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Abstract

Background: Characterising programs of gene regulation by studying individual protein-DNA and protein-protein
interactions would require a large volume of high-resolution proteomics data, and such data are not yet available.
Instead, many gene regulatory network (GRN) techniques have been developed, which leverage the wealth of
transcriptomic data generated by recent consortia to study indirect, gene-level relationships between transcriptional
regulators. Despite the popularity of such methods, previous methods of GRN inference exhibit limitations that we
highlight and address through the lens of information theory.

Results: We introduce new model-free and non-linear information theoretic measures for the inference of GRNs and
other biological networks from continuous-valued data. Although previous tools have implemented mutual
information as a means of inferring pairwise associations, they either introduce statistical bias through discretisation or
are limited to modelling undirected relationships. Our approach overcomes both of these limitations, as demonstrated
by a substantial improvement in empirical performance for a set of 160 GRNs of varying size and topology.

Conclusions: The information theoretic measures described in this study yield substantial improvements over
previous approaches (e.g. ARACNE) and have been implemented in the latest release of NAIL (Network Analysis and
Inference Library). However, despite the theoretical and empirical advantages of these new measures, they do not
circumvent the fundamental limitation of indeterminacy exhibited across this class of biological networks. These
methods have presently found value in computational neurobiology, and will likely gain traction for GRN analysis as
the volume and quality of temporal transcriptomics data continues to improve.
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Background
Although it is well-established that networks of molecular
interactions underlie critical cellular functions including
development, differentiation and homeostasis, accurate
reconstruction of network topologies using only gene
expression data is a difficult problem that has received
much attention in recent years [1–3]. Gene regulatory
networks (GRNs) assume that active regulatory interac-
tions can be captured as weighted, pairwise associations
between genes and, accordingly, that complex interactions
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(e.g. between RNAs and proteins) may be mapped onto
this level.
In 2007, the Dialogue for Reverse Engineering Assess-

ments and Methods (DREAM) challenge was launched to
promote and advance research in network-based analyses
of biological data [4, 5]. Early DREAM challenges focused
primarily on simulated data-sets, whereby a ‘true’ network
topology was used to generate artificial gene expres-
sion data [6, 7]. Entrants developed algorithms to recon-
struct this network from the expression data alone, with
performance evaluated empirically against the supposed
true network. Subsequent DREAM challenges have intro-
duced experimental data, with mRNA transcript abun-
dance quantified using qPCR (quantitative polymerase
chain reaction), microarray and now high-throughput
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RNA-seq technologies. Although more biologically rele-
vant than simulated data, ‘true’ network topologies for
these systems remain fragmentary approximations of gene
regulatory interactions and are thus inappropriate for
benchmarking [5].
The University of Melbourne’s Systems Biology Lab-

oratory has previously developed software (NAIL, Net-
work Analysis and Inference Library [8, 9]) for inferring,
analysing and visualising GRNs to assist with our efforts
in transcriptional regulatory modelling [9–13]. As noted
in a recent review by Novère [14], NAIL integrates several
previously-published methods of GRN analysis. Most of
these approaches apply a variant of Pearson’s correlation
coefficient to assign edge-weights to each pair of genes, X
and Y :

rX,Y = E[ (X − μ̂X)(Y − μ̂Y )]
σ̂X σ̂Y

,

where μ̂X and σ̂X are the sample mean and standard devi-
ation ofX, respectively. Due to the nature of the GRN eval-
uation metrics (described later), arbitrary thresholds do
not need to be assigned to identify edge weights accepted
as representing physical biological interactions.
Although correlation is a straightforward method for

assigning network edge weights, it has several fundamen-
tal limitations. Firstly, Pearson’s r assumes that X and Y
are normally-distributed and thus it can only identify lin-
ear relationships, which can be unsuitable in the context
of qPCR, microarray or RNA-seq-quantified transcript
abundance. Rank-based correlationmetrics such as Spear-
man’s ρ and Kendall’s τ coefficients are often applied to
partially correct for this issue. Secondly, correlation is a
symmetric measure (rX,Y = rY ,X) and thus it can not
infer the directionality or causality of biological interac-
tions, even when applied to the analysis of appropriate
time-series or gene knock-down data.
Despite widespread practical utility of GRN analysis,

recent studies have made broad-stroked dismissals of the
field on theoretical bases [15]. Instead, we take a two-
fold approach of (a) building upon previous inference
methods by leveraging the latest information theoretic
advancements, and (b) discussing alternative modelling
approaches that better suit some scenarios. Our measures
have been implemented in post-publication versions of
NAIL [8, 9], and we refer the reader to [16] for our general
commentary on the conundrum of reconciling theoretical
versus empirical performance bounds.

Methods
This section describes how recent innovations in infor-
mation theory may be effectively applied to infer net-
work connectivity from continuous-valued biological
data. Although described in the context of GRN infer-
ence, the following techniques can be applied to many

other domains (e.g. inference of neural, proteomic or
metabolomic networks).

Information theoretic measures for biological network
inference
The fundamental measure of information theory is Shan-
non entropy [17] (measured in bits), which captures the
expected uncertainty associated with anymeasurement, x,
of a random variable, X:

H(X) = −
∑

x∈X
p(x) log2(p(x)),

where p(x) is the (marginal) probability distribution of X.
In order to model continuous-valued mRNA transcript
levels, it is necessary to instead consider the closely-
related differential entropy of X (measured in nats) [18]:

HD(X) = −
∫

X
f (x) log(f (x)) dx,

where f (x) is the probability density function (PDF) of X,
f (x) > 0. This definition can be extended to quantify the
joint entropy of X and Y :

HD(X,Y ) = −
∫∫

D
f (x, y) log(f (x, y)) dx dy,

where f (x, y) is the joint PDF of X and Y, and D ⊆ X ×
Y such that the marginal and joint PDFs of X and Y are
strictly positive. The mutual information of X and Y can
then be defined in terms of these two measures:

ID(X;Y ) = HD(X) + HD(Y ) − HD(X,Y )

= −
∫∫

D
f (x, y) log

(
f (x, y)
f (x)f (y)

)
dx dy,

which is interpreted as the symmetric quantity of infor-
mation ‘shared’ by X and Y, ID(X;Y ) = ID(Y ;X). Mutual
information makes no assumptions regarding the distri-
bution or linearity of relationships between transcript
abundance values.
Mutual information (MI) has been applied to assign-

ing edge weights in previous GRN studies, with MI-based
network inference tools including minet [19], relevance
networks [20], MRNET [21] and earlier iterations of NAIL
[8]. However, these tools have generally applied variations
of binning algorithms to discretise X and Y and allow for
the calculation of discrete mutual information:

I(X;Y ) =
∑

x∈X

∑

y∈Y
p̂(x, y) log2

(
p̂(x, y)
p̂(x)p̂(y)

)
,

where p̂(x) and p̂(x, y) are predictors of the marginal
and joint distributions of X and Y, typically implemented
as simply the empirical (sampled) distribution of gene
expression values. Despite the introduction of several
bias-correction techniques [22–24] and the observation
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that ID(X;Y ) = lim�→0 I(X�;Y�) for discretisations
X� and Y� with bin width � [25], it is well-established
that discretisation is a suboptimal method for han-
dling empirical distributions of continuous-valued data
[26–28]. Although earlier studies have proposed contin-
uous estimation schemes for gene expression data, the
focus has been on temporal interpolation (i.e. correcting
for non-uniform sampling or missing observations [29])
rather than the quantization error introduced by previ-
ous information theoretical approaches. In the following
sections we propose and describe several methods of con-
tinuous MI estimation that specifically address the latter
class of errors.

Mutual information estimators for continuous-valued data
The simplest method of continuous-valued MI estima-
tion is the Gaussian distribution model, under which
multivariate joint entropy can be expressed as [25]:

H(X) = 1
2
log

(
(2πe)N |�X|) ,

where X ∈ RM×N is the matrix of M expression values
for N genes, and �X is the covariance matrix of X. The
pairwise MI between genes X and Y can then be calcu-
lated as ID(X;Y ) = H(X)+H(Y )−H(X,Y ). Although this
approach is computationally efficient and extends well to
large GRNs, it reintroduces the assumption of normally-
distributed and linearly-associated variables and is thus
inappropriate for modelling qPCR, microarray or RNA-
seq gene expression data.
An alternative to the Gaussian distribution model is to

estimate the marginal and joint PDFs of X using a kernel
function, K(·):

f̂ (X) = 1
Mh

M∑

i=1
K

(
X − Xi

h

)
, (1)

where h is the kernel bandwidth and Xi is the i-th row of
X; e.g. 〈Xi;Yi〉 for the calculation of pairwise MI between
genes X and Y. Two methods of kernel estimation have
been introduced into the latest version of NAIL [9],
including the uniform kernel:

K(X) = 1
2
1{|X|≤1}, (2)

where 1{·} is the indicator function; and the Gaussian ker-
nel, as implemented in the popular ARACNE package
[30]:

K(X) = (2π)N/2 exp
(

−1
2
X�X

)
.

Unlike the Gaussian distribution model, kernel den-
sity estimation allows for the model-free identification of
non-linear relationships between gene expression levels.
However, it is both statistically biased and sensitive to the

selection of kernel bandwidth [31, 32]. To provide a bias-
corrected and robust method for continuous-valued MI
estimation, we instead implement and evaluate two vari-
ants of the Kraskov, Stögbauer and Grassberger (KSG)
algorithm [33].
For each matched observation 〈xm; ym〉 of genes X and

Y, the first KSG algorithm calculates the difference in
expression, 〈�x;�y〉, between that observation and its
K-th nearest neighbour in X × Y . The number of neigh-
bours within max{�x,�y} of xm and ym are then calcu-
lated in their respective marginal spaces, with nx and ny
defined as the mean of these counts across all matched
observations. The MI of genes X and Y can then be
estimated using the first KSG algorithm:

I(1)D (X;Y ) = ψ(K)+ψ(M)− (ψ(nx +1)+ψ(ny +1)),
(3)

where ψ(·) is the digamma function:

ψ(x) = d
dx

log	(x) = 	′(x)
	(x)

.

The second KSG algorithm calculates nx and ny by
considering �x and �y separately (rather than their max-
imum), yielding the following alternative MI estimator:

I(2)D (X;Y ) = ψ(K)+ψ(M)− 1
K

−(ψ(nx)+ψ(ny)), (4)

which is more accurate for large values of M and thus
more appropriate for large (genome-wide) GRN infer-
ence. Both of these algorithms correct for bias and have
been empirically demonstrated as robust to the selection
of K [33].

Extensions to information theoretic network inference
Despite MI providing a non-linear and model-free
approach for quantifying pairwise associations between
genes, it suffers from another fundamental limitation
common of correlation-based analysis: spurious inference
of fully-connected subgraphs (K-vertex cliques) caused by
indirect regulation of the form g1 · · · ↔ g2 ↔ · · · ↔ gK .
Under the simplified assumption that genes g1 and gK only
interact via a single path through g2, these cliques can
be reduced to a single pathway by considering the data
processing inequality (DPI) [34]:

ID(g1; gK ) ≤ min{ID(g1; g2), ID(g2; gK )},
which can be expressed concisely as ‘post-processing
cannot increase information’ (colloquially, ‘garbage in,
garbage out’). The DPI was first leveraged in the con-
text of GRN inference by ARACNE [30], where it reduces
connectivity of the final boolean connectivity matrix
(obtained by applying a minimum MI threshold to edge
weights) by removing the lowest-MI edge for all fully-
connected gene triplets.
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Although the DPI is proven to reconstruct correct
network topology given the aforementioned assump-
tions [30], the existence of a single isolated pathway
of regulation between any pair of genes is known to
be an over-simplification of most biological regulatory
processes (exemplified by signaling pathway cross-talk
[35, 36]). We instead propose an alternative method
of resolving GRN cliques that involves calculating MI
between the transcript abundances of two genes, X and Y,
conditioned on abundance of a third gene, Z:

ID(X;Y |Z) =
∫∫∫

T
f (x, y, z) log

(
f (x, y, z)f (z)
f (x, z)f (y, z)

)
dx dy dz,

where T ⊆ X × Y × Z such that all marginal and
joint PDFs are strictly positive. Importantly, the condi-
tional MI between X and Y given Z can be either smaller
or larger than ID(X;Y ); conditioning removes redundant
information between Y and Z regarding X, but identifies
synergistic information that requires both Y and Z to be
known. In the earlier example of indirect regulation of the
form g1 · · · ↔ g2 ↔ · · · ↔ gK , a strongMI between g1 and
gK conditioned on g2 would indicate additional regulatory
pathways between g1 and gK that do not involve g2. In such
scenarios, application of the DPI would be inappropriate.
Conditional MI can be estimated for continuous-valued

data using a similar technique. For kernel estimation,
this simply involves applying Eq. (1) to approximate the
marginal PDF, f (z), and joint PDFs, f (x, y, z), f (x, z) and
f (y, z). The KSG algorithms can also be applied in the
following form [37, 38]:

I(1)D (X;Y |Z) = ψ(K) + ψ(nz + 1) − ψ(nxz + 1) − ψ(nyz + 1)

I(2)D (X;Y |Z) = ψ(K) − 2
K

+ ψ(nz) − ψ(nxz) + 1
nxz

− ψ(nyz) + 1
nyz

,

where nxz and nyz refer to counts in X × Z and Y × Z
respectively.
If one has access to uniformly-sampled time series of

transcript abundance data X = {. . . ,Xn−1,Xn,Xn+1, . . . }
(and likewise for Y ), the directional transfer of informa-
tion from X to Y can be determined by conditioning their
MI on past observations of Y. For a Markovian process of
length k, the transfer entropy from X to Y is this defined
as [32, 39]:

TX→Y = ID(Xn+1;Yn+1|Yn−k:n),

where Yn−k:n is the length-k history of Y preceding time
n. This definition generalises to non-Markovian processes
for limk→∞ and can be extended to calculate pairwise
information transfer conditioned on a third gene (or set of
genes), Z:

TX→Y |Z = ID(Xn+1;Yn+1|Yn−k:n,Z).

Transfer entropy (TE) allows directional gene regula-
tory associations to be inferred, which can be interpreted

as capturing evidence of causal relationships. Under the
erroneous assumption that gene expression values are
normally distributed, TE reduces to Granger Causality
[40], which has previously been applied to sparse vector
autoregressive (SVAR) inference of GRNs from microar-
ray data [41].

Data and evaluation
Network inference from pairwise MI and TE was evalu-
ated on the benchmark collection of synthetic GRNs pro-
posed byMendes et al. [42]. Although synthetic data is not
ideal for validation, there are very few (if any) biological
systems studied in sufficient detail for confident assertions
regarding their true underlying topology [5]. Instead, the
‘gold standard’Mendesmodels apply a simplified, bottom-
up model (multiplicative Hill kinetics [43, 44], simulated
in Gepasi [45]) to approximate transcriptional activity, as
illustrated in Fig. 1:

dxi
dt

= αi

NI∏

j=1

IKnj
j

IKnj
j + Injj

NA∏

�=1

(
1 + Am�

�

AKm�

� + Am�

�

)
−βixi,

(5)

where xi is the ‘concentration’ of gene product i, NA and
NI are the number of activators and inhibitors (with con-
centrations A and I) and K represents the concentration
at which activating/inhibiting effects are half their satu-
rated value. The efficiency of mRNA transcription and
degradation for the i-th gene are parameterised by αi
and βi respectively, and n controls the sigmoidicity of the
function.
The Mendes models allow benchmarking across several

classes of network topologies, including including Erdős-
Rényi [46] (random), Watts-Strogatz [47] (small-world)
and Albert-Barabási [48] (scale-free) networks (exam-
ples provided in Fig. 2). As there is growing evidence
that scale-free networks are appropriate for describing
metabolic and transcriptomic interactions [49–51], 50
‘Century’ (100-node) and 5 ‘Jumbo’ (1000-node) scale-free
Mendes networks are considered [42], along with a variety
of random and small-world topologies.
The performance of each inferred GRN is evaluated

using the Area Under the receiver operator characteristic
(ROC) Curve (AUC) metric [52]:

AUC = 1
2

n∑

k−1
(Xk − Xk−1)(Yk + Yk−1),

where Xk is the false positive rate and Yk is the true
positive weight for the k-th output in the ranked list of



Budden and Crampin BMC Systems Biology  (2016) 10:89 Page 5 of 7

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Time (t)

S
im

ul
at

ed
 m

R
N

A
 a

bu
nd

an
ce

 (
x 

) i

Fig. 1 Transcriptional activity of each gene in a Century-series (100 node) scale-free Mendes network [42], simulated using multiplicative Hill kinetics
as defined in 5. Each time-series was simulated until convergence (dx/dt = 0) using Gepasi [45], from which gene-level correlation, MI or TE can be
calculated for GRN approximation

predicted edge weights; i.e. the AUC is the trapezoidal
Riemann sum of the ROC curve.

Results and discussion
In this Section we compare the performance of the
directed and undirected information theoretic mea-
sures described, using the gold-standard Mendes suite
of benchmark GRNs [42]. For kernel-based MI estima-
tion we use the popular ARACNE implementation, the
results of which are consistent with our implementation in

Random Scale-free Small-world

Random Scale-free

(a)

(b)

Fig. 2 Examples of the Mendes synthetic GRNs used to benchmark
the performance of the information theoretic measures proposed in
this article [42], with blue and red edges representing activating and
inhibiting interactions respectively. Erdős-Rényi [46] (random),
Watts-Strogatz [47] (small-world) and Albert-Barabási [48] (scale-free)
topologies were considered from both the (a) ‘Century’ (100-node)
and (b) ‘Jumbo’ (1000-node) series. Of these topologies, there is
growing evidence that scale-free networks most accurately represent
the organisation of metabolic and transcriptomic regulatory systems
[49–51]

NAIL [9]. Average performances (AUC) and standard
deviations are presented in Table 1.
It is evident that the performance of MI-based infer-

ence of undirected GRNs is comparable to random guess-
ing (Taxble 1, theoretic AUC = 0.5). Application of
the DPI yielded no significant improvement for any MI
estimator. These results are consistent with recent stud-
ies which found that the most sophisticated GRN algo-
rithms perform no better than simple correlation-based
inference, due to the fundamental limitation of consid-
ering only pairwise expression relationships. A detailed
analysis by Maetschke et al. demonstrated that the util-
ity of these techniques is limited to small networks
with star-like topologies and that exclusively contain
activating or inhibiting interactions [11]. Several com-
mon regulatory network motifs have since been iden-
tified that are particularly difficult to infer [30]. More-
over, Krishnan et al. have provided a theoretical expla-
nation as to why many non-trivial GRNs are unable
to be reverse-engineered from expression data alone;
i.e. multiple dissimilar networks produce indistinguish-
able abundance profiles due to latent protein-mediated
effects [15].
The inclusion of directed information transfer to extend

GRN inference yielded improved performance across
all networks, with all TE-based methods performing
significantly better than random (presumably because
these measures are better able to capture activation
and inhibition relationships, which are inherently direc-
tional). These methods outperformed other Mendes-
benchmarked algorithms applying variants of correlation
or MI estimation [11, 20, 30], and thus both kernel and
KSG-estimated TE have been implemented for causal
network inference in the latest version of NAIL [9].
To our knowledge, this is the most comprehensive set
of information theoretic tools available for biological



Budden and Crampin BMC Systems Biology  (2016) 10:89 Page 6 of 7

Table 1 Performance of MI and TE-based methods of GRN inference, presented as the mean AUC (and standard deviation) across a
variety of random [46], small-world [47] and scale-free [48] networks from the Mendes ‘Century’ and ‘Jumbo’ collections [42]

Collection Networks Nodes Edges Topology
AUC (Mutual Information) AUC (Transfer Entropy)

Kernel (ARACNE [30]) KSG Kernel KSG

CenturyRND 50 100 200 Random 0.514 0.478 0.589 0.603

(0.030) (0.028) (0.024) (0.027)

CenturySF 50 100 200 Scale-free 0.475 0.505 0.526 0.561

(0.036) (0.033) (0.030) (0.030)

CenturySW 50 100 200 Small-world 0.477 0.471 0.602 0.598

(0.035) (0.035) (0.028) (0.030)

JumboRND 5 1000 1000 Random 0.473 0.439 0.540 0.564

(0.014) (0.013) (0.006) (0.009)

JumboSF 5 1000 1000 Scale-free 0.526 0.577 0.606 0.649

(0.007) (0.010) (0.007) (0.012)

Kernel-based methods apply the uniform kernel (see (2)) with bandwidth h = 0.1. For KSG-based methods, KSG algorithm 1 (better suited to small networks, see (3)) was
applied to ‘Century’ data and algorithm 2 (see (4)) to ‘Jumbo’ data, both with K = 4 [33] and assuming length-1 Markovian processes. Gene expression time-series were
simulated until convergence (dx/dt = 0) using Gepasi with default parameters [45]

network inference. NAIL is available to download from
https://sourceforge.net/projects/nailsystemsbiology/.

Conclusions
Previous GRN inference frameworks have implemented
mutual information as a means of inferring pairwise gene-
level associations (e.g. minet [19], relevance networks
[20], MRNET [21] and ARACNE [30]). However, these
tools either introduce statistical bias through discreti-
sation of expression data or are limited to modelling
undirected relationships. In this article, we have proposed
and evaluated new model-free and non-linear informa-
tion theoretic measures that circumvent these limitations,
leading to substantial improvement in empirical perfor-
mance across a benchmark set of 160 synthetic GRNs.
Although NAIL is the first GRN toolkit to incorporate

the measures described in this article, it does not over-
come another fundamental limitation of previous models;
i.e. unambiguous network reconstruction requires that
the number of time samples must be greater than the
number of genes, and even the highest time resolution
data-sets fall short by several orders-of-magnitude. To
explore transcriptional regulation in the context of cur-
rent data availability, we refer the reader to the emerging
body of literature surround predictive gene expression
modelling [53–55]. This class of top-down modelling
leverages transcriptomic and epigenetic data as indepen-
dent observations of an underlying regulatory function,
thus circumventing the issue of indeterminacy inherent to
GRN analysis.
Despite conflicting reports of the utility of GRNs

between theoretical and empirical studies [16], we believe
that this class of network inference will continue to be

of widespread value for exploring fundamental regula-
tory processes. Moreover, the methods described in this
paper can be readily applied to computational neuro-
science [56, 57] and other fields of complex systems theory
[58, 59]. We encourage researchers to investigate how
such network abstractions can be applied to their class of
biological problems.
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