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Abstract

Background: The estimation of intracellular flux through traditional metabolic flux analysis (MFA) using an
overdetermined system of equations is a well established practice in metabolic engineering. Despite the continued
evolution of the methodology since its introduction, there has been little focus on validation and identification of poor
model fit outside of identifying “gross measurement error”. The growing complexity of metabolic models, which are
increasingly generated from genome-level data, has necessitated robust validation that can directly assess model fit.

Results: In this work, MFA calculation is framed as a generalized least squares (GLS) problem, highlighting the
applicability of the common t-test for model validation. To differentiate between measurement and model error, we
simulate ideal flux profiles directly from the model, perturb them with estimated measurement error, and compare
their validation to real data. Application of this strategy to an established Chinese Hamster Ovary (CHO) cell model
shows how fluxes validated by traditional means may be largely non-significant due to a lack of model fit. With further
simulation, we explore how t-test significance relates to calculation error and show that fluxes found to be
non-significant have 2-4 fold larger error (if measurement uncertainty is in the 5–10% range).

Conclusions: The proposed validation method goes beyond traditional detection of “gross measurement error” to
identify lack of fit between model and data. Although the focus of this work is on t-test validation and traditional MFA,
the presented framework is readily applicable to other regression analysis methods and MFA formulations.
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Background
As the metabolic phenotype of the cell, the flow of mate-
rial through intracellular reactions (or metabolic flux)
represents the sum total of all underlying cellular pro-
cesses. The accurate determination of metabolic flux is
becoming increasingly important for assessing the impact
of metabolic engineering or feeding strategies on cellular
metabolism [1]. In lieu of in vivo observation, the infer-
ence of intracellular fluxes is commonly accomplished
through metabolic flux analysis (MFA). At its most basic,
MFA refers to the process of modeling intracellular flux
via a stoichiometric balance of metabolic reaction and
transport rates (assuming a “pseudo steady-state” in the
form of negligible molecule accumulation) [2]. The origi-
nal applications of the technique centered on using simple
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element balances as a means to correct unreliable mea-
surements [3]. However, the increasing availability of data
from multi-omic technologies has led to the development
of metabolic flux models that extend far beyond these
foundations.
The basis of MFA is the stoichiometry matrix. In the

typical arrangement, rows represent balances on molecu-
lar species, with each column encoding the stoichiometry
of a reaction (see [2] for details). As cellular reaction net-
works generally have more reactions than species, the
resulting stoichiometry matrix is typically underdeter-
mined. The estimation of a single flux profile requires
that the number of unknown reaction rates be equal
to or less than the number of molecular species, and
this has traditionally been accomplished by observing as
many extracellular transport rates as possible. However,
the growing availability of genomic data has opened the
door to developing models that may contain thousands
of reactions, complicating the calculation of a unique flux
profile.
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A considerable amount of metabolic information can be
gathered without calculating a unique flux profile through
constraint-based reconstruction and analysis (COBRA)
methods. The combination of mass balance constraints
from stoichiometric relations as well as other factors such
as enzyme capacity and reaction thermodynamics can
be used to generate a feasible solution space for cellular
metabolism. If a unique flux profile is required, one can be
estimated by assuming an objective function such as cell
growth maximization. However, it is also possible to study
the solution space directly (for a detailed review, see [4]).
The popularity of COBRA methods has resulted in the
development of a large number of software packages that
have considerably simplified analysis (see [5]). However,
the complexity of genome-scale models remains an on-
going challenge.
Despite the recent advances, the process of translat-

ing genomic information to cellular reactions is still
under development. Even the well-studied genomes
of Escherichia coli and Saccharomyces cerevisiae had
approximately 20% of their open reading frames (ORFs)
uncharacterized as recently as 2010 [6] and the devel-
opment of reaction networks requires a significant
amount of curation [6–8]. Furthermore, the relation
between the presence of a gene sequence and enzy-
matic activity is not always obvious [7]. A combined
transcriptomic-metabolomic modeling study of E. coli
has revealed the existence of redundant gene expres-
sion where no flux was observed [9]. Meanwhile, a
study of lysine-producing Corynebacterium glutamicum
metabolism suggested that while the expression of some
genes appears tightly coupled to metabolic fluxes, oth-
ers can remain practically constant despite considerable
changes in metabolic flux [10]. The popular Chinese
Hamster Ovary (CHO) cell line has an added prob-
lem of high genetic variability that may question the
generality of a given model [11, 12]. Taken together,
these issues add a considerable amount of uncertainty
to modeling efforts, especially for less studied expression
systems.
The addition of isotopically labelled substrate and the

analysis of resulting metabolites through 13C-MFA can
be a powerful means to gain better understanding of
a metabolic system. But despite the ready availabil-
ity of algorithms and software packages to assist with
everything from identifying optimal labelling strategies to
final analysis (as reviewed in [13, 14]), 13C-MFA is not
always practical. Isotopic labelling is expensive, especially
for large volume bioreactor cultivation, and can not be
used to monitor ongoing production processes. More-
over, studying transient labelling patterns requires accu-
rate intracellular metabolite quantification, which is not
always straightforward [15], and increased computational
resources [13].

As such, one approach to dealing with genome-scale
model uncertainty and complexity has been to simplify
the models to a level where they can be solved directly
from measured extracellular transport rates [16, 17], con-
tinuing the use of traditional overdetermined MFA. The
simplification can be aided by software such as Cell-
NetAnalyzer that can deal with both underdetermined
COBRA models and overdetermined MFA formulations
[18, 19]. Recent developments have also led to an automa-
tion of the model simplification process [20]. Despite
increasing model size, overdetermined MFA has contin-
ued to see use over the last 10 years [16, 21–27], espe-
cially for less commonly used cell lines that lack well
curated genomic and transcriptomic data. However, the
reduction of genome-levels models in this fashion is an
inversion of the original MFA foundations. In contrast
to the use of a simple, reductive model for the recon-
ciliation of questionable data, it is the accuracy of the
model that is becoming increasingly variable – making
it necessary to rigorously assess the validity of model
simplification.
A number of strategies are currently available for

model validation. The stoichiometric matrix can be
probed directly by checking its condition number [28]
or by determining the sensitivity of calculated fluxes to
measurement error [29]. The incorporation of measure-
ment flux uncertainty allows the use of gross mea-
surement error detection [30], which identifies whether
deviations between observed and fit data are normally
distributed through a χ2-test. While useful for iden-
tifying singular errors of large magnitude, this statis-
tic does not asses the overall quality of fit – errors
may be unreasonably large while remaining normally
distributed. Despite the increasing consideration of con-
fidence intervals around calculated fluxes in recent stud-
ies [31, 32], the question of whether a set of data
fits a given metabolic model has thus far remained
open.
In this work, we propose the use of a standard t-test

as a natural extension of the least-squares calculation that
underpins traditional MFA calculation. Applying MFA to
a Chinese Hamster Ovary (CHO) cell culture, t-tests were
used to determine whether each calculated flux could
be deemed sufficiently distinct from zero. Once non-
significant fluxes were identified, we explored whether
the uncertainty in calculated fluxes could be explained
by measurement uncertainty alone, or if a lack of model
fit could be to blame. To do this, the solution space of
the stoichiometric model was constrained by observed
flux ranges and hypothetical flux profiles were gener-
ated directly from the model. The profiles were per-
turbed by measurement error and collected to establish
a baseline of calculated flux significance given perfect
model fit.
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Methods
Theoretical principles1

The material balance on molecular species that forms the
basis of MFA is typically expressed as

Sv = 0 (1)

where S is the stoichiometric matrix and v is the
vector of fluxes that correspond to reactions defined
by columns of S. This formulation proceeds from a
pseudo steady-state assumption that changes in metabo-
lite pools (as a result of cell division or other pro-
cesses) are much smaller than metabolite production
and consumption fluxes and can therefore be ignored.
The Sv matrix can be be separated into Scvc + Sovo,
where c stands for calculated flux and o for observed
flux.

Scvc + Sovo = 0 (2)

−Sovo = Scvc (3)

Since vo is a vector of observed data, Sovo can be cal-
culated directly. The dimension of Sc depends on how
many fluxes can be observed, i.e., the length of vo. Sc
must have no more columns than rows to calculate a
unique flux profile, although the observation of more
fluxes (and the accompanying reduction in the number
of Sc columns) is useful for error estimation2. Pooling
cyclic or parallel pathways may be required in the ini-
tial formulation of S to ensure the required form of Sc is
obtained.
Assuming that an overdetermined form of Sc can be

formulated (with sufficient information to calculate vc),
Eq. (3) is equivalent to linear regression and can be solved
in a similar fashion.

Linear regression MFA

y = Xβ + ε (4) −Sovo = Scvc + ε (5)

β̂ =
(
XTX

)−1
XTy (6) v̂c = −

(
STc Sc

)−1
STc Sovo (7)

With this formulation, ε represents the deviation
between observed and calculated fluxes that may be the
result of either measurement error or lack of model fit.
Equation (7) assumes ε is independently and identically
distributed, which is unlikely to be the case. The variance-
covariance matrix Cov(ε) can be expressed as a scalar σ 2

multiplied by a matrix of relative covariance terms V, i.e.,
Cov(ε) = σ 2V . If observed fluxes do not covary and have
equal variance, then V = I, where I is the identity matrix.

Otherwise, Eq. (5) needs to be rescaled by the matrix
square root ofV. TakingV = PP, the scaled form of Eq. (5)
is:

−P−1Sovo = P−1Scvc + P−1ε (8)

where P−1ε now satisfies the assumptions of linear regres-
sion. Formally, this is equivalent to generalized least
squares (GLS) regression; however, incorporating P−1

directly into each term allows the use of all ordinary least
squares techniques. Letting P−1So = S′

o, P−1Sc = S′
c, and

P−1ε = ε′:

v̂c = −
(
S′T
c S′

c

)−1
S′T
c S′

ovo (9)

The calculation of P−1 requires the estimation of Cov(ε)
from the variance of observed fluxes. Calculating the
covariance-variance matrix of both sides of Eq. (5):

Cov (−Sovo) = Cov (Scvc + ε) (10)
Cov(ε) = SoCov(vo)STo (11)

Since Cov(ε) = σ 2V for any value of σ , σ is set to
1 so that V = Cov(ε). In practice, Cov(vo) need only
capture the relative magnitudes of observed flux vari-
ances as σ̂ is estimated during regression. Balances around
molecular species that do not include an observed flux
vo will have a row of zeros in Cov(ε), which prevents
the calculation of a matrix inverse (required to get P−1).
Although thismathematically equates to a variance of zero
for those balances, a better interpretation is that there is
an unknown variance around the “observation” of no net
flux. The simplest solution is to add a small non-zero value
to each diagonal entry of Cov(ε), representing the confi-
dence of the calculated fluxes being fully balanced. If there
is more uncertainty around some balances than others,
this information could be encoded in the magnitude of
the added variance. P can then be calculated via a matrix
square root of estimated Cov(ε). Since a variance (covari-
ance) matrix is positive semi-definite, P is known to be
unique.
Whereas calculated fluxes v̂c are commonly estimated

using a very similar “weighted” least squares approach, the
use of validation methods that are part of the regression
framework have yet to be explored. The common χ2 test
can still be used to detect gross measurement errors in
estimated residuals (ε̂); however, the validation of a regres-
sion model also requires the use of t-tests to ensure the
significance of calculated fluxes. Confidence and predic-
tion intervals are also highly relevant to MFA. Estimated
fluxes require a confidence interval to report the uncer-
tainty of calculation, while a prediction interval around
a predicted balance can be used to judge the validity of
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that balance being closed. The calculation of a t-statistic
follows from normal regression:

Linear regression MFA

t
β̂i

= β̂i

se(β̂i)
(12) tv̂c,i = v̂c,i

se(v̂c,i)
(13)

Thus:

tv̂c,i =
(
− (

S′T
c S′

c
)−1 S′T

c S′
ovo

)
i

σ̂

√(
S′T
c S′

c
)−1
i,i

(14)

The estimated standard deviation of ε (or σ̂ ) is calculated
as follows:

σ̂ 2 =
∑(

ε̂′
i
)2

nb − nc − 1
(15)

where:

ε̂′ = −S′
ovo + S′

c

(
S′T
c S′

c

)−1
S′T
c S′

ovo (16)

and nb is the number of balances (rows of S′
c) while nc

is the number of fluxes to be calculated (columns of S′
c).

If the model is correct and Cov(ε) was correctly esti-
mated, σ̂ 2 should be approximately equal to 1. Once the
t-value is calculated, a flux can be judged statistically sig-
nificant if |tv̂c,i | ≥ tα/2,nb−nc−1 where α is the significance
level.
The identification of non-significant flux may be inter-

preted in two ways. The measurement error around
observed fluxes may be too high to allow robust flux cal-
culation. In that case, non-significant fluxes should be
treated as having a flux of zero and excluded from the
model or further analysis. Alternatively, non-significance
may be the result of excess variability from a lack of
fit between the model and observed data, requiring
model correction. To distinguish between these cases,
it is necessary to separate model error from measure-
ment uncertainty. One way to accomplish this is to
reduce measurement uncertainty through added replica-
tion; however, the required effort can make this approach
practically infeasible. Another solution is to simulate a set
of feasible fluxes directly from the stoichiometric model
(and therefore free of model error) for comparison to the
observed data.
The simulation of feasible fluxes can be simplified by

eliminating flux equality constraints expressed by the sto-
ichiometry matrix. Essentially, only nc − nb fluxes have
to specified in order to generate all the other values.
More formally, the relationships between the fluxes can
be succinctly summarized through the nullspace (or ker-
nel) of S, which describes all flux balance conservations
in the model. This makes it possible to calculate all fluxes
from a smaller set of variables referred to as the basis.
Unlike fluxes, which must satisfy constraints imposed by

Sv = 0, the basis can take any arbitrary value to gener-
ate fluxes that satisfy all required constraints. Expressed
mathematically,

Null(S) = K (17)
Kb = v (18)

where b is a basis vector of any value with the same num-
ber of rows as columns of K. While all values of b satisfy
Sv = 0, it is still necessary to constrain fluxes to a set
of realistic values representative of a cell cultivation. The
space of all feasible fluxes v can be constrained by defining
upper and lower bounds on each observed flux:

v = Kb
subject to Kib ≤ vi + a · sd(vi)

Kib ≥ vi − a · sd(vi)
(19)

where vi is an observed flux, Ki is the corresponding row
of K, and a is a scaling constant that can be set to tα/2,df
to specify a confidence interval around vi. As the basis
solution space is only constrained by inequalities, it is
readily amenable to stochastic sampling. All values of v
that satisfy Eq. (19) represent feasible fluxes that would
perfectly satisfy the stoichiometric model while remain-
ing within measurement uncertainty of real observations.
If the resulting space is infeasible, then the observed data
does not fit the specified model. Otherwise, a random
sample of feasible fluxes can be taken for comparison to
observed results. If the addition of measurement error
to simulated fluxes results in less uncertainty than from
observed results, then model error is to blame.

Cell culture
CHO-BRI cells were grown in a 3 L bioreactor (Applikon
Biotechnology Inc., Foster City, CA) in serum-free
BioGro-CHO media (BioGro Technologies Inc., Win-
nipeg, Canada) with an in-house amino acid supplement
(manuscript submitted). The culture was seeded at 0.3·106
cells/ml with a working volume of 2 L. Temperature, pH,
dissolved oxygen, and agitation speed were held at 37 °C,
7.4, 50%, and 120 RPM respectively. Samples were taken
three times a day for offline analysis. Cell density was
determined using a Coulter Counter Z2 (Beckman Coul-
ter, Miami, FL) calibrated to results from trypan blue
exclusion analysis. Aliquots were centrifuged, with the
supernatant collected and stored at -80 °C until Nuclear
Magnetic Resonance (NMR) analysis. Dry cell mass was
calculated by vacuum filtering 15 mL of cell culture
through a type A/D glass filter (Pall Corporation, Port
Washington, NY) and weighing the filter after drying it for
24 hours at 50 °C.

Metabolite quantification
NMR spectra acquisition, metabolite quantification, and
internal standard correction are described in [33]. In brief,
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samples were scanned on a Bruker Avance 600MHz spec-
trometer using the first increment of a 1D-NOESY pulse
sequence with metabolite quantification carried out using
Chenomx NMR Suite 8.1 (Chenomx Inc., Edmonton,
Canada). GlutaMAX™ was added manually to the soft-
ware library using the Chenomx NMR Suite’s ‘compound
builder’ tool. All compounds were profiled in triplicate.
Ammonia measurements were taken using an Orion
Star™Plus ISE Meter (Thermo Fisher Scientific, Waltham,
MA).

MFAmodel
A CHO cell MFA model was taken from [34]. New trans-
port fluxes were added for acetate, formate, pyruvate, cit-
rate, malate, pyroglutamate, and GlutaMAX™ (the fluxes
of which could all be observed via NMR). The transport
of GlutaMAX™ was grouped together with the conver-
sion of the dipeptide into glutamine and alanine. The
transport of cystine was grouped together with the reduc-
tion of cystine into cysteine. A new reaction was added
for the conversion of glutamate into pyroglutamate [35]
(via a number of possible enzymatic and non-enzymatic
reactions). New reactions were also added for acetyl-CoA
hydrolase and formate-tetrahydrofolate ligase to explain
acetate and formate production. Along with a Systems
Biology Markup Language (SBML) representation of the
model, a full list of reactions and an outline of metabo-
lite flow are provided as Additional files 1, 2 and 3. As in
the original formulation, a number of unbalanced species
were removed from the model before analysis, including
O2, CO2, ATP, NADH, NADPH, and FADH (NADH and
NADPHwere later reintroduced in a modified form of the
model).

Flux estimation
Metabolite and cell concentration timecourse data was fit
by a regression spline with 4 cubic basis functions (pro-
vided by the gam function [36] in the R programming
language [37]). Measurement error was estimated by cal-
culating the variance of observation deviation from the
fit. 1000 predicted concentration timecourses were simu-
lated for each trend by adding normally distributed error
corresponding to the sum of regression and measure-
ment variance. A new regression split fit was calculated
for each of the simulated timecourses. Metabolite trans-
port fluxes were calculated by dividing the derivative
of the metabolite concentration fit by cell concentration
(vo = 1

X
dCo
dt ). The mean and variance of the simulated

fluxes at each time-point were used for all MFA analysis.
Biomass fluxes were calculated as in [34], with the excep-
tion that dry cell mass measured to be 0.24 mg/106 cells.
A single mid-exponential time-point of 66 hours was
chosen for MFA analysis to fulfill pseudo steady-state
conditions.

Implementation
All MFA calculations, validation, and sampling were car-
ried out using the omfapy Python package, developed in-
house. The package as well as analysis code is available on
github (https://github.com/ssokolen/omfapy). Basic func-
tionality was based on theoretical principles presented in
[2]. Sampling of a feasible flux space was implemented
using the random direction algorithm [38] as well as the
mirror algorithm presented in [39]. Although slower, the
mirror algorithmwas able to generate more even coverage
of the sampling space.

Results
Identification of model error
Observed uptake fluxes and their corresponding coeffi-
cients of variation 66 hours post inoculation are shown
in Table 1, with overall metabolite concentration profiles
and cell density in Fig. 1. As usual for CHO cells, the
metabolic profile was dominated by large fluxes of glucose
and lactate. Considerable fluxes of alanine, GlutaMAXTM,
ammonia, and glutamine were also observed. The median
coefficient of variation was found to be 9.3%. Although
this was similar to previously reported estimates for con-
centration quantification via NMR [40], incorporating the
uncertainty of derivative calculation resulted in a some-
what larger probability of high variance values. As in [40],
the singularly high variability of glutamate flux was pri-
marily due to its low concentration and heavy spectral
convolution.
The incorporation of the observed fluxes into the MFA

model showed no issues using typical metrics. The con-
dition number of the reduced stoichiometry matrix was
considerably below 1000 and the χ2 p-value was 0.93,
indicating little evidence of gross measurement error.
However, t-test analysis on the calculated fluxes using
the GLS framework revealed that only 15 of 47 fluxes
were statistically significant (at the standard 5% signifi-
cance level). The statistically significant fluxes were pri-
marily those that related to glycolysis – offering only
a shallow look at cellular metabolism. All of the TCA
and many of the amino acid degradation fluxes were
deemed non-significant. To determine whether measure-
ment variability or model error was to blame, 100 flux
profiles were sampled from the stoichiometric matrix
bounded by 99% confidence intervals on the measured
fluxes (fluxes generated directly from the model in this
way will be referred to as “balanced”). Ninety-nine percent
intervals were chosen to include practically all possible
flux values. The sampled fluxes had good coverage of the
constraint space, suggesting that the model was flexible
enough to fit fluxes similar to those observed. Each bal-
anced flux profile was then perturbed 100 times using
normally distributed noise generated from observed flux
standard deviations. The result was 10 000 sets of fluxes

https://github.com/ssokolen/omfapy
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Table 1 Observed uptake fluxes and coefficients of variation
(standard deviation of flux divided by flux) 66 hours post
inoculation

Flux
(

nmol
106cells·h

)
CV (%)

Acetate -1.03 5.08

Alanine -33.95 3.32

Ammonia -17.65 23.10

Arginine 2.52 16.33

Asparagine 2.21 7.64

Aspartate 2.14 7.09

Carbohydrates -2.13 12.25

Citrate -1.56 7.14

Cystine 0.33 19.04

DNA -0.31 13.15

Formate -7.52 2.06

Glucose 161.87 2.89

Glutamate -0.17 213.18

Glutamax 17.98 10.69

Glutamine 7.35 12.48

Glycine -2.25 8.79

Histidine 1.02 14.92

Isoleucine 1.52 8.13

Lactate -283.53 3.19

Leucine 2.66 9.47

Lipids -1.36 14.86

Lysine 1.80 8.05

Malate -0.40 13.78

Methionine 0.89 6.44

Phenylalanine 1.19 7.04

Proline 1.94 9.17

Protein -32.69 13.11

Pyroglutamate -3.86 3.86

Pyruvate -2.62 5.74

RNA -0.89 13.77

Serine 2.64 12.36

Succinate -0.15 15.52

Threonine 1.70 11.45

Tryptophan 0.34 17.40

Tyrosine 1.11 6.57

Valine 2.24 5.26

subject to observed measurement error but no model
error.
Figure 2 compares the percentage of simulated (bal-

anced) fluxes found to be non-significant to the results
from observed data. The simulation revealed that approx-
imately half of the calculated fluxes (and all TCA fluxes)

are entirely non-significant even when there is no model
error (Fig. 2b). Many of the other fluxes were only sig-
nificant for 50% of the simulations or fewer. The lack
of significance showed that the model was incapable of
providing high confidence results for the collected data.
Along with the overall low significance, evidence of model
error could also be observed. Focusing on approximately
20 of the lowest magnitude fluxes, all were deemed to
be non-significant based on the observed data. Compar-
ing the simulated data, the same fluxes were rejected as
non-significant 50–95% of the time. Taken together, the
probability of all the low magnitude fluxes being observed
as non-significant is extremely low, giving strong indica-
tion of poor fit beyond the effect of measurement error
alone, i.e., as a result of model error. Although model cor-
rection is outside the scope of this work, the proposed
methodology was successful in identifying a consider-
able degree of uncertainty overlooked by commonly used
validation methods.

Effect of measurement noise
An extended simulation was carried out to determine
whether the lack of statistical significance was due tomea-
surement variability. The flux constraints were extended
beyond 66 hours post inoculation to consider the broader
applicability of the model. 99% confidence intervals were
generated for all fluxes 18-80 hours post inoculation with
the minimum and maximum values for each flux used to
bound the flux solution space. 100 balanced flux profiles
were generated with 100 sets of measurement error drawn
from a normal distribution using 5, 10, 15, and 20% coef-
ficients of variation for each flux. The 45 calculated fluxes
spanned more than 3 logarithms of values from approx-
imately 0.1 nmol

106cells·h to 400 nmol
106cells·h (Fig. 3a). Fluxes had

variable magnitudes across the simulations, so all analy-
sis was performed as a function of flux rank, where a rank
of 1 indicates the smallest magnitude flux in a given flux
profile.
All the simulated flux profiles were subject to a χ2 test,

with only 5% of the simulations rejected (equal to the
false positive rate). The remainder of the fluxes are shown
in Fig. 3. As the simulated fluxes included both observed
and calculated values, a percent error could be calcu-
lated for each calculated flux. Despite passing the χ2 test,
most fluxes were characterized by median errors of 10–
20% (Fig. 3b), increasing with measurement variability. It
should be noted that the median is a relatively conserva-
tive statistic. By definition, half of the calculated fluxes fea-
tured much greater errors than the reported values. The
pronounced jump in error for flux ranks of 36 to 44 was
traced to the TCA fluxes, which had high error despite
large flux magnitudes. Similar to median error, the per-
centage of fluxes identified as non-significant increased
with measurement variability (Fig. 3c). However, even
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Fig. 1 Observed time-course trends. The presented data depicts all metabolic trends from a CHO cell cultivation carried out in a batch reactor (see
Cell culture section of Methods for more detailed information). A single timepoint of 66 hours was chosen for MFA analysis, corresponding to the
midpoint of the exponential phase (where the cells are likely to grow under pseudo steady state conditions). Panels depict ametabolites that
changed by more than 50% of their maximum concentration, b those that changed by less than 50%, and c cell density. All metabolite
concentrations are expressed as fractions of their maximum value. Curves were calculated from cubic regression spline fits constrained to 4 basis
functions. Grey area designates 99% prediction interval used for sampling
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a b

Fig. 2 Comparison of flux rejection between observed and simulated data. Panels depict a calculated flux magnitude and b the percent of
simulations in which the calculated fluxes were found to be non-significant (with asterisks indicating fluxes calculated to be non-significant using
observed data). Simulated data was drawn from the stoichiometric model described in the Methods section, constrained by 99% confidence
intervals on fluxes observed at 66 hours post inoculation. 100 balanced flux profiles were generated with 100 random generated sets of
measurement error applied to each. See Additional file 2 for reaction definitions

measurements with 5% coefficient of variation resulted
in rejection rates of 50% or more across practically all
fluxes. The TCA fluxes in particular (ranks 36 to 44) were
rejected as non-significant 75% of the time or more (at
all levels of measurement variability). The high level of
flux rejection at low levels of measurement variability sug-
gested the uncertainty in MFA calculation using observed
data was primarily due to model structure rather than
the uncertainty of observed data. Despite passing tradi-
tional validation tests, the simulation of stoichiometrically
balanced fluxes revealed that the model is incapable of
explaining observed metabolic profiles with an acceptable
degree of confidence.

Effect of model structure
To test the influence of model structure on the signifi-
cance of calculated fluxes, we simulated the effect of a
broken electron transport chain – allowing a closed bal-
anced on NADH and NADPH. Essentially, NADH and
NADPH were reintroduced into the model and assumed

to be balanced by the defined stoichiometric relations.
Although arbitrary, this assumption is consistent with
largely anaerobic metabolism of CHO cells (termed the
“Warburg Effect”) and allowed the addition of balances
around intermediate compounds participating in many
reactions. Incorporating the modified model into analy-
sis of the observed fluxes at 66 hours post inoculation
revealed no sign of gross measurement error (χ2 p-value
of 0.91) and decreased the number of non-significant
fluxes from 32 (of 47) to 16. As before, 10 000 sets
of fluxes were simulated from 99% confidence inter-
vals around the observed measurement fluxes, subject
to observed measurement error (Fig. 4). In comparison
to Figs. 2b, Fig. 4b reveals a considerable increase in
significance across a large number of fluxes, consistent
with the idea that model structure plays an important
role in uncertainty around calculated fluxes. The impact
was particularly drastic for TCA fluxes, most of which
changed from entirely non-significant to significant.
Despite the improvement in model fit, some model error
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c

Fig. 3 Comparison of fluxes simulated with different measurement errors. Panels depict a flux magnitude, bmedian error, and c percent
non-significance. Simulated data was drawn from the stoichiometric model described in the Methods section, constrained by 99% confidence
intervals on fluxes observed between 18 and 80 hours post inoculation. 100 balanced flux profiles were generated with 100 random generated sets
of measurement error applied to each. Each balanced flux profile was ordered according to increasing absolute flux magnitude to generate an
associated rank from 1 to 45

could also be observed – too many of the low magni-
tude fluxes calculated from observed data were found
to be non-significant when compared to the simulated
results.
The modified model was also tested with an extended

simulation (Fig. 5). As with the original model, 99% confi-
dence intervals were generated for all fluxes 18–80 hours
post inoculation with the minimum and maximum val-
ues for each flux used to bound the flux solution space.
The most pronounced impact of the modification was
on the rate of flux rejection (Fig. 5c). At 5% measure-
ment variability, approximately two thirds of the fluxes
were always significant. The remaining third of the lowest

magnitude fluxes were significant at least 50% of the
time. In comparison, none of the fluxes calculated with
the original model were significant for more than 75%
of the simulations. To get a better idea of how the t-test
metric related to flux inaccuracy, median errors were sep-
arated for significant and non-significant fluxes. At 5%
coefficient of variation, fluxes deemed statistically signif-
icant had a constant median error of less than 5% (with
relation to flux rank), while non-significant fluxes had
considerably higher errors (Fig. 6). Increasing coefficients
of variation resulted in dramatic increases in overall rates
of flux rejection (Fig. 5c). However, the median error of
statistically significant fluxes also increased, diminishing
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Fig. 4 Comparison of flux rejection between observed and simulated data following model modification. Panels depict a calculated flux magnitude
and b the percent of simulations in which the calculated fluxes were found to be non-significant (with asterisks indicating fluxes calculated to be
non-significant using observed data). Simulated data was drawn from a modification of the stoichiometric model described in the Methods section
(with balances on NADH and NADPH), constrained by 99% confidence intervals on fluxes observed at 66 hours post inoculation. 100 balanced flux
profiles were generated with 100 random generated sets of measurement error applied to each. See Additional file 2 for reaction definitions

the ability of the t-test metric to identify inaccuracy in
higher magnitude fluxes (Fig. 6). In comparison, the typ-
ical χ2 test retained a 5% rejection rate for all measure-
ment errors (equal to the false positive rate).

Discussion
Taken together, the results of the simulations suggest that
both measurement uncertainty and model structure have
an impact on MFA results that are not assessed by typical
validation methods. The structure of the model may lead
to a considerable amount of uncertainty around calcu-
lated fluxes despite a high level of measurement precision.
Mathematically, this impact can be seen in the

(
S′T
c S′

c
)−1

term that stems from the variance of estimated regression
parameters, i.e., Cov(β̂). Less formally, it may be intuitive
that a model featuring a balance on important interme-
diate metabolites such as NADH and NADPH would be
able to estimate intracellular fluxes with a greater degree
of confidence than a model without the extra information

afforded by the balance. Naturally, the addition of isotopi-
cally labelled substrates can add a much greater degree
of certainty. Indeed, an important application of the pro-
posed testing and simulation framework is to provide
a rigorous assessment of when extra information from
sources such as labelled substrate would be essential for
accurate flux calculation.
The proposed framework integrates a number of valida-

tion steps. While the t-test offers a straightforward post-
regression significance test, combining the t-test with
balanced flux simulation provides a convenient assess-
ment of practical model identifiability [41, 42]. In addi-
tion, comparing the results from simulated and observed
values can identify a lack of fit between model and
measured data. Model fit is particularly important in
the context of overdetermined MFA due to the large
degree of simplification involved in model generation.
Our findings suggest that the results of such simplifi-
cation may be poor identifiability and lack of fit. These
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b

c

Fig. 5 Comparison of fluxes simulated with different measurement errors following model modification. Panels depict a flux magnitude, bmedian
error, and c percent non-significance of fluxes simulated with different measurement errors. Simulated data was drawn from a modification of the
stoichiometric model described in the Methods section (with balances on NADH and NADPH), constrained by 99% confidence intervals on fluxes
observed between 18 and 80 hours post inoculation. 100 balanced flux profiles were generated with 100 random generated sets of measurement
error applied to each. Each balanced flux profile was ordered according to increasing absolute flux magnitude to generate an associated rank from 1
to 45

issues are rarely considered outside of “gross measure-
ment error” detection. The combination of t-test vali-
dation and balanced flux simulation offers a simple and
practical approach that avoids the assumption of model
validity in the determination of significance. Although
this validation strategy was developed for the analysis of
simplified metabolic models, it should be equally useful
at larger scales provided that enough observations are
available.
It is important to note that the GLS framework for val-

idation is more robust to estimated measurement error
than the standard χ2 test. GLS regression only requires
an estimate of relative measurement variance and covari-
ance in the form of V. Residual variance magnitude (σ̂ 2)
is still estimated from the model. On the other hand,
variance scaling in the χ2 test allows for large measure-
ment variance to reduce the χ2 statistic. Effectively, high
variability leads to a lower confidence that deviations are

not normally distributed. Given that variance does not
factor into any other aspect of validation, assuming a large
variance can serve as a way to avoid dealing with lack
of fit.
Following the case study presented in this work, we

recommend the following validation procedure. Before
any experiments are carried out (but after a model of
interest has been identified), construct reasonable lim-
its around each observable flux from literature or other
available data. Simulate flux profiles from the constrained
flux space and perturb them with a range of measure-
ment errors. If the flux space is infeasible, there is con-
siderable disagreement between fluxes and the model
that needs to be resolved. Otherwise, generate confi-
dence intervals around the calculated fluxes and calcu-
late the proportion of simulated fluxes that are non-
significant. If many high magnitude fluxes are found
to be non-significant in the majority of simulations
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Fig. 6 Comparison of median error of significant and non-significant fluxes (determined by t-test with α = 0.05) simulated with different
measurement errors. Simulated data was drawn from a modification of the stoichiometric model described in the Methods section (with balances
on NADH and NADPH), constrained by 99% confidence intervals on fluxes observed between 18 and 80 hours post inoculation. 100 balanced flux
profiles were generated with 100 random generated sets of measurement error applied to each. Each balanced flux profile was ordered according
to increasing absolute flux magnitude to generate an associated rank from 1 to 45

(regardless of measurement error), then the model may
have structural issues that need to be resolved. Alter-
natively, extra flux information may be required. If the
model is sound, then experiments can be carried out and
collected data analyzed via MFA. Apply the model and
generate confidence intervals around calculated fluxes.
Construct limits in close vicinity of observed values, sim-
ulate flux profiles, and perturb them with estimated mea-
surement error. If the confidence intervals of simulated
fluxes are considerably smaller than those of observed
fluxes, then the model may have errors resulting in
a lack of fit.

Conclusion
The interpretation of MFA through the GLS frame-
work underscores the need for robust validation methods.
The mathematical equivalence of MFA and regres-
sion suggests that the failure to follow good prac-
tices of regression analysis can lead to questionable
results. This work highlights the application of sim-
ple t-tests for the detection of error due to mea-
surement variability and presents a means to directly
assess model error via flux profile simulation. At the
same time, we bring attention to the impact of mea-
surement variability on model identifiability, underlin-
ing the need for better reporting. Although this work
has focused on the validation of a traditional MFA
model via t-test analysis, the overall framework is likely

to be just as applicable to other regression validation
methods or alternative MFA formulations (such as
dynamic MFA).

Endnotes
1A more detailed discussion of the theoretical princi-

ples, including a worked example and some proofs, is
available as an Additional file 1.

2It is typically assumed that Sc is sufficient for the esti-
mation of all vc values. However, failure to observe a
key metabolite may result in a case where not all values
of vc can be estimated despite Sc appearing determined
or overdetermined. See [30] for details on stoichiometry
matrix classification.
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