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Abstract

Background: We contrast the pectoralis muscle transcriptomes of broilers selected from within a single genetic line
expressing divergent feed efficiency (FE) in an effort to improve our understanding of the mechanistic basis of FE.

Results: Application of a virtual muscle model to gene expression data pointed to a coordinated reduction in
slow twitch muscle isoforms of the contractile apparatus (MYH15, TPM3, MYOZ2, TNNI1, MYL2, MYOM3, CSRP3,
TNNT2), consistent with diminishment in associated slow machinery (myoglobin and phospholamban) in the
high FE animals. These data are in line with the repeated transition from red slow to white fast muscle fibres
observed in agricultural species selected on mass and FE. Surprisingly, we found that the expression of 699
genes encoding the broiler mitoproteome is modestly–but significantly–biased towards the high FE group, suggesting
a slightly elevated mitochondrial content. This is contrary to expectation based on the slow muscle isoform data and
theoretical physiological capacity arguments. Reassuringly, the extreme 40 most DE genes can successfully cluster
the 12 individuals into the appropriate FE treatment group. Functional groups contained in this DE gene list include
metabolic proteins (including opposing patterns of CA3 and CA4), mitochondrial proteins (CKMT1A), oxidative status
(SEPP1, HIG2A) and cholesterol homeostasis (APOA1, INSIG1). We applied a differential network method (Regulatory
Impact Factors) whose aim is to use patterns of differential co-expression to detect regulatory molecules
transcriptionally rewired between the groups. This analysis clearly points to alterations in progesterone
signalling (via the receptor PGR) as the major driver. We show the progesterone receptor localises to the
mitochondria in a quail muscle cell line.

Conclusions: Progesterone is sometimes used in the cattle industry in exogenous hormone mixes that
lead to a ~20% increase in FE. Because the progesterone receptor can localise to avian mitochondria, our
data continue to point to muscle mitochondrial metabolism as an important component of the phenotypic
expression of variation in broiler FE.
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Background
In a resource-constrained world supporting a rapidly
growing human population there is great interest in en-
hancing the production efficiency of our major animal
and plant food industries. Feed is the single largest com-
mercial cost in animal production [1]. Any inefficiency

not only affects the bottom line but also negatively im-
pacts resource usage (e.g. water and energy) and waste
production (e.g. urine). Consequently, there is consider-
able economic and environmental interest in increasing
animal feed conversion efficiency. Small increases in feed
efficiency across numerous animals can have a large
industrial and environmental impact.
Broiler chickens are the most feed efficient of all the

vertebrates, with some companies boasting a conversion
of just ~1.5 units dry weight intake per unit wet weight
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gain [2]. This makes broilers particularly valuable as
biological models for understanding the mechanistic
basis of feed efficiency. Along with other avian meat pro-
ducing species, cf. turkeys, pheasants, partridge, grouse
and quails, chickens are members of the Phasianidae
taxonomic clade, the largest branch of the Galliformes.
The members of this group tend to be sedentary, resi-
dent ground-dwelling birds that use short, burst flights
to escape predators [3, 4]. This behaviour explains the
functionally unusual breast muscle metabolism of the
ancestral birds such as the Red Junglefowl (Gallus
gallus) progenitor of modern domestic chickens, which
is dominated by explosive, fast twitch contractile
isoforms and a relatively low oxidative capacity
metabolism.
The birds we chose for this analysis are pedigree

broiler males (PedM) from a population of highly inbred,
commercial animals subject to very strong historical
selection for high muscle mass and elevated feed effi-
ciency (FE) [5]. The significant difference in FE (g gain/g
feed) between the two treatment groups is in the order
of 1.4 fold in absolute terms. Some of the variation in
the FE phenotype presumably derives from biological
modifications in the non-muscle tissues. This logic,
coupled with the prior application of microarray tech-
nology on the same individuals [5], gave us the expect-
ation that any molecular differences we may detect in
the breast muscle between the two groups would be
fairly subtle. Nevertheless, it has been established for
some time that commercial broilers possess a muscle
structure that is, histologically speaking, composed
almost exclusively of low mitochondrial content type IIB
glycolytic fibres [3]. This fibre homogeneity is advanta-
geous as it provides a very stable transcriptional back-
ground against which to perform the various molecular
analyses.
Here, we have used Illumina RNA sequencing technol-

ogy to screen the breast muscle transcriptomes of the
high FE (HFE) and low FE (LFE) groups. We aimed to
both test existing hypotheses as well as generate new
ones. We have previously argued for a role of both iso-
lated mitochondrial physiology [5–20] and overall tissue
mitochondrial content [21] in driving variation in pro-
duction animal feed efficiency. Therefore, as part of our
analyses we have specifically harvested the data for genes
encoding mitochondrial proteins, finding expression was
skewed towards the HFE birds. Furthermore, we have
also used a combination of basic differential expres-
sion (DE) and a recently developed differential con-
nectivity (DC) algorithm called Regulatory Impact
Factor (RIF) analysis to screen the data in an un-
biased fashion [22–24]. The RIF algorithm detects
regulatory molecules that are transcriptionally rewired
between the two states, irrespective of whether that

molecule is DE itself. This is a potent approach for
the identification of Transcription Factors that tend
to be lowly and stably expressed at the mRNA level
[25], but whose functional activity is controlled at the
protein level through changes in cellular localisation,
ligand binding or post-translational modifications.
This analysis points to progesterone signalling
through the progesterone receptor as a key molecular
driver.

Methods
Animal resources and phenotypes
We used breast skeletal muscle samples from 12 male
broilers divergent in feed efficiency as previously
described [5]. Male broilers were raised under standard
industry practices and euthanized using carbon dioxide
asphyxiation. Cobb-Vantress Inc. adheres to internal
industrial standard guidelines for animal welfare and has
standard operating procedures for euthanasia, dissection
and other experimental techniques. In brief, the 12
broilers were derived from a single genetic line of a
commercial Cobb-Vantress Inc. population. Both the
HFE (n = 6) and LFE (n = 6) birds were sub-sampled
from the extremes of an original group of 100 birds. In
turn, those 100 birds were selected as the most efficient
from a larger population of 300 birds. The high FE
group had greater body weight gain from 6 to 7 weeks
but consumed the same amount of feed as the LFE
group. For the purposes of this manuscript we have
defined FE as the gain in bird mass relative to feed
intake, such that a higher number equates to a more effi-
cient bird. In our case, the HFE birds yielded efficiencies
of 0.65 ± 0.01 compared to 0.46 ± 0.01 (g gain to g feed
intake) for the LFE birds. This animal resource is
noteworthy in the sense that the two groups are not
divergently selected. This is an important distinction
compared to other research populations in this area. For
example, the observed DE in divergent selection experi-
ments could be a consequence of functionally irrelevant
founder effects that have accumulated over subsequent
matings. In our case the birds are from the same line
and generation, but separated on the basis of 1 week of
FCR testing in a controlled experimental environment.

Mapping, counting and normalising the mRNA reads
After phenol chloroform RNA extraction we submitted
our samples to the Research Support Facility at
Michigan State University (East Lansing, MI) for
Illumina HiSeq 100 base pair paired end read sequencing.
In brief, we used CLC Genomics Workbench 8 to map
the reads to Gallus gallus genome assembly version 4.
The CLC software follows the analytical pipeline rec-
ommended in [26]. We log2 transformed the RPM
data to stabilise the variance and then performed a
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further quantile normalisation. The impact of the two
levels of normalisation on whether the 12 individual
samples could discriminate into the treatment groups
of origin was confirmed by Principal Component
Analysis (Additional file 1).

Differential expression
To compare the 2 treatment groups we plotted the MA
(i.e. Minus Average) plot comparing HFE birds to LFE
birds (Fig. 1 panel a). The x axis, A, represents the aver-
age abundance in the 2 groups, and the y axis, M, is
HFE average transcript abundance minus LFE average
transcript abundance. A subset of functionally relevant
outlier DE genes was chosen for annotation on the plot.

mRNA encoding the mitoproteome
We downloaded the complete human mitoproteome
from http://mitominer.mrc-mbu.cam.ac.uk/release-3.1/
begin.do generating a list of 1046 nuclear and mitochon-
drial genes encoding mitochondrial proteins. We con-
verted the protein names to gene names, and found 699
matches in our chicken RNAseq data. The mitopro-
teome was then plotted in MA format, and all those
with higher values in the HFE group were colour coded
blue and those with lower values in the HFE colour
coded red (Fig. 1 panel b). The skew in distribution away
from the null expectation of 50:50 was quantified by bi-
nomial statistics. This approach formalises the extent to
which the mitoproteome data is biased to one or the
other of the two groups.

Phenotypic Impact Factor (PIF)
We next computed a modified DE called PIF (DE multi-
plied by abundance) which we have found to have a
number of appealing characteristics, both numerical and
biological. From a numerical perspective it can be used
to establish extreme DE genes in a way that accounts for
the structure of the distribution of the data (Fig. 1 panel c).
It de-emphasises lowly abundant genes that are
inherently noisy as they approach the detection limit
of the technology. It also draws together the 2 major
sources of variation in gene expression data into a
single metric which can be used for comparison pur-
poses. From a biological perspective PIF analysis is
useful as it gives more meaningful functional enrich-
ments than ranking on DE, including better charac-
terising muscle fibre composition shifts in muscle
transcriptome data [23]. Also, PIF is a foundation of
the RIF differential network analysis (below) where the
target DE molecules are first defined by extreme PIF, and
then the regulators differential co-expression to those
targets is integrated into a differential connectivity metric.
We ranked on PIF and assessed functional enrichment at
the extremes of the list using GOrilla [27].

VMus3D Muscle Model
To visualise spatial locations of proteins encoded by DE
genes derived from the HFE versus LFE birds we utilised
the Virtual Muscle 3D (VMus3D). VMus3D, described
in detail here [28, 29], is an annotated 3-dimensional
representation of key contractile protein complexes,
including thick, thin, z-disc and costameric complexes,
and their relative protein spatial locations. VMus3D is a
database driven visualisation tool that enables mapping
of gene expression changes onto their encoded proteins,
represented as an extensible 3D object, via the Docu-
ment Object Model. Here, we mapped M-values onto
the VMus3D and coloured change as follows: blue (≥2),
green (< 2 and ≥ 1), yellow (> −1 and < 1), orange (≤ −1
and > −2) and red (≤ −2) (Fig. 2).

Permut Matrix clustering on extreme PIF
The top 20 up and top 20 downregulated genes (by PIF)
were identified as described above. A matrix was formed
comprising as many rows as genes (40) and as many
columns as birds (12) with each cell containing the normal-
ised gene expression. This matrix was imported into
PermutMatrix software [30] for hierarchical clustering
(Fig. 3).

Regulatory Impact Factor (RIF) analysis
The purpose of RIF is to identify regulatory molecules
whose activity can change independent of any change in
gene expression level. This includes Transcription Fac-
tors whose activity may be influenced by ligand binding,
co-factor binding, cellular localisation and other post-
translational processes. The method works by establish-
ing different patterns of network connectivity in the two
states (here HFE versus LFE). RIF1 and RIF2 are two
versions of essentially the same analysis. In both cases the
abundance and differential expression of the ‘target genes’
is exploited in conjunction with the differential co-
expression of the ‘regulators’ to those ‘targets.’ The output of
both versions has been plotted and reported here.
We computed RIF1 and RIF2 as previously described

[22–24]. This procedure exploits global patterns of differ-
ential co-expression (or ‘differential wiring’) to infer those
regulatory molecules whose behaviour is systematically
different in a contrast of interest, in this case the HFE ver-
sus LFE birds. Herein, the experimental contrast was HFE
vs. LFE and the RIF metrics for the r-th regulator (r = 1, 2,
…898) were computed using the following formulae:

RIF1r ¼ 1
nDE

Xj¼nDE

j¼1

xj � dj � DC2
rj

and
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Fig. 1 (See legend on next page.)
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RIF2r ¼ 1
nDE

Xj¼nDE

j¼1

xHFE
j � rHFE

rj

� �2
− xLFEj � rLFErj

� �2
� �

where nDE represented the number of DE genes; xj
was the average expression of the j-th DE gene
across all time points; dj was the DE of the j-th gene
in the HFE vs. LFE contrast; DCrj was the differential
co-expression between the r-th regulator and the j-th DE

gene, and computed from the difference between rrj
HFE and

rrj
LFE, the correlation co-expression between the r-th
regulator and the j-th DE gene in the HFE and LFE
samples, respectively; finally, xj

HFE and xj
LFE repre-

sented the average expression of the j-th DE or TS
gene in the HFE and LFE samples, respectively. The
RIF1 and RIF2 output were simultaneously plotted
(Fig. 4).

(See figure on previous page.)
Fig. 1 a The slow contractile subunits highlighted are MYH15, TPM3, MYOZ2, TNNI1, MYL2, TNNT2 and CSRP3 consistent with a shift in fibre
composition towards the fast glycolytic and away from the slow aerobic fibres in HFE birds. b The mRNA encoding the mitoproteome is
significantly skewed towards the HFE consistent with a slight increase in mitochondrial content. c The extreme 5% PIF used as input for the
RIF analysis have been highlighted. These DE genes are distributed evenly across the MA plot, closely tracking the overall shape of the plot

Fig. 2 3D muscle model visualisation illustrating the downregulation of slow subunits in HFE birds consistent with a whiter, sprint muscle
phenotype. a. Longitudinal view of the contractile apparatus with coordinated DE changes of slow unit proteins highlighted. b. Z-disk proteins
differentially expressed. c. Protein locations across the contractile apparatus and their corresponding values. Colours correspond to the level of
DE (M-value) as follows: blue (≥ 2), green (< 2 and≥ 1), yellow (> −1 and < 1), orange (≤ −1 and > −2) and red (≤ −2)
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Fig. 3 A hierarchically clustered heatmap showing the expression patterns of the 40 most extreme PIF mRNA. This panel of 40 genes which
includes mRNA encoding muscle structural proteins and mitochondrial proteins can correctly discriminate the two treatment groups
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Quantitative PCR technical validation
To independently validate our RNAseq normalisation
method and method to detect DE, we selected a subset
of nine representative genes for qPCR amplification.
These were mRNA encoding slow twitch subunits
(MYH15, TPM3, MYOZ2, TNNI1, MYBPC1), slow
muscle associated proteins (MB, CA3) and muscle fat
content (PLN and FABP4). We used PCR cycling condi-
tions as previously described [5, 11]. Primers are detailed
in Additional file 2.
In brief, one microgram of total RNA was obtained

from 6 muscle samples each for high and low FE pedi-
gree broilers for general validation of the RNAseq results
and for specific confirmation. RNA was converted into
cDNA with qScriptTM cDNA SuperMix (Quanta Biosci-
ences, Gaithersburg, MD) following the manufacturer’s
instructions. The cDNA samples were diluted in a 1:10
ratio and a portion (2 μL) of the cDNA was subjected to
a real-time quantitative PCR (qPCR) reaction using an
ABI prism 7500HT system (ThermoFisher Scientific,
Waltham, MA) with PowerUpTM SYBR® Green
Master Mix (ThermoFisher Scientific, Waltham, MA).
The specific oligonucleotide primers were designed by
the PRIMER3 program (http://frodo.wi.mit.edu). The
conditions of real-time qPCR amplification were
1 cycle at 95 °C for 2 min, 40 cycles at 95 °C for

30 s, 65 °C for 30 s. The chicken glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) gene was used as
the internal control. Dissociation curves were per-
formed at the end of amplification for validating data
quality. All qPCR reactions were performed 3 times
and the values of average cycle threshold (Ct) were
determined for each sample, and 2 − ΔΔCt values for
the comparison of HFE and LFE muscles were used
for relative quantification by fold-change and statis-
tical significance.

Quail muscle (QM7) cell culture and treatments
QM7 cells were grown in M199 medium (Life Tech-
nologies, Grand Island, NY) with 10% fetal bovine
serum (Life Technologies), 10% tryptose phosphate
(Sigma-Aldrich, St. Louis, MO), and 1% penicillin-
streptomycin (Biobasic, Amherst, NY) at 37 °C under
a humidified atmosphere of 5% CO2 and 95% air. At
80–90% confluence, cells were synchronized overnight
in serum-free medium.

Progesterone receptor immunofluorescence
Immunofluorescence was performed as previously de-
scribed [31] with modifications. Briefly, cells were grown
to 50–60% confluence in chamber slides (Lab-Tek,
Hatfield, PA) followed by methanol fixation for 10 min

Fig. 4 The extremely differentially connected TF as illustrated by RIF1 and RIF2 scores. Progesterone receptor and 2 other TF involved in
progesterone signalling are awarded extreme scores by both metrics
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at 20 °C. Serum free blocking buffer (Dako, Carpinteria,
CA), and the cells incubated with rabbit anti-
progesterone receptor antibody overnight at 4 °C. Cells
were treated with MitoTracker Deep Red (Molecular
Probes, Inc., Eugene OR) and visualized with Alexa
Fluor 488-conjugated secondary antibody (Molecular
Probes, Life Technologies). After DAPI counterstaining,
a cover slip was placed on slides with Vectashield
(Vector Laboratories, Burlingame, CA). Images were
obtained using the Zeiss Imager M2 with a 20X Plan-
APOCHROMAT 20X/0.8 objective and a 100X EC
PLANNEOFLUOR 100X/1.3 oil objective. The Alexa
Fluor 488 fluorophore was observed through filter set 38
1031-346 with an excitation of BP 470/40, beamsplitter
of FT 495, and emission spectrum of BP 525/50. Differ-
ential interference contrast images were collected using
DIC M27 condensers. The Alexa Fluor 488 fluorophore
was excited for 500 ms prior to capturing each image
using an Axio Cam MR3 camera. All analysis was
performed using AxioVision SE64 4.9.1 SP1 software
(Carl Zeiss Microscopy 2006–2013).

Statistical analysis
Given the two treatment groups are so similar and that
multiple testing penalties can be very severe in this kind
of experimental design we elected not to identify signifi-
cantly DE genes on a gene-by-gene basis. Rather, we
used a range of systems-wide analyses to interpret our
data. This approach has the advantage of not being reli-
ant on the performance of any given gene, but rather
draws on information present in entire functional groups
of genes. For basic functional enrichment analysis we
used GOrilla [27]. Here, we examined functional enrich-
ment in the extreme 260 up and downregulated genes
(nominal 5% or 520 out of the total 10, 416) genes
ranked by PIF, compared to a background list consisting
of all genome-wide data; both P and FDR q-values
reported. This nominal 5% DE genes also represent the
target DE genes for the RIF analysis. For the mitopro-
teome analysis we used binomial statistics to quantify
the skew for all mRNA encoding mitochondrial
proteins. For the RIF analysis we report on extreme
outlier regulators only.

Results
Twelve RNAseq libraries were constructed using breast
muscle RNA samples from 6 HFE and 6 LFE broilers. In
total, 804 million 100 bp sequences were obtained with
an average of 67 million reads per sample and 80% of
the reads were mapped to the G. gallus reference
genome assembly. After mapping, counting and normal-
ising we returned data for 12,814 genes. We screened
for those mRNA with no missing values across the 12
samples. This gave a total 10,412 genes which were used

for all subsequent analysis. Both RPM and RPKM values
were computed and compared by correlation analysis
(Additional file 3). To achieve this we calculated the PIF
for each gene (abundance multiplied by DE) and corre-
lated the PIF scores by the two methods. Given the high
correlation (0.93) and the concern that the additional
normalisation used in generating RPKM values can
theoretically introduce a variety of problems [32], we
elected to proceed with the normalised RPM values.

Principal component analysis
The raw read count data could not discriminate the birds
into treatment group of origin. Log2 stabilising the data
allowed separation of individuals into the two groups with
one exception. This separation by treatment group was
reinforced by a subsequent quantile normalisation which
standardises the distributions of the reads for each sample
(Additional file 1). This separation provided a quality
check that our normalisation approach had maintained
the treatment differences without introducing any system-
atic bias. Further validation that the normalisation
approach did not introduce bias was provided by deter-
mination that the MA plot was centred on 0.

Differential expression between HFE and LFE birds
We used a modified DE, named PIF for: 1) functional
enrichment analysis in GOrilla, 2) to generate a panel of
genes that can discriminate the birds into treatment
group (below) and, 3) as the prelude step identifying the
targets for the RIF analysis. PIF is computed by multiply-
ing DE by abundance i.e. the two sources of variation in
expression data. The top enrichment among the 260
upregulated genes (top 2.5% out of 10,412) in HFE by
PIF is “cholesterol biosynthesis” (P = 0.00027; FDR q
value = 0.1) based on the presence of DHCR24, INSIG1,
FDPS, SC5D and MVD. The top enrichment among the
260 downregulated genes in HFE by PIF is “extracellular
matrix organisation” (P = 1.03 E-26; FDR q value = 1.24
E-22) based on the presence of FMOD, ITGA4, ACTN1,
SMOC2, FN1, ITGA8, MFAP5, CMA1, TNC, GSN, TLL1,
NRXN1, COL1A2, COL3A1, CCDC80, DCN, LTBP3,
CYP1B1, ITGB2, NCAM1, MMP2, LOX, CTSK, COL6A2,
TGFB1, COL6A3, COL22A1, CD44, CTSS, COL5A2,
LCP1, COL6A1, LOXL2, COMP, ANXA2, THBS1, ABI3BP,
COL12A1, ECM2, COL11A1,VCAN, POSTN and NID1.
The top 20 upregulated and downregulated genes by

PIF are tabulated with brief functional descriptions and
absolute fold changes in DE (Table 1).
We also cross-referenced the genes and direction of

change in Table 1 to the previous microarray study on
the same samples [5]. Of the 14 genes for which we
could find exact matches, 12 showed the same direction
of change by the two different mRNA quantitation
technologies.
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Table 1 The 40 most extreme genes by Phenotypic Impact Factor in High FE versus Low FE birds. These 40 genes have been
reordered manually into functional groupings. The absolute DE expressed as a fold change has also been reported

Gene symbol Gene name Fold Change HFE/LFE Gene function

MB Myoglobin 4.10 Down Iron storage, highly expressed in red, slow fibres

MYH15 Myosin heavy chain 15, slow 4.46 Down Slow twitch fibre isoform

TPM3 Tropomyosin 3, slow 2.67 Down Slow twitch fibre isoform

MYOZ2 Myozenin 2, slow 2.54 Down Slow twitch fibre isoform

TNNI1 Troponin I type I, slow 3.36 Down Slow twitch fibre isoform

PLN Phospholamban 2.78 Down Highly expressed in slow twitch fibres, substrate
for cAMP-dependent protein kinase.

COL3A1 Collagen 3A1 2.09 Down ECM

COL12A1 Collagen 12A1 2.66 Down ECM

FN1 Fibronectin 1 2.01 Down ECM

BMP5 Bone morphogenetic protein 5 4.23 Down Negative regulation of IGF1 signaling

RSFR Leukocyte ribonuclease A2 2.56 Down Angiogenesis

LY86 Lymphocyte antigen 86 2.42 Down Inflammation, apoptosis

MGAT5B beta-1,6-N-acetylglucosaminyltransferase 3.51 Down Synthesis of cell surface n-glycans, ECM

NES Nestin 2.64 Down Expressed in nerve cells, implies motor unit

APOA1 Apolipoprotein A1 2.27 Down Promotes cholesterol efflux from tissues. Highly
expressed in liver.

MGP Matrix Gla protein 1.84 Down ECM

IGJ Immunoglobulin J polypeptide 2.21 Down Little known

SEPP1 Selenoprotein P 2.19 Down Extracellular glycoprotein and antioxidant

CA3 Carbonic anhydrase III 1.93 Down Response to oxidative stress, expressed at high
levels in skeletal muscle

CTSS Cathepsin S 2.24 Down Lysosomal cysteine proteinase

H2AFY Histone family member Y 2.47 Up Associated with lipogenic genes

HIG2A (ENSGALG00000003348) Hypoxia-inducible domain family 2.15 Up Little known

TESK1 Testis specific kinase 1.95 Up Cell matrix communication

C11ORF89* Uannotated ORF 2.44 Up Unannotated

CKMT1 Creatine kinase mitochondrial 1 1.63 Up Creatine metabolism, muscle energy supply

CNTFR Ciliary Neurotrophic factor 2.20 Up Skeletal muscle development

ENKD1 Enkurin domain containing 2.19 Up Cytoplasmic microtubule protein

CA4 Carbonic anhydrase 4 3.95 Up Respiration, acid base balance, expressed on
luminal surface of capillaries

INSIG1 Insulin induced gene 1 1.92 Up Regulation of intracellular cholesterol
concentration and steroid biosynthesis

TTPA Tocopherol (alpha) binding protein 2.84 Up Binds alpha-tocopherol a form of vitamin E,
response to pH

LINGO1 Leucine rich repeat and Ig domain
containing 1

1.72 Up Nervous system development

DCUN1D5 Defective in cullin neddylation 1,
domain containing 5

2.10 Up Ubiquitin conjugating enzyme binding

SNCG1 Synuclein gamma 3.40 Up Synapse protein

C16ORF45 Unannotated ORF 1.88 Up Protein function unknown

LIPG Endothelial lipase 2.20 Up Lipoprotein metabolism and vascular biology

(ENSGALG00000028983) BLASTS to HOXA9 2.33 Up Transcription Factor

(ENSGALG00000027955) BLASTS to MHC 2.31 Up MHC immune function
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mRNA encoding the mitoproteome
Of the 699 genes encoding proteins localised to the
mitochondrion, 475 were upregulated in HFE and 224
were downregulated in HFE. This is a very significant
skew (binomial P value < 0.000001) implying the HFE
birds have an elevated mitochondrial content. A similar
skew was also observed in upregulated proteins in HFE
breast muscle in a recent proteomics study [33]. This in-
dicates that in general terms the upregulated genes
tended to translate into upregulated mitochondrial
proteins.

Muscle model visualisation
Overlaying DE genes between HFE and LFE birds
(M-values) on the VMus3D, identified a coordinated
down-regulation of thick (MYH15, MYL2 and
MYOM3), thin (TPM3, TNNI1) and z-disc (MYOZ2
and CSRP3) proteins encoded by slow twitch isoform
genes in HFE birds (Fig. 2). Alterations of genes en-
coding Myosin Heavy and Light Chain proteins
(MYH15 and MYL2) together with the tropomyosin
(TPM3): troponin (TNNI1) are components of the key
protein complex in determining biomechanical effi-
ciency of striated muscles [34] . Furthermore, the z-
disk and costamere have been documented as key
complexes involved in sensing mechanical stress and
converting this to chemical signals [28, 35, 36].
Although no costameric proteins were identified as
DE using VMus3D, the z-disk protein CSRP3 has
been associated with both structural and signal trans-
duction roles in cardiac muscle [37] and MYOZ2 has
been linked to calcineurin signalling, a key protein
phosphatase involved in fibre type regulation [38, 39].
Together these results indicate a difference in con-
tractile protein composition and key contractile pro-
teins involved in the regulation of fibre type. It is
worth noting that in the previous microarray study
that used pooled RNA samples from the HFE and
LFE muscle tissue, CSRP3, MYOZ2, and TNNI1 were
the number 1, 3, and 5 upregulated genes in the LFE
phenotype. Thus, there appears to be good agreement
between the microarray and RNAseq analysis data.

Permut Matrix clustering on extreme PIF
After normalising on rows, clustering on columns
correctly ascribed each bird into the correct group of
origin (HFE or LFE) (Fig. 3). Interestingly, the den-
drogram suggests the HFE birds have lower dispersion
than the LFE birds. Functional groups contained in
the 20 downregulated genes in HFE include slow
twitch contractile subunits (MYH15, TPM3, MYOZ2,
TNNI1) and associated slow twitch metabolic machin-
ery (MB and PLN); components of the extracellular
matrix (COL3A1, COL12A1, FN1, MGAT5B and
MGP); negative regulation of IGF1 signalling (BMP5);
and cholesterol metabolism (APOA1). The observed
downregulation of BMP5, a negative regulator of
IGF1 signalling, implies IGF1 signalling is increased
in HFE birds. Functional groups contained in the 20
upregulated genes include mitochondrial metabolism
(CKMT1); fast twitch muscle (MYBPH); and acid-base
balance and response to pH (CA4, TTPA).

Regulatory Impact Factor analysis
The RIF1 and RIF2 scores were plotted and manually
explored for outlier Transcription Factors (TFs)
(Fig. 4). Most of the data is centred close to 0, imply-
ing that the majority of TFs are not differentially con-
nected and therefore perform the same function in
the same manner in the two groups. However, there
are a small number of TF that are highly differentially
connected. The top 3 encode progesterone receptor
(PGR) and two TFs that are components of progester-
one signalling pathways (GZF1 and CITED2; Fig. 4;
Additional file 4).

Quantitative PCR technical validation
The comparison between the RNAseq and qPCR data is
outlined in Table 2. The direction of expression change
was confirmed in all nine cases. In seven cases the qPCR
detected a larger DE than the RNAseq.

Progesterone receptor immunofluorescence
In a preliminary attempt to explore the localisation of
the progesterone receptor in birds, we undertook an

Table 1 The 40 most extreme genes by Phenotypic Impact Factor in High FE versus Low FE birds. These 40 genes have been
reordered manually into functional groupings. The absolute DE expressed as a fold change has also been reported (Continued)

BFSP1 Beaded filament structural protein 1 3.16 Up Cytoskeletal structure

MYL2_1 (MYL2A) MYL2A 3.39 Up Thought to be more highly expressed in cardiac
muscle i.e. slow fibres

MYBPH Myosin binding protein H 1.53 Up Fast isoform
* We further explored the possible function of the gene encoding an unannotated Open Reading Frame (ORF) C11ORF89, given it was in the top 20 upregulated
genes in the HFE birds. The entry in GeneCards (under the alias PRR33) predicts the ORF to translate into a large protein containing regions of low complexity and
comparative analysis suggests that the protein was present in the ancestor of the chordates. It is located in the G. gallus genome adjacent to TNNT3 and TNNI2,
and cellular compartment analysis (http://compartments.jensenlab.org/) suggests there is moderate evidence it is a cytoskeletal protein
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immunofluorescence approach in a quail muscle cell
line. This qualitative approach showed a near
complete overlap between the presence of mitochon-
dria and the progesterone receptor. This indicates
that most, if not all, progesterone receptor proteins
are localised to the mitochondria in this particular in
vitro avian muscle cell line (Fig. 5).

Discussion
Muscle structure
At a gross histological level, broiler pectoralis muscle is
unique among the vertebrates, being almost exclusively
built of fast, glycolytic type IIB fibres [40]. This muscle
tissue would be expected to have a sparse capillary
network, and the individual fibres to possess a low
mitochondrial content and few lipid droplets. This
expectation was essentially borne out in the 1970’s by
[3], where a mitochondrial content of just 4% was deter-
mined by Transmission Electron Microscopy and mor-
phometric analysis in chicken pectoralis muscle. This is
approximately 10-fold less than the 35% mitochondrial
content of very athletic hummingbird pectoralis muscle
[41]. Collectively, these observations indicate that chick-
ens have an unusually homogeneous breast muscle
structure bearing a very low aerobic capacity. Broiler
chickens are the most feed efficient vertebrates known
with a dry weight in to wet weight out ratio of ~1.5 [2].
It has been previously argued that the very low aerobic
capacity of their muscle is a likely driver of this pheno-
type through avoiding paying for ‘expensive’ spare
aerobic capacity and considerations of economic physio-
logical design [21].

Table 2 The correspondence between RNAseq and qPCR data
for mRNA encoding slow twitch subunits, proteins associated
with slow fibres and intramuscular fat content

Gene RNAseq fold change (HFE–LFE) qPCR fold change (HFE–LFE)

MYH15 −4.47 −33.37

TPM3 −2.66 −1.96

MYOZ2 −2.55 −6.40

TNNI1 −3.36 −4.69

MYBPC1 −1.43 −2.23

PLN −2.77 −3.11

FABP4 −1.16 −4.44

MB −4.08 −8.65

CA3 −1.93 −1.62

Fig. 5 The strong co-localisation of the progesterone receptor in the mitochondria of a quail cell line
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Indeed, it has been observed in many independent
circumstances that the most feed efficient breeds,
selected on either FE or muscle mass, transition from a
redder, slow, aerobic ancestral muscle to a faster, whiter,
less aerobic glycolytic one in the derived state. Examples
include MSTN mutant Piedmontese [42], Belgium Blue
[43] and Blond d’Aquitaine [44] cattle, Callipyge sheep
[45–47] and both Large White [48, 49] and German
Landrace pigs [50]. The transition from high myoglobin
content red to low myoglobin content white fibres in
pigs has been so dramatic that they are no longer
considered a rich source of dietary iron and are viewed
as the second ‘white’ meat after chicken, rather than the
third red meat after beef and lamb.
We know that these broiler muscle transcriptomes are

derived (at least based on histological typing) almost
exclusively from white, fast type IIB fibres [3]. In line
with anatomical and physiological expectation the two
most highly expressed genes in the muscle are the fast
myosin heavy chain isoform MYH1E and the regulator
of anaerobic glycolysis GAPDH. However, we also
detected gene expression of a number of slow contractile
subunits (MYH15, TPM3, MYOZ2, TNNI1, MYOM3,
CSRP3, TNNT2 and MYL2B) in addition to the expected
fast ones. This somewhat surprising finding implies that
a subset of remnant slow subunits make up a small but
measurable proportion of the sarcomeric structure of
the type IIB fibres, perhaps such that they are a mosaic
at the molecular level.
The subtle but coordinated reduction of these slow

twitch isoforms and associated slow machinery (myoglo-
bin and phospholamban) in the higher FE birds is in line
with the broad expectation of muscle ‘whitening’ being
associated with high FE described above. It also concurs
with our previous observations based on a cDNA micro-
array [5, 11]. The divergent pattern we observe in CA3
and CA4 may also be a simple consequence of fast
versus slow fibre subunit abundance [51]. Intriguingly,
while the majority of slow subunits were downregulated
in HFE including MYL2B, a separate MYL2 isoform
(MYL2A) was upregulated in HFE birds. We do not have
an explanation for this apparent inconsistency. One
would expect the expression of mitochondrial proteins
to track the fibre composition data. However, our obser-
vations on the gene expression of mitochondrial proteins
are not congruent with the reduction in the slow muscle
fibre subunit and myoglobin/phospholamban data in
HFE birds.

Mitochondrial metabolism
In terms of mitochondrial content we found that the
mRNA encoding the mitoproteome is modestly but
highly significantly skewed towards the HFE birds. We
propose that this indicates a slightly higher

mitochondrial content and therefore a somewhat higher
aerobic capacity. This is prima facie contrary to the
reduction in slow fibre subunits and reduced myoglobin/
phospholamban outlined above. It is also at odds with
theoretical expectation [21] and mRNA/protein abun-
dance data from numerous other species, particularly
recent genome-wide screens performed on pigs diver-
gent for RFI [52]. It also appears contradictory to previ-
ous work showing in chickens divergent for mass, the
more efficient larger birds have a lower, not higher,
mass-specific metabolic rate [53]. Having said this, we
believe these specific samples have been correctly
characterised. These mRNA data are in agreement with
a mass spectrometry-based proteomic analysis carried
out on a subset of the same breast muscle tissues (n = 4
per HFE and LFE groups), as the protein expression of
the mitochondrial proteome was also somewhat elevated
in the HFE phenotype [33].
Therefore, while the ‘big picture’ finding in production

animals appears to be that selection on mass and FE
reduces mitochondrial content and aerobic capacity, the
data from this particular FE contrast between highly
selected birds tends to point in the opposite direction.
The underlying reason(s) for this notable disparity are
the source of continued investigations. One possibility is
that the commercial birds have such a low mitochon-
drial content that they are on the verge of expressing
metabolically driven muscle pathologies. This would be
consistent with the recent emergence of concerning
phenotypes such as ‘white striping’ and ‘wooden breast.’
If a low mitochondrial content drives these pathologies,
one might speculate that subtly increasing mitochondrial
content may increase FE through impact on general
health. Ultimately, the mitochondrial content finding has
been approximated using gene expression. Ideally, this
finding would be validated with an independent technol-
ogy such as qPCR of mtDNA expressed relative to
nDNA, but unfortunately we no longer have adequate
sample material.
The general upregulation of mRNA encoding the

mitoproteome in HFE birds is modest in absolute terms
and there are many genes that are downregulated as well
as upregulated. Extreme among the upregulated mole-
cules in HFE are TDRKH, MRPL55, LDHD, CKMT1A
encoding a gene silencer, a mitoribosome subunit, lactate
dehydrogenase D and mitochondrial creatine kinase 1A.
The biological implications of TDRKH for skeletal
muscle are unknown, but MRPL55, LDHD and
CKMT1A indicate an increase in mitochondrial protein
synthesis (and therefore mitochondrial content), a
change in redox status and increasing the transfer of
high energy phosphate from the mitochondria to the
cytosolic carrier, creatine. The downregulation of PDK4,
ACACB and LDHB (encoding pyruvate dehydrogenase
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kinase 4, acetyl coA carboxylase beta and the B subunit
of lactate dehydrogenase) indicate the HFE birds have a
preference for burning carbohydrate instead of fat, a
reduction in fatty acid uptake and combustion by mito-
chondria and a reduced reliance on anaerobic glycolysis.
The first two point to a change in fuel combustion
pattern that is consistent with a subtle fibre subunit
transition towards a whiter muscle phenotype–after all,
glycolytic fibres are geared to burn glycogen not fat
during exercise. The reduction in the anaerobic LDHB
in HFE is perhaps consistent with an elevated mitochon-
drial content, as the presence of higher aerobic metabol-
ism may reduce the need to resort to anaerobic
metabolism for ATP production.

Intramuscular fat and extracellular matrix content
Although arguably not statistically significant sensu
stricto, we wish to highlight the expression profiles of
several genes previously implicated in intramuscular fat
(IMF) content given the important role IMF plays in
both meat quality and energetics. In the HFE birds
there is a trend towards a small reduction in expres-
sion of two genes (FABP4, PLIN2) previously associ-
ated with amount and activity of intramuscular fat in
cattle [54–57], sheep [54] and pigs [58, 59]. In abso-
lute terms PLIN2 and FABP4 are 1.5 fold and 1.2 fold
downregulated in HFE respectively. PLIN2 is ranked
in position 288 (extreme 3%) when the 10, 412 genes
are ranked by PIF from negative (down in HFE) to
positive (up in HFE) values. Together, the expression
of these two genes implies the HFE birds possess a
slightly leaner breast muscle. In cattle muscle, these
two genes tend to be tightly co-expressed with
THRSP, S100G, CIDEA and CIDEC [60], but we did
not detect expression for these additional genes in
the broiler data. The tendency towards higher muscle
tissue leanness in the high FE birds is unsurprising,
relating to the selection for overall animal mass in
the calculation of Residual Feed Intake. Using basic
animal mass as the selection phenotype will inevitably
select against light, anhydrous but energy-dense adi-
pose tissue and promote heavy, watery lean muscle
tissue. Further, very lean meat is texturally dry and
relatively flavourless–a universal problem in produc-
tion animals or breeds with relatively high FE such as
Callipyge sheep [61], myostatin mutant sheep [62]
and Large White pigs [63].
Additionally, a very strongly coordinated reduction in

expression of 41 genes encoding extracellular matrix
proteins in HFE birds is consistent with less ‘white strip-
ing’, a meat defect that has recently appeared in poultry,
particularly large birds grown too quickly [64]. White
striping comprises seams of collagenous material con-
taining some embedded adipocytes. The coordinate

down regulation in HFE birds of genes encoding ECM
components in addition to those relating to lipid content
can also be seen as consistent with a reduction in this
pathology.

Progesterone signalling and FE
We have characterised the anatomical and physiological
differences between high and low FE broiler muscle. The
HFE bird muscle exhibits a reduction in slow muscle
subunits and associated machinery and a subtly elevated
mitochondrial content. But what is the ultimate cause of
this muscle phenotype shift? The differential network
RIF analysis clearly points to alterations in progesterone
signalling as being the major driver. The 3 most differ-
entially connected Transcription Factors are CITED2,
PGR and GZF1. That is, the progesterone receptor itself,
and two molecules that communicate progesterone sig-
nalling or are influenced by it [65, 66]. However, the RIF
analysis does not imply activation or repression of the
pathway, the direction of change needs to be inferred by
different means. In a concurrent proteomics study being
conducted on the PedM broiler line, progesterone was
predicted to be activated using a commercial software
program (Ingenuity Pathway Analysis, Qiagen, Valencia,
CA, USA), based on expression of downstream proteins
[33]. Thus, two independent analytical approaches, one
based on global gene expression and the other based on
global protein expression both point towards progester-
one as a driver of the FE phenotype.
Progesterone is synthesised from cholesterol, so our

additional identification of “cholesterol biosynthesis”
(DHCR24, INSIG1, FDPS, SC5D and MVD) as enriched
in the upregulated genes in HFE birds is noteworthy. In
mammals, progesterone synthesis is known to occur in
reproductive organs, adrenal glands, nervous tissue and
adipose tissue. To the best of our knowledge endogen-
ous synthesis has not been detected in mammalian
skeletal muscle. The situation in birds is unknown. In
fact, we could not find any published information on
progesterone production nor mode of action in avian
muscle.
However, in cattle exogenous administration of pro-

gesterone is often used in hormone growth promotant
mixes (in concert with testosterone and estrogen) that
raise FE by ~20% [67]. Indeed, the synthetic gestagen
(progesterone analog), melengestrol acetate, has been
found to stimulate muscle growth in yearling heifers
[68]. Furthermore, in pregnant humans progesterone
alters muscle phenotype from a slow oxidative to fast
glycolytic state [69]. This slow to fast contractile skeletal
isoform transition is certainly consistent with what we
observe in our HFE broiler data (but we do not see the
accompanying reduction in aerobic capacity). Progester-
one also promotes protein synthesis in human skeletal
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muscle and rat cardiac muscle [70, 71]. Finally, a trun-
cated isoform of the progesterone receptor localises to
the mitochondrion in mammals [72]. Here, we present a
first line of evidence that the progesterone receptor also
localises to the mitochondria in birds, based on im-
munofluorescence in a quail muscle cell line. Conse-
quently, the posited role of progesterone signalling via
the progesterone receptor in driving variation in FE is a
further line of evidence consistent with the mitochon-
drion being a central player.

Previous work on muscle gene expression and poultry
feed efficiency
We have previously documented gene expression pat-
terns in these same samples using microarray technology
[5], finding a similar reduction in the HFE birds of genes
encoding a set of slow twitch contractile subunits
(CSRP3, MYH6, LMOD2, MYBPC1, TNNI1, TNNT2)
plus slow machinery PLN and ATP2A2. Another group
[73] examined 23 breast muscle samples from a different
population of commercial broilers also using RNA
sequencing technology. Surprisingly, some of their basic
structural findings are exactly opposite to ours, in that
they found the slow contractile subunits (CSRP3,
MYOZ2, MYL2, TPM3, MYH15) and intramuscular fat
content (FABP4, PLIN2) as upregulated in the HFE
birds. The reason for this very fundamental contradic-
tion is a mystery at this stage, but may be attributable to
different genetics or some other factor. Finally, we wish
to emphasise that the progesterone signalling prediction
made by RIF on our mRNA data has also been inde-
pendently borne out by Ingenuity Pathway Analysis ‘up-
stream analysis’ on proteomics data derived from the
same muscle samples [33]. Thus, analyses performed at
two levels of biological organisation (mRNA and
protein) and two independent inference strategies
(RIF and IPA) have come to the same conclusion.

Conclusions
Selection on FE at the whole bird level culminates in
measurable changes in breast muscle phenotype. Despite
the subtlety of the changes, we have identified a panel of
40 genes whose expression level can discriminate the
two groups and whose functions include slow muscle
structure (and associated machinery such as myoglobin
and phospholamban) and mitochondrial activity.
Hierarchical clustering shows the HFE birds show less
dispersal than the LFE, reflecting a reduction in gene
expression variation. This concept of reduced variation
(in the treated versus control circumstance) has been
observed before as a real signal of pathway constraint
[74], and therefore can be taken as informative in the
same way as measures of differential expression and
differential connectivity. The gene expression changes in

the HFE birds suggest a whiter, leaner tissue which
presumably reflects the well established relationship
between elevating FE on the one hand but increasing the
likelihood of deficits in meat quality on the other. This exact
same issue has been observed in many other highly selected
production animals such as large white pigs and callipyge
sheep. The differential network analysis clearly points to
modifications in progesterone signalling as a key driver of
the difference between the two groups. The next challenge
is to harness this finding, perhaps through diet or genetics,
to help drive broiler FE even higher without exogenous
administration of progesterone. Any attempt to increase FE
will need to be cogniscent of possible negative effects on
associated meat quality traits or the health of the birds.

Additional files

Additional file 1: PCA analysis of (A) the raw RPM read count data, (B)
the log2 transformed data and (C) the quantile normalised log2 data.
Green denote HFE, red denote LFE and blue are Barred Rock outgroup
animals. The Barred Rock birds were used for collective normalisation but
not formally analysed in this study. The outlier red sample is LFE bird 131.
(TIF 96 kb)

Additional file 2: The qPCR primers used to validate the DE of a subset
of genes prioritised by RNAseq. (DOCX 12 kb)

Additional file 3: The very strong relationship between RPM and RPKM
in our data, using PIF as the metric for comparison. The PIF based on
RPM has a correlation of 0.93 to the PIF based on RPKM. (TIF 2058 kb)

Additional file 4: The RIF1 and RIF2 output listed in full for the 898
Transcription Factors. (XLSX 69 kb)
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