological drug-target

interactions also suggests that the modes of action that
can be characterized with signs are more “valuable”
in terms of describing the therapeutical effects of a
drug. Hence also the investigation of the amount of
coherence/incoherence encoded in this subset of signed

pharmacological interactions is important. An analysis
like the one carried out in Figs. 1, 2b and 4 is repeated in
the Additional file 1 for the subnetwork of signed phar-
macological targets (see Additional file 1: Figures S2, S3
and S4). It turns out that some of the properties men-
tioned for the entire signed drug-target network still hold
for the signed subnetwork of pharmacological actions. For
instance, the long tail of coherent action pairs observed
in the distribution of Fig. 4 is still visible in Additional
file 1: Figure S4, much more than the corresponding inco-
herent tail, in accordance with the high synergistic score
we found.
Moving beyond drug pairs (to triplets, quadruplets,

etc.) is a more challenging problem. A possible approach
consists in computing the so-called level of structural bal-
ance [34], i.e., the amount of “disorder” that characterizes
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the drug-target network as a whole, intending with that
the amount of contradictory “orders” that multiple drugs
send to their common targets [25, 26]. Such informa-
tion, which is particularly important in a network per-
spective, is carried out in the Additional file 1. Its
limitation is that it does not allow to distinguish between
coherent and incoherent edge pairs, but only between
positive (undirected) cycles and negative (undirected)
cycles. Only the latter contribute to the disorder of the
network.
When classifying the common targets of drug pairs

according to principal targets and off-targets, it can be
observed that in the vast majority of cases in which
drug pairs share common pharmacological targets they
have no common off-target, meaning that the synergis-
tic score coefficient describes the entire overlap of the
pair. The number of drug pairs with significantly large
synergistic score is fairly big (4799 in Additional file 2
and 3163 on Additional file 3). For many of these pairs
sharing one or more common pharmacological targets,
experimental evidence of synergistic action is available.
For instance the DNA antimetabolites Gemcitabine and
Fludarabine share an inhibitory action on ribonuceotide
reductase, hence we classify them as synergistic. They
are known to act synergistically as anticancer agents in
Acute Myeloid Leukemia [35]. For other pairs, there is
no documented improvement by the simultaneous appli-
cation of the two drugs. For instance, Panitumumab and
Cetuximab are both monoclonal antibodies targeting the
epidermal growth factor receptor, and used for treating
EGFR-expressing metastatic colorectal cancers. Although
they are said to have similar activity [36], they are also
though to differ in their isotype and possibly in their
mechanisms of action (Panitumumab is known to be inef-
ficient for certain type of mutations [37]). In our metric
the synergistic scores of the pair are both 1, just based
on the common target. In other cases the improvement,
as measured by the synergistic score, is positive but low
because of the limited overlap among the pharmacological
targets. One example amongmany is the pair Propofol and
Sevoflurane. Both have the GABAA receptor among their
pharmacological targets. It is known [29] that the mecha-
nism of action is “positive allosteric modulation” for both
(here “+”), although their actions occur on different sites
of the same target. In fact, their joint action is classified as
additive in [29]. Given that Propofol has two more phar-
macological targets and Sevoflurane has five more (plus,
for both, several off-targets, none in common), their ai(j)
coefficients are positive but low.
In oder to make a more systematic validation of the

synergistic/compensatory effects described in this paper,
we downloaded the DCDB database [38] (http://www.
cls.zju.edu.cn/dcdb/), containing ∼1360 experimental
combinations of two or more drugs. Around ∼1000 of

these combinations are for human targets, and of these
118 overlap with the drug pairs sharing at least one
target considered in this study (in the remaining exper-
iments the drugs do not hit the same target, hence do
not overlap with our subset of drug pairs). The drug
combinations of DCDB are labeled as “efficacious” if
experimental evidence is available of improved benefits
(80 out of 118) “non-efficacious” for unsuccessful usages
(28 out of 118), and “need further study” when unclear
(10 out of 118). The majority of these 118 drug combina-
tions are classified as (+, +) actions (31 cases) or (−, −)

actions (72 cases). The vast majority of drug pairs shar-
ing a common target for which experimental evidence is
available confirms the synergistic effect we are suggesting
in this paper. In particular this is true for the (+, +) pairs
(24 out of 31), less for the (−, −) pairs (44 out of 72). The
complete list is given in Additional file 10.
For what concerns the drug pairs influencing each

other’s side effect, their number is remarkably low. This is
probably due to the fact that often times when sij > 0 the
synergistic score ai(j) is negative, i.e., the pair has a major-
ity of compensatory effects on its common pharmacolog-
ical targets. These pairs are not considered in our analysis
(they belong to the incoherent tail of the histogram in
Fig. 4). Nonetheless, if we look at pairs with positive syn-
ergistic score and acting nontrivially on each other’s side
effect, a few interesting categories emerge. For what con-
cerns the drug pairs having a high reciprocal benefit on
the side effect, many of the cases listed in Additional
file 6 deal with opioid receptors, where analgesics with
agonist/antagonist action on different receptors are well-
known. In particular drug pairs having a μ-type opioid
receptor as coherent pharmacological target and some
other opioid receptor (like δ-type or κ-type) as incoher-
ent off-targets are quite frequent, see Additional file 6.
Many different drug pairs (legal or less) show this kind
of mutualistic benefit on the majority of their off-targets.
Another family of examples found in Additional file 6,
concerns drugs acting as agonists or partial agonists on
β1 adrenergic receptors, but having opposite effects on
β2 adrenergic receptors (here considered as off-target of
several drugs, according to DrugBank pharmacological
action classification). An example of a pair of drugs having
bi(j) = bj(i) = 1 is given by Modafinil and Lisdexamfe-
tamine. Both act as inhibitors on the sodium-dependent
dopamine transporter, but the first drug is a partial agonist
for the Alpha-1B adrenergic receptor, while the second is
an antagonist for the same target, hence these actions tend
to cancel each other. Both drugs have no other known tar-
get. As an example of a pair for which bi(j) = 1 and bj(i)
positive but small (Additional file 7), we canmention Icos-
apent and Rosiglitazone. Both have an agonist action on
Peroxisome proliferator-activated receptor γ (pharmaco-
logical target), while they have incoherent actions on the

http://www.cls.zju.edu.cn/dcdb/
http://www.cls.zju.edu.cn/dcdb/
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off-target Long-chain-fatty-acid–CoA ligase 4 (one is an
inducer, while the other is an inhibitor). While Rosiglita-
zone has no other target, Icosapent has 8 more targets,
hence the two side effect score coefficients are 1 and
1/9. A pair for which the side effect worsen is given by
Amitriptyline and Paliperidone (see Additional file 9).
Both have a large number of targets (33 for Amitriptyline
and 17 for Paliperidone), only a fraction of which are phar-
macological (1 for Amitriptyline and 5 for Paliperidone).
Both act as antagonist on the common pharmacolog-
ical target 5-hydroxytryptamine receptor 2A, but they
also share 5 off-targets, on 4 of which (mostly adrenergic
receptors) the action is coherent. Only on the Histamine
H1 receptor they exert an incoherent action (one as antag-
onist, the other as agonist), hence overall both bi(j) and
bj(i) are negative.
In DrugBank a set of “BioInteractions” (i.e., drug-drug

interactions) is reported for each drug, based on com-
mon targets, but also on other mechanisms like assimi-
lation and clearance (using information on enzymes and
transporters affecting the drugs). These drug-drug inter-
actions are limited to pharmacological targets, and essen-
tially overlap with the pharmacological drug pairs used
in our analysis and shown for instance in Additional
file 1: Figure S4. Having lumped together many modes of
action into positive and negative signs, however, allows
us to perform a further step, namely to quantify the level
of synergism of these drug-drug interactions and hence
search for pairs with high synergistic benefit. Further-
more, DrugBank biointeractions do not take into account
off-targets as we do here, hence no investigation of side
effect is possible at all if we limit ourself to the information
currently provided by DrugBank.
It is worth observing that the presence of positive and

negative signs on the interactions and the limited knowl-
edge of the drug-target dose-response curves (for single
drugs and for drug pairs) mean that classical definitions
of synergism, as given in the framework of epistasis analy-
sis or in drug combination theory [39], cannot be applied
in our context. The methodology adopted in this paper,
counting the overlap of two drugs and splitting it into
coherent and incoherent, seems to us the simplest possible
way to generalize the notion of synergism to the present
context.
Clearly, as also some of the examples mentioned above

show, our definitions of synergism and side effect can be
oversimplified in certain cases. More sophisticated vari-
ants of the approach discussed here consist for instance
in replacing the main target/off-target distinction that
we use with some other criteria, like an ontological clas-
sification of the main targets of a drug (often known),
or a colocalization on a specific pathway of interest for
a disease. For instance many cases of synergistic thera-
peutic reinforcements happen because different drugs act

on different targets, located for example on redundant
branches of the same pathway or on distinct but comple-
mentary pathways [29]. As a rule of thumb, when the syn-
ergism is due to indirect mechanisms, it is more difficult
to capture in large-scale models. A classical example is
augmentin, a combination of amoxicillin and clavulanic
acid [7]. The calvulanic acid inhibits one of the degrada-
tion pathways of amoxicillin hence exerting an indirect,
yet strong, synergistic effect. Another related shortcoming
of the analysis performed here is that drugs are consid-
ered as on/off. Clearly dosage and timing of compound
application are factors that could be taken into account
in a model. For instance, the idea that two drugs having
modes of action with the same sign lead to an enhanced
effect on a common target is more likely to happen at
low dosage than at saturation, where only the strongest
drug is likely to bind to the target (and competitive,
instead of cooperative, effects may appear). In some cases,
the information on pharmacodynamics, assimilation and
clearance mechanisms available in DrugBank could be
used for this scope, but it is unlikely that a systematic
analysis can be built on these bases and be feasible at
network level. The caveat in this case is that very lit-
tle can be said on how data on single drug response
remain valid for mixing of drugs, unless extensive exper-
imental evaluation is performed. The broad range of
possibilities involving drug pairs, listed for instance in
[29, 39] clearly shows that only direct experimental evi-
dence can provide an irrefutable classification of com-
bined modes of action. Nevertheless, we believe that our
sign-based classification can provide a number of clues
to understand drug-target networks at functional level,
and help shed light into its (network-wide) functional
organization.

Conclusions
In this paper we have introduced the idea that the
mode of action of a drug-target interaction can be
used to construct a signed drug-target network. Char-
acterizing the edges of a drug-target network with sign
adds a connotation of functional nature to the net-
work, and enables the (network-wide) investigation of a
series of properties of importance in the context of drug
combinatorics.

Methods
A drug-target network is constructed using theDrugBank
dataset (version 4.3, downloaded November 2015). It is
a bipartite graph having two classes of nodes: drugs and
targets. The edges represent known actions of a drug
on a target. Both FDA approved and experimental drugs
are considered. The data for this network are given in
Table 1. About 68 % of the total of DrugBank drug-target
interactions are associated to human targets, see again
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Table 1. Selecting only human targets, a subnetwork can
be extracted. It is on this subnetwork that the paper is
focused.

Pharmacological actions and off-targets. The drug-
target actions (i.e., edges of the drug-target graph)
can be subdivided into “pharmacological actions” and
“unknown” or “no pharmacological action”. Normally the
pharmacological actions correspond to “main targets”, for
which the drug has been designed and the remaining to
“off-target actions”, i.e., side effects of the drug, see Table 1
and Additional file 11.

Sign of the drug-target actions. The vast majority of
categories used by DrugBank to describe how a drug acts
on a target can be classified into 2 modes of action: “pos-
itive” or “negative”. The specific categories falling into the
two modes are listed in Table 2. Some categories, like
“antibody”, “cofactor”, etc. cannot be classified as positive
or negative edges, and hence are not associated to any
sign, see again Table 2. See also the adjacency matrix in
Additional file 11.

Skewness of the coherent/incoherent drug pairs distri-
bution. Consider the signed human drug-target network.
For the drug pair (i, j), let cij be the number of targets
in common, split into c++

ij , c−−
ij and c+−

ij according to
the signs of the corresponding drug-target edges. Denote
ξ = c++

ij + c−−
ij the total number of coherent edge pairs

for the drug pair, and

ρ =
∑

i,j

(
c++
ij + c−−

ij

)
∑

i,j cij
the probability of an edge pair to be coherent over the
entire network. Then the probability of drawing at most ξ

coherent edge pairs out of cij edge pairs is the cumulative
binomial

P[ x ≤ ξ ]=
ξ∑

�=0

(
cij
�

)
(1 − ρ)�ρcij−�. (1)

If α = 0.05 is the threshold for statistical significance,
when the p-value 1 − P[ x ≤ ξ ]< α the drug pair (i, j)
is enriched for coherent actions. A similar calculation
applies also for the significance of the incoherent actions
of the pair (i, j).

Quantification of pharmacological synergism in drug
pairs. If pij is the number of signed pharmacological tar-
gets shared by the drugs i and j (split, according to the
signs, into p++

ij , p−−
ij and p+−

ij , such that p++
ij + p−−

ij +
p+−
ij = pij), then the synergistic score coefficient is

defined as

ai(j) = p+−
ij − (p++

ij + p−−
ij )

pi
.

Since pij ≤ pi, it must be ai(j) ∈[−1, 1], and, by construc-
tion, sign(ai(j)) = sign(aj(i)). Targets that are classified
as pharmacological for one drug of a pair but not for the
other are not counted in pij.

Side effect quantification in drug pairs. Let si be the
side effect of the i-th drug, i.e., the number of human
targets that are not classified in DrugBank as pharmaco-
logical targets. If sij is the number of common targets of
the drug pair (i, j) which are not pharmacological targets
for at least one of the two drugs, and s++

ij , s−−
ij and s+−

ij
specify theirs signs, then the side effect score coefficient is
defined as

bi(j) =
s+−
ij −

(
s++
ij + s−−

ij

)
si

.

Clearly bi(j) ∈[−1, 1], and, by construction, sign(bi(j)) =
sign(bj(i)).
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